Of Group Vi (i.e., Cr, Mo, W Or Po) Patents (Class 502/254)
  • Patent number: 6706660
    Abstract: A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably &ggr;-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The &ggr;-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m2/g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the &ggr;-alumina is prepared by a sol-gel method, with the metal doping of the &ggr;-alumina preferably accomplished using an incipient wetness impregnation technique.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: March 16, 2004
    Assignee: Caterpillar Inc
    Inventor: Paul W. Park
  • Publication number: 20040040890
    Abstract: A composition comprising a promoter and a metal oxide selected from the group consisting of tungsten oxide, a molybdenum oxide, and combinations of any two or more thereof, wherein at least a portion of the promoter is present as a reduced valence promoter and methods of preparing such composition are disclosed. The thus-obtained composition is employed in a desulfurization zone to remove sulfur from a hydrocarbon stream.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: Robert W. Morton, Jason J. Gislason, Roland Schmidt, M. Bruce Welch
  • Patent number: 6696388
    Abstract: A gel composition substantially contained within the pores of a solid material for use as a catalyst or as a catalyst support in dehydrogenation and dehydrocyclization processes.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: February 24, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Publication number: 20040031727
    Abstract: Cationic layered materials, a process for their preparation and their use in hydrocarbon conversion, purification, and synthesis processes, such as fluid catalytic cracking. Cationic layered materials are especially suitable for the reduction of SOx and NOx emissions and the reduction of the sulfur and nitrogen content in fuels like gasoline and diesel. The new preparation process avoids the use of metal salts and does not require the formation of anionic clay as an intermediate.
    Type: Application
    Filed: June 24, 2003
    Publication date: February 19, 2004
    Inventors: Paul O'Conner, William Jones, Dennis Stamires
  • Patent number: 6683022
    Abstract: Method for the discontinuous thermal treatment of catalyst material comprising the steps (a) introducing the catalyst material into a reactor, (b) heating the catalyst material, (c) thermally treating the catalyst material in the reactor at the reactor temperature, (d) discharging the catalyst material from the reactor and (e) cooling the catalyst material, wherein the reactor temperature is kept constant during the steps (a) to (e), step (b) is carried out during and/or after step (a), step (e) is carried out during and/or after step (d), and step (c) is carried out after step (b) and before step (e). The method is used primarily for the calcination or activation of catalysts or catalyst supports which are used in polyolefin production.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: January 27, 2004
    Assignee: Basell Polyolefine GmbH
    Inventors: Paulus De Lange, Michael Kämmerer, Thomas Brauch, Kaspar Evertz, Thomas Letzelter, Peter Kölle, Hans-Jacob Feindt
  • Patent number: 6683019
    Abstract: An olefin metathesis catalyst consists essentially of a transition metal or oxide thereof supported on a high purity silica support possessing low amounts of acidic or basic sites such that in the reaction of pure butene-1 over said catalyst under metathesis reaction conditions the reaction possesses a weight selectivity to hexene-3 of at least 55 wt %.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: January 27, 2004
    Assignee: ABB Lummus Global Inc.
    Inventors: Robert J. Gartside, Marvin I. Greene, Ali M. Khonsari, Lawrence L. Murrell
  • Patent number: 6683024
    Abstract: A sorbent composition is provided which can be used in the desulfurization of a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. The sorbent composition contains a support component and a promoter component with the promoter component being present as a skin on the support component. Such sorbent composition is prepared by a process of impregnating a support component with a promoter component, wherein the promoter component has been melted under a melting condition, followed by drying, calcining, and reducing to thereby provide the sorbent composition.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: January 27, 2004
    Assignee: ConocoPhillips Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Patent number: 6641785
    Abstract: The invention relates to a catalytic converter and a method for cleaning the exhaust gas from an internal combustion engine which is operated with excess air. The catalytic converter has an active material made from the oxides TiO2, V2O5, CaO and SiO2, as well as WO3 and/or MoO3. An active material of this type has the property of using the SCR method to reduce to equal extents the levels of nitrogen oxides and hydrocarbons. The CO oxidation activity of a material of this type can be increased by metering in elements selected from the group consisting of Pt, Pd, Rh, Ru and Ir in any desired inorganic form.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: November 4, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ronald Neufert, Frank Witzel
  • Patent number: 6638890
    Abstract: A modified carrier carrying on at least a part of an inert carrier surface an oxide which is represented by the formula (1): XaYbZcOd (wherein X is at least an element selected from alkaline earth metals; Y is at least an element selected from Si, Al, Ti and Zr; Z is at least an element selected from Group IA elements and Group IIIb elements of the periodic table, B, Fe, Bi, Co, Ni and Mn; and O is oxygen; a, b, c and d denote the atomic ratios of X, Y, Z and O, respectively, where a=1, 0<b≦100, 0≦c≦10, and d is a numerical value determined by the extents of oxidation of the other elements) is provided. A catalyst formed with the use of this modified carrier carrying a complex oxide containing Mo and V is useful as a vapor phase catalytic oxidation catalyst, and is particularly suitable as a catalyst for preparing acrylic acid through vapor phase catalytic oxidation of acrolein.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: October 28, 2003
    Assignee: Nippon Shokubai Co. Ltd.
    Inventors: Michio Tanimoto, Hiromi Yunoki, Daisuke Nakamura
  • Patent number: 6632772
    Abstract: A method of coating a catalyst to a support for use in acrolein oxidation reaction. Metallic salt components of the catalyst including molybdate, vanadate and tungstate are dissolved in a liquid to form a suspension of particles of the catalyst. The precipitation of the catalyst particles is controlled by homogenizing the catalyst particles suspended in the liquid. The phase separation between the catalyst particles and the liquid can be substantially slowed down by the homogenization. Then the catalyst is coated on an inert support by applying the suspension of the catalyst particles to the support. In the suspension, the total weight of water is about 0.8 to about 5 times of the total weight of the metallic salts in the catalyst. This method of preparing suspension minimizes the amount of the liquid required to dissolve the metallic salts, which reduces the amount of time and energy to be used in evaporating the liquid from the suspension.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: October 14, 2003
    Assignee: LG Chemical, Ltd.
    Inventors: Won-Ho Lee, Kyung-Hwa Kang, Dong-Hyun Ko, Young-Chang Byun
  • Publication number: 20030173253
    Abstract: The invention provides an amorphous hydrocracking catalyst for conversion of a hydrocarbon feed having a fraction above the diesel boiling range to diesel and a process using said catalyst. The catalyst includes Al2O3—SiO2 support, a noble catalytically active metal which is active for hydrocracking of a hydrocarbon above the diesel boiling range and a transition metal oxide selected from group V, VI and VII.
    Type: Application
    Filed: April 3, 2003
    Publication date: September 18, 2003
    Inventors: Aubin-Maurice Liwanga-Ehumbu, Jacobus Lucas Visagie, Dieter Otto Leckel
  • Publication number: 20030171510
    Abstract: A novel magnesium treated silica-containing compound that is useful as a support for chromium based olefin polymerization catalyst systems is provided which produces ethylene polymers having with MWD's that promote good properties particularly in HMW film applications.
    Type: Application
    Filed: December 18, 2002
    Publication date: September 11, 2003
    Inventors: Joseph S. Shveima, Max P. McDaniel, Shirley J. Martin, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Ashish M. Sukhadia
  • Publication number: 20030153786
    Abstract: A catalyst which is a complex oxide catalyst represented by the following general formula (1):
    Type: Application
    Filed: February 25, 2003
    Publication date: August 14, 2003
    Inventors: Michio Tanimoto, Daisuke Nakamura, Hiromi Yunoki
  • Patent number: 6596664
    Abstract: In accordance with the present invention, a catalyst is described which comprises at least one metal selected from the group consisting of copper, zinc, iron, tungsten, molybdenum, and chromium distributed over a catalyst support comprising a material containing at least one of silicon, titanium, zirconium, magnesium, aluminum, and activated carbon. The catalyst is used to remove phosgene from a contaminated gas stream and/or reduce or eliminate phosgene from an effluent of a previously treated gas stream. At least one metal in the catalyst of the present invention is preferably present in an amount from about 0.001 wt % to about 15 wt %. When more than one metal is present, the combined metals preferably do not exceed 20 wt %. Catalysts in accordance with the present invention may be used as photocatalysts. Processes for using the catalysts and photocatalysts of the present invention are also described.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: July 22, 2003
    Assignee: KSE, Inc.
    Inventors: James R. Kittrell, David A. Gerrish, Michael C. Milazzo
  • Patent number: 6596897
    Abstract: A fluidized-bed catalyst for producing acrylonitrile by the ammoxidation of propylene, which comprises a silica carrier and a composite having the following formula: AaCcDdNafFegBihMiMo12Ox wherein A selected from the group consisting of potassium, rubidium, cesium, samarium, thallium and mixtures thereof; C is selected from the group consisting of phosphorus, arsenic, boron, antimony, chromium and mixtures thereof; D is selected from nickel, cobalt or mixtures thereof; M is selected from tungsten, vanadium or mixtures thereof. The catalyst of the present invention particularly suits the use under higher pressure and higher duties, and still maintains very high single-pass yield of acrylonitrile and a high ammonia conversion. This catalyst particularly suits the requirement for existing acrylonitrile plants to raise capacity. For new plants it can also reduce the investment on the catalyst and the pollution.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: July 22, 2003
    Assignees: China Petro-Chemical Corporation, Research Institute of Petroleum Processing
    Inventors: Xingya Guan, Xin Chen, Lianghua Wu
  • Publication number: 20030118497
    Abstract: A siliceous support for use in a catalyst for producing a lower aliphatic carboxylic acid ester by reacting a lower olefin with a lower aliphatic carboxylic acid in a gas phase, which has a silicon content of from 39.7 to 46.3% by mass or a silicon content of from 85 to 99% by mass in terms of silicon dioxide or a crush strength of 30 N or more. By the use of a catalyst comprising the support, a lower aliphatic carboxylic acid ester is produced from lower olefin and a lower aliphatic carboxylic acid without causing great reduction of catalytic activity or cracking or abrasion of the catalyst.
    Type: Application
    Filed: March 4, 2002
    Publication date: June 26, 2003
    Inventors: Etsuko Kadowaki, Kousuke Narumi, Hiroshi Uchida
  • Patent number: 6583330
    Abstract: New catalysts that contain heteropolyanions of the 12-tungstophosphoric acid or the 12-tungstomolybdic acid, and, for some of these, at least one metal of group VIII, and that are deposited on substrates that develop a specific surface area and a high pore volume, such as zirconium oxide (ZrO2), silicas, silica-aluminas or aluminas, are used in particular in isomerization of paraffinic fractions that contain in large part n-paraffins that have, for example, 4 to 8 carbon atoms per molecule and in aliphatic alkylation of isoparaffins (for example isobutane and/or isopentane) by at least one olefin that comprises, for example, 2 to 6 carbon atoms per molecule (C2 to C6).
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: June 24, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Christine Travers, Maryline Delage, Eric Benazzi, Jean-François Joly
  • Publication number: 20030109383
    Abstract: In a catalyst body using a direct support, this invention provides a ceramic catalyst body capable of adjusting catalyst performance in accordance with intended objects such as prevention of deactivation of a main catalyst component when an sub catalyst component is used, or improvement of initial purification performance. When both main catalyst component and sub catalyst component are supported on a ceramic support capable of directly supporting the catalyst components, the invention first supports a catalyst metal as a main catalyst such as Pt, for example, and then supports the sub catalyst such as CeO2 on the main catalyst. The main catalyst is thus prevented from being involved in the grain growth of the sub catalyst, and becomes a catalyst body that does not easily undergo thermal deactivation. The ceramic support uses cordierite, a part of the constituent elements of which are replaced, so that the replacing elements so introduced can directly support the catalyst components.
    Type: Application
    Filed: December 5, 2002
    Publication date: June 12, 2003
    Inventors: Kazuhiko Koike, Tosiharu Kondo, Tomohiko Nakanishi, Miho Ito, Jun Hasegawa
  • Patent number: 6576585
    Abstract: A process for producing a catalyst body includes providing titanium dioxide, tungsten trioxide, vanadium pentoxide, aluminum oxide, and/or silicon oxide for the catalyst body. A kneadable and/or shapable compound is processed to form a shaped body by extrusion or by coating of a support body. The shaped body is dried and is calcined to form an active compound. The calcined shaped body is artificially aged by a final heat treatment at a temperature higher than the calcination temperature to produce a catalyst body having a high resistance to deactivation at high temperatures. The starting materials include from 65 to 95% by weight of titanium dioxide, 2 to 30% by weight of tungsten trioxide, 0 to 2% by weight of vanadium pentoxide, preferably, less than 1.5%, 0.1 to 10% by weight of aluminum oxide, and 0.1 to 10% by weight of silicon dioxide. The final heat treatment is done is at 660 to 700° C., drying is at 20 to 100° C. prior to calcination, and calcination is at 400° C. to less than 700° C.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: June 10, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stefan Fischer, Ronald Neufert, Günther Pajonk, Frank Witzel
  • Patent number: 6576584
    Abstract: A method for producing a hydrotreating catalyst which relates to the production of a solid catalyst composed of a carrier impregnated with an active component, to give a catalyst for hydrotreating hydrocarbon oils, which contains a large quantity of a hydrogenation-active component and uniform, crystalline composite metal compound, and shows high catalytic activity.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 10, 2003
    Assignee: Tonen Corporation
    Inventors: Masahiko Iijima, Takao Hashimoto, Yoshinobu Okayasu, Takeshi Isoda
  • Patent number: 6538077
    Abstract: A novel magnesium treated silica-containing compound that is useful as a support for chromium based olefin polymerization catalyst systems is provided which produces ethylene polymers having with MWD's that promote good properties particularly in HMW film applications.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: March 25, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Joseph S. Shveima, Max P. McDaniel, Shirley J. Martin, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Ashish M. Sukhadia
  • Patent number: 6518375
    Abstract: A catalyst for the production of an ethylene polymer comprising a specific trivalent alkyl chromium compound, an inorganic oxide solid and optionally an organoaluminum compound (first catalyst), a catalyst for the production of an ethylene polymer comprising the specific trivalent alkyl chromium compound, a specific tetravalent alkyl chromium compound and an inorganic oxide solid (second catalyst) and a process for producing an ethylene polymer using those catalysts. The first catalyst of the present invention does not cause deterioration with the passage of time, is stable to heat and light, has greatly improved activity and can efficiently produce an ethylene copolymer with &agr;-olefin.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: February 11, 2003
    Assignee: Japan Polyolefins Co., Ltd.
    Inventors: Takashi Monoi, Haruhiko Ikeda, Hidenobu Torigoe
  • Patent number: 6518218
    Abstract: A catalyst system and method for making carbon fibrils is provided which comprises a catalytic amount of an inorganic catalyst comprising nickel and one of the following substances selected from the group consisting of chromium; chromium and iron; chromium and molybdenum; chromium, molybdenum, and iron; aluminum; yttrium and iron; yttrium, iron and aluminum; zinc; copper; yttrium; yttrium and chromium; and yttrium, chromium and zinc. In a further aspect of the invention, a catalyst system and method is provided for making carbon fibrils which comprises a catalytic amount of an inorganic catalyst comprising cobalt and one of the following substances selected from the group consisting of chromium; aluminum; zinc; copper; copper and zinc; copper, zinc, and chromium; copper and iron; copper, iron, and aluminum; copper and nickel; and yttrium, nickel and copper.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: February 11, 2003
    Assignee: General Electric Company
    Inventors: Xiao-Dong Sun, Navjot Singh, Lionel Monty Levinson
  • Publication number: 20030023125
    Abstract: An improved catalyst composition for the metathesis of olefins comprises at least one porous mineral carrier based on alumina, at least one compound of rhenium, molybdenum, or tungsten, and further includes silicon in an oxide form.
    Type: Application
    Filed: July 5, 2002
    Publication date: January 30, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Patrick Euzen, Severine Guibert, Virginie Kruger-Tissot, Georges Vidouta
  • Patent number: 6509289
    Abstract: A catalyst composition and a process for hydrodealkylating a C9+ aromatic compound such as, for example, 1,2,4-trimethylbenzene to a C6 to C8 aromatic hydrocarbon such as a xylene are disclosed. The composition comprises an alumina, a metal oxide, a phosphorus oxide and optionally, an acid site modifier selected from the group consisting of silicon oxides, sulfur oxides, boron oxides, magnesium oxides, tin oxides, titanium oxides, zirconium oxides, molybdenum oxides, germanium oxides, indium oxides, lanthanum oxides, cesium oxides, and combinations of any two or more thereof. The process comprises contacting a fluid which comprises a C9+ aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C9+ aromatic compound to a C6 to C8 aromatic hydrocarbon.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: January 21, 2003
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6489428
    Abstract: The present invention relates to a supported chromium-based catalyst titanated under specific conditions and used for the homopolymerisation or the copolymerisation of ethylene. The polyethylene obtained with this catalyst has high shear resirance and environmental stress crack resistance, and can be used for manufacturing films with improved tear properties.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: December 3, 2002
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Jean-Pierre Dath
  • Patent number: 6420307
    Abstract: The present invention relates to a new fluidized-bed catalyst used in a process of propylene ammoxidation to acrylonitrile. The catalyst comprises a silica as carrier and a composition represented by the following general formulas: AaBbCcGedNaeFefBigMohOx Wherein A represents at least one element selected from a group consisting Li,K,Rb,Cs,Sm, In or Tl; B represents at least one element selected from a group consisting of P, Sb, Cr, W. Pr, Ce, As, B, Te, Ga, Al, Nb, Th, La or V; C represents one element selected from a group consisting of Ni, Co, Sr, Mn, Mg, Ca, Zn, Cd or Cu and the mixture thereof; a is a number of from 0.01 to 1.5; b is a number of from 0.01 to 3.0; c is a number of from 0.1 to 12.0; preferably from 2 to 10; d is a number of from 0.01 to 2.0; preferably from 0.01 to 1.0; e is a number of from 0.01 to 0.7; preferably from 0.05 to 0.5; f is a number of from 0.1 to 8; preferably from 1.0 to 3.0; g is a number of from 0.01 to 6; preferably from 0.1 to 2.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: July 16, 2002
    Assignee: China Petro-Chemical Corporation
    Inventors: Lianghua Wu, Guojun Wang, Xin Chen
  • Patent number: 6414109
    Abstract: Provided is a process for producing a tetrahydrofuran polymer using a heteropoly-acid catalyst wherein the content of Al in the heteropoly-acid is 4 ppm or less.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: July 2, 2002
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventor: Takaharu Akedo
  • Patent number: 6410477
    Abstract: Provided is a hydrogenation catalyst of carbon monoxide, which is suited to the manufacture of a hydrogenation product containing target components (e.g., gasoline fuel oil components or diesel fuel oil components) at high selectivity from a gas mixture of hydrogen and carbon monoxide. This hydrogenation catalyst of carbon monoxide has a structure in which a transition metal is carried by a porous material in which 90% or more of all pores are fine pores each having a diameter of 1 to 50 nm.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: June 25, 2002
    Assignee: President of Tohoku University
    Inventors: Yasuo Ohtsuka, Muneyoshi Yamada, Ye Wang
  • Publication number: 20020077246
    Abstract: A catalyst support consisting mainly of synthetic silica, with 0.5-10 parts by weight of one or more oxides or phosphates of the elements of group IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA and the lanthanides characterised in that the support preparation method comprises mixing particulate synthetic silica with particulate oxides or phospates of the elements of Groups IIA, IIIB, IVB, VB, VIB, VIIB, VIII, IB, IIB, IIIA, IVA and the lanthanides, or with precursors thereof, a forming step and calcination.
    Type: Application
    Filed: October 9, 2001
    Publication date: June 20, 2002
    Inventors: Hermanus Gerhardus Jozef Lansink Rotgerink, Heike Reidemann, Helmfried Krause
  • Publication number: 20020072629
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: August 10, 2001
    Publication date: June 13, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Dominique Hung Nhu Le
  • Patent number: 6399530
    Abstract: An acidic amorphous silica-amumina has a large specific surface area and a large pore volume. A carrier complex and a hydrotreating catalyst containing acidic amorphous silica-alumina, in particular a hydrocracking catalyst containing acidic amorphous silica-alumina in combination with a modified zeolite-Y, treats petroleum hydrocarbon materials to produce middle distillates. The amorphous silica-alumina has a SiO2 content of 10-50 wt. %, a specific surface area of 300-600 m2/g, a pore volume of 0.8-1.5 ml/g and an IR acidity of 0.25-0.60 mmol/g. The catalyst shows a relatively high activity and mid-distillate selectivity and can be particularly used in hydrocracking process for producing mid-distillates with a higher yield.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: June 4, 2002
    Assignees: China Petrochemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC
    Inventors: Song Chen, Tingyu Li, Guangwei Cao, Minghua Guan
  • Publication number: 20020065431
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: August 10, 2001
    Publication date: May 30, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song, Dominique Hung Nhu Le, Elsie Mae Vickery
  • Publication number: 20020062042
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: August 11, 2001
    Publication date: May 23, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Publication number: 20020058836
    Abstract: A catalyst comprising an In promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane, or a mixture of an alkane and an alkene, to an unsaturated nitrile.
    Type: Application
    Filed: August 10, 2001
    Publication date: May 16, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Elsie Mae Vickery
  • Publication number: 20020058835
    Abstract: A catalyst comprising a promoted mixed metal oxide is useful for the vapor phase oxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated carboxylic acid and for the vapor phase ammoxidation of an alkane or a mixture of an alkane and an alkene to an unsaturated nitrile.
    Type: Application
    Filed: August 10, 2001
    Publication date: May 16, 2002
    Inventors: Sanjay Chaturvedi, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song
  • Patent number: 6387842
    Abstract: This invention relates in part to a processes and catalysts for the conversion of a feedstock comprising carbon monoxide and hydrogen to a product stream comprising at least one of an ester, acid, acid anhydride and mixtures thereof. This invention also relates in part to processes and catalysts for converting an alcohol, ether and/or ether alcohol feedstock to oxygenated products, e.g., esters, acids, acid anhydrides and mixtures thereof. The processes and catalysts are especially suitable for the production of acetic acid and methyl acetate from a synthesis gas feedstock or from an alcohol, ether or ether alcohol feedstock.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: May 14, 2002
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Richard William Wegman, David Michael Minahan, William J. Bartley, Chinsoo Stephen Lee, David McNeill Somerville
  • Publication number: 20020045542
    Abstract: The invention concerns a catalyst comprising at least one matrix, at least one dioctahedral 2:1 phyllosilicate which is optionally synthesised in a fluorine-containing medium and optionally bridged, at least one metal selected from elements from group VIB and/or group VIII of the periodic table, boron and/or silicon, optionally phosphorous, optionally at least one group VIIA element, and optionally at least one group VIIB element. The invention also concerns the use of the catalyst for hydrocracking hydrocarbon-containing feeds.
    Type: Application
    Filed: May 8, 2001
    Publication date: April 18, 2002
    Inventors: Eric Benazzi, Slavik Kasztelan, Nathalie George-Marchal
  • Patent number: 6348565
    Abstract: Complexes of a metal cyanide polymerization catalyst and certain silane-functional complexing agents provide a method whereby supported, active metal cyanide catalysts can be prepared. The catalysts are useful alkylene oxide polymerization catalysts that are easily separated from the polymerization product and recycled.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: February 19, 2002
    Assignee: The Dow Chemical Company
    Inventor: Richard M. Wehmeyer
  • Patent number: 6342464
    Abstract: A solid, particulate catalyst composition is provided containing an active nickel component in which the nickel constitutes from about 25 to about 60 wt % of the catalyst composition; a molybdenum component in which the molybdenum constitutes from about 5 to about 20 wt % of the catalyst composition; and a binder component comprising at least one of oxides of silica, zirconium, aluminum, zinc and calcium, each of the calcium, aluminum and zinc being present in an amount no greater than about 2 wt %, preferably about 0 to 1 wt %. The catalyst is designed for the selective hydrogenation of 3-hydroxypropanal to 1,3-propanediol in aqueous solution.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: January 29, 2002
    Assignee: Shell Oil Company
    Inventors: Juan Pedro Arhancet, Paul Himelfarb, Joseph Broun Powell, Robert Alfred Plundo, Mohammed Shahjahan Kazi, William Joseph Carrick
  • Publication number: 20010044507
    Abstract: A process comprising polymerizing ethylene with at least one olefin to produce a polymer, and said polymer are provided.
    Type: Application
    Filed: May 14, 2001
    Publication date: November 22, 2001
    Applicant: Phillips Petroleum Company
    Inventors: Elizabeth A. Benham, Max P. McDaniel
  • Patent number: 6267874
    Abstract: The present invention relates to a hydrotreating catalyst composed of a carrier having a Brønsted acid content of at least 50 &mgr;mol/g such as a silica-alumina carrier or a silica-alumina-third component carrier, in which the silica is dispersed to high degree and a Brønsted acid content is at least 50 &mgr;mol/g, and at least one active component (A) selected from the elements of Group 8 of the Periodic Table and at least one active component (B) selected from the elements of Group 6 of the Periodic Table, supported on said carrier. The present invention also relates to a method for hydrotreating hydrocarbon oils using the same. The hydrotreating catalyst of the present invention provides excellent tolerance to the inhibiting effect of hydrogen sulfide, high desulfurization activity, and exhibits notable effects for deep desulfurization of hydrocarbon oils containing high contents of sulfur, in particular gas oil fractions containing difficult-to-remove sulfur compounds.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: July 31, 2001
    Assignee: TonenGeneral Sekiyu K.K.
    Inventors: Masahiko Iijima, Yoshinobu Okayasu
  • Patent number: 6255413
    Abstract: A process for polymerizing ethylene feedstock to produce branched polymer of ethylene suitable for blow molding applications and having improved environmental stress crack resistance (ESCR). For example, a catalyst comprising chromium on silica is (1) calcined in air and (2) reduced in carbon monoxide and then used with hydrogen to polymerize ethylene feedstock.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: July 3, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Elizabeth A. Benham, Max P. McDaniel
  • Patent number: 6251261
    Abstract: The invention relates to a hydrocracking catalyst that comprises at least one oxide-type amorphous or poorly crystallized matrix, at least one element of group VB, preferably niobium, and at least one clay that is selected from the group that is formed by the 2:1 dioctahedral phyllosilicates and the 2:1 trioctahedral phyllosilicates, optionally at least one element that is selected from among the elements of group VIB and group VIII, optionally at least one element that is selected from the group that is formed by P, B, Si, and optionally at least one element of group VIIA. The invention also relates to the use of this catalyst in hydrocracking of feedstocks that contain hydrocarbon.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: June 26, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Publication number: 20010004452
    Abstract: A method for cleaning diesel engine exhaust gas is described. The exhaust gas is passed over a catalytic converter with an active material which contains (% by weight) 70-95% TiO2, 2-10% WO3 and/or MoO3, 0.1-5% V2O5, 0.1-8% CaO, 0.1-8% Al2O3, 0.1-5% B2O3 and 0.1-10% SiO2. A reducing agent for a reduction of nitrogen oxides is metered into the exhaust-gas stream upstream of the catalytic converter.
    Type: Application
    Filed: November 29, 2000
    Publication date: June 21, 2001
    Inventors: Wieland Mathes, Ronald Neufert, Dietmar Weisensel, Klaus Wenzlawski
  • Patent number: 6231750
    Abstract: The invention provides a hydrocracking catalyst comprising at least one mineral matrix, at least one beta zeolite, at least one group VB element or at least one mixed sulphide phase comprising sulphur, optionally at least one group VIB or group VIII element, optionally at least one element selected from the group formed by silicon, boron or phosphorous, and optionally at least one group VIIA element.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: May 15, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6200920
    Abstract: The present invention relates to a supported chromium-based catalyst titanated under specific conditions and used for the homopolymerization or the copolymerization of ethylene. The polyethylene obtained with this catalyst has high shear resirance and environmental stress crack resistance, and can be used for manufacturing films with improved tear properties.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: March 13, 2001
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Jean-Pierre Dath
  • Patent number: 6180731
    Abstract: Polymers of ethylene are obtainable by polymerization of ethylene and, if desired, further comonomers in the presence of a catalyst system comprising as active constituents I) a Phillips catalyst, II) a solid which is different from I) and comprises a component which is derived from the metallocene complexes of the formula (A) in which the substituents and indices have the following meanings:  R1 to R10 are hydrogen, C1-C10-alkyl, 5-to 7-membered cycloalkyl which may in turn bear C1-C6-alkyl groups as substituents, C6-C15-aryl or aryalkyl, where two adjacent radicals may also together form a cyclic group having from 4 to 15 carbon atoms, or Si(R11)3, where R11 is C1-C10-alkyl, C6-C15-aryl or C3-C10-cycloalkyl, or the radicals R4 and R9 together form a group —[Y(R12R13)]m—, where Y is silicon, germanium, tin or carbon, and R12, R13 are hydrogen C1-C10-alky, C3-C10-cycloalyl or C6-C15-aryl, M is a metal of transition groups IV to VIII or a metal of the lanthanide
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: January 30, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Wolfgang Rohde, Roland Saive, Dieter Lilge, Martin Lux, Peter Bauer
  • Patent number: 6121187
    Abstract: The present invention relates to amorphous microporous mixed oxides, characterized by having, in dried form, a narrow pore size distribution (half width <.+-.10% of the pore diameter) of micropores with diameters in the range of <3 nm and a total surface area of between 20 and 1000 m.sup.2 /g, containing a fraction of from 0.1 to 20% by weight of non-hydrolyzable organic groups, and to a process for the preparation of such oxides.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: September 19, 2000
    Assignee: Studiengesellschaft Kohle mbH
    Inventor: Wilhelm F. Maier
  • Patent number: 6114278
    Abstract: A mixed metal oxide Mo-V-Ga-Pd-Nb-X (where X=La, Te, Ge, Zn, Si, In or W) catalytic system providing a higher selectivity to acrylic acid in the low temperature partial oxidation of propane with a molecular oxygen-containing gas.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: September 5, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Abdullah Bin Nafisah