Platinum Group (i.e., Ru, Rh, Pd, Os, Ir Or Pt) Patents (Class 502/261)
  • Patent number: 7452844
    Abstract: The Fischer-Tropsch catalyst of the present invention is a transition metal-based catalyst having a high surface area, a smooth, homogeneous surface morphology, an essentially uniform distribution of cobalt throughout the support, and a small metal crystallite size. In a first embodiment, the catalyst has a surface area of from about 100 m2/g to about 250 m2/g; an essentially smooth, homogeneous surface morphology; an essentially uniform distribution of metal throughout an essentially inert support; and a metal oxide crystallite size of from about 40 ? to about 200 ?. In a second embodiment, the Fischer-Tropsch catalyst is a cobalt-based catalyst with a first precious metal promoter and a second metal promoter on an aluminum oxide support, the catalyst having from about 5 wt % to about 60 wt % cobalt; from about 0.0001 wt % to about 1 wt % of the first promoter, and from about 0.01 wt % to about 5 wt % of the second promoter.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: November 18, 2008
    Assignee: Süd-Chemie Inc
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Publication number: 20080234125
    Abstract: A catalyst and a method for selective hydrogenation of acetylene and dienes in light olefin feedstreams are provided. The catalyst retains higher activity and selectivity after regeneration than conventional selective hydrogenation catalysts. The catalyst contains a first component and a second component supported on an inorganic support. The inorganic support contains at least one salt or oxide of zirconium, a lanthanide, or an alkaline earth.
    Type: Application
    Filed: June 2, 2008
    Publication date: September 25, 2008
    Inventors: Yongqing Zhang, Stephen J. Golden
  • Publication number: 20080230018
    Abstract: A fuel reformer of an internal combustion engine includes: an octane number-increasing catalytic device including an octane number-increasing catalyst; and an oxygen supply device that supplies oxygen to the octane number-increasing catalytic device. The octane number-increasing catalyst includes rhodium and increases an octane number of liquid-phase fuel under presence of oxygen.
    Type: Application
    Filed: March 6, 2008
    Publication date: September 25, 2008
    Inventor: Chiaki KOBAYASHI
  • Patent number: 7425647
    Abstract: A process for preparing a catalyst by (a) selecting a carrier which is a silica based carrier which has been subjected to a series of washings with one or more aqueous liquids consisting of aqueous liquids which have a pH of least 3, when measured at 20° C., or which is a silica based carrier which is formed from materials one or more of which have been subjected to this series of washings, (b) precipitating a Group 8 metal compound onto the carrier, (c) converting the precipitated Group 8 metal compound into metallic species, and (d) subjecting the Group 8 metal/carrier composition to a purification treatment, before or after step (c); a catalyst which is obtainable by this process; and a process for preparing an alkenyl carboxylate by reacting a mixture comprising an olefin, a carboxylic acid and oxygen in the presence of the catalyst.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: September 16, 2008
    Assignee: Shell Oil Company
    Inventors: Michael Francis Lemanski, John Robert Lockemeyer
  • Publication number: 20080219918
    Abstract: A catalyst for fuel reforming including a metal catalyst that includes at least one active component A selected from the group consisting of Pt, Pd, Ir, Rh and Ru; and an active component B that is at least one metal selected from the group consisting of Mo, V, W, Cr, Re, Co, Ce and Fe, oxides thereof, alloys thereof, or mixtures thereof, and a carrier impregnated with the metal catalyst, and a method of producing hydrogen by performing a fuel reforming reaction using the catalyst for fuel reforming. The catalyst for fuel reforming has excellent catalytic activity at a low temperature and improved hydrogen purity. Therefore, when the catalyst for fuel reforming is used, high-purity hydrogen, which can be used as a fuel of a fuel cell, can be produced with high purity.
    Type: Application
    Filed: September 14, 2007
    Publication date: September 11, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Doo-hwan Lee, Yulia Potapova, Soon-ho Kim, Hyun-chul Lee, Kang-hee Lee
  • Publication number: 20080219906
    Abstract: A multilayered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Provided is a catalytic material of at least four layers in conjunction with a carrier, where each of the layers includes a support, at least three layers comprise a precious metal component, and at least one layer comprises an oxygen storage component (OSC). The catalytic material can further comprise a fifth layer, where at least four layers comprise a precious metal component, at least one layer comprises an oxygen storage component, and at least one layer is substantially free of an oxygen storage component.
    Type: Application
    Filed: January 9, 2008
    Publication date: September 11, 2008
    Inventors: Shau-Lin F. Chen, Knut Wassermann, Stephan Siemund, Tian Luo, Torsten Neubauer, Jin Sakakibara, Harold Rabinowitz
  • Publication number: 20080200703
    Abstract: Heterogeneous ruthenium catalyst which comprises amorphous silicon dioxide as support material and can be produced by single or multiple impregnation of the support material with a solution of a ruthenium salt, drying and reduction, wherein the silicon dioxide support material used has a BET surface area (in accordance with DIN 66131) in the range from 250 to 400 m2/g, a pore volume (in accordance with DIN 66134) in the range from 0.7 to 1.1 ml/g and a pore diameter (in accordance with DIN 66134) in the range from 6 to 12 nm, and process for hydrogenating a carbocyclic aromatic group to form the corresponding carbocyclic aliphatic group, in particular a process for preparing a bisglycidyl ether of the formula I where R is CH3 or H, by ring hydrogenation of the corresponding aromatic bisglycidyl ether of the formula II in which the abovementioned heterogeneous ruthenium catalyst is used.
    Type: Application
    Filed: June 21, 2006
    Publication date: August 21, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: Frederik Van Laar, Michael Becker
  • Publication number: 20080193370
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials and catalyst materials and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Application
    Filed: August 31, 2007
    Publication date: August 14, 2008
    Applicant: CABOT CORPORATION
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, James Brewster, Paul Napolitano
  • Patent number: 7345214
    Abstract: A catalyst for opening naphthenic rings has been developed. The catalyst comprises ruthenium and platinum as the active catalytic metals and a modifier with cerium being a preferred modifier. At least 50% of the platinum and ruthenium components are present as particles wherein more ruthenium is present on the surface of the particles than in the center. All of these components are dispersed on a metal oxide support such as aluminas. A ring opening process using the catalyst is also described.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: March 18, 2008
    Assignee: UOP LLC
    Inventors: Feng Xu, Lorenz J. Bauer, Ralph D. Gillespie, Maureen L. Bricker, Steven A. Bradley
  • Publication number: 20080045412
    Abstract: An embodiment of the present invention comprises a ceramic catalyst comprising a porous ceramic/silica glass substrate having substantially interconnecting pores with an average pore size of approximately 2 micron or less and particles comprising one or more noble metals on the surface of the substantially interconnecting pores. The noble metal particles may be either amorphous and/or crystalline nano-particles. The noble metals preferably may comprise silver, gold, rhodium, and/or palladium. The average pore size may be approximately 1 micron or less, 0.5 microns or less, 0.3 microns or less, 0.2 microns or less, 100 nanometers or less, 50 nanometers or less, or between 50 nanometers and 150 nanometers. Other embodiments of the present invention are directed to methods of manufacturing the ceramic catalyst and novel glass compositions used to manufacture the ceramic catalyst and using the ceramic catalyst at temperatures above 200° C. to produce hydrogen gas and to store hydrogen gas.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 21, 2008
    Inventor: Pedro M. Buarque de Macedo
  • Publication number: 20080045408
    Abstract: An embodiment of the present invention comprises a ceramic catalyst comprising a porous ceramic/silica glass substrate having substantially interconnecting pores with an average pore size of approximately 2 micron or less and particles comprising one or more noble metals on the surface of the substantially interconnecting pores. The noble metal particles may be either amorphous and/or crystalline nano-particles. The noble metals preferably may comprise silver, gold, rhodium, and/or palladium. The average pore size may be approximately 1 micron or less, 0.5 microns or less, 0.3 microns or less, 0.2 microns or less, 100 nanometers or less, 50 nanometers or less, or between 50 nanometers and 150 nanometers. Other embodiments of the present invention are directed to methods of manufacturing the ceramic catalyst and novel glass compositions used to manufacture the ceramic catalyst and using the ceramic catalyst at temperatures above 200° C. to produce hydrogen gas and to store hydrogen gas.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 21, 2008
    Inventor: Pedro M. Buarque de Macedo
  • Patent number: 7294604
    Abstract: A process for hydrogenating unsaturations in petrochemical feedstocks, the process comprising contacting the petrochemical feedstock, including at least one component having unsaturations, and hydrogen with a catalyst comprising at least one Group Ia, Ib, IIb, VIb, VIIb or VIII metal on a support of a crystalline calcium silicate having a surface area of at least 30 m2/g, the support being in the form of substantially spherical particles having a mean diameter of from 10 to 200 microns and pores in the particles having a diameter of from 100 to 2000 Angstroms, at a temperature of from 0 to 550° C. and a pressure of from 3 to 150 barg.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: November 13, 2007
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jean-Pierre Dath, Walter Vermeiren
  • Patent number: 7270738
    Abstract: This invention relates to silico-aluminum substrates, catalysts, and the hydrocracking and hydrotreatment processes that use them. The catalyst comprises at least one hydro-dehydrogenating element that is selected from the group that is formed by elements of group VIB and group VIII of the periodic table and a non-zeolitic silica-alumina-based substrate that contains an amount of more than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and has the following characteristics: A mean pore diameter, measured by mercury porosimetry, encompassed between 20 and 140 ?, a total pore volume, measured by mercury porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a total pore volume, measured by nitrogen porosimetry, encompassed between 0.1 ml/g and 0.6 ml/g, a BET specific surface area encompassed between 100 and 550 m2/g, a pore volume, measured by mercury porosimetry, encompassed in the pores with diameters of more than 140 ?, of less than 0.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: September 18, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Euzen, Carole Bobin, Magalie Roy-Auberger, Eric Benazzi, Patrick Bourges, Christophe Gueret
  • Patent number: 7268097
    Abstract: A desulfurizing agent comprising a silica-alumina carrier having an Si/Al mole ratio of 10 or less and nickel carried thereon; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a specific surface area of pores having a pore diameter of 3 nm or less of 100 m2/g or more; an Ni-Cu based desulfurizing agent comprising a carrier and, carried thereon, (A) nickel, (B) copper, and (C) an alkali metal or another metal; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a hydrogen adsorption capacity of 0.4 mmol/g or more; and methods for producing these nickel-based and nickel-copper-based desulfurizing agents. The above desulfurizing agents are capable of adsorbing and removing with good efficiency the sulfur contained in hydrocarbons derived from petroleum to a content of 0.2 wt. ppm or less and have a long service life.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: September 11, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Hisashi Katsuno, Satoshi Matsuda, Kazuhito Saito, Masahiro Yoshinaka
  • Patent number: 7256154
    Abstract: The present invention relates to a structured catalyst for reforming of gasoline and a method of preparing the same, more particularly to a structured catalyst for reforming of gasoline for fuel-cell powered vehicles prepared by wash-coating the transition metal based reforming catalyst on the surface of the ceramic honeycomb support wash-coated with sub-micron sized alumina or its precursor to sufficiently increase the effective surface area and the performance of the catalyst and a method of preparing the same.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: August 14, 2007
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Jong Woo Ryu, Dong Min Kang, Byung Gwon Lee, Byoung Sung Ahn, Sang Deuk Lee
  • Patent number: 7220699
    Abstract: A method and device for loading a catalyst into a chamber. The catalyst loading is well suited for production of hydrogen producing microreactors. The catalyst is coated onto a strip which is mountable within the chamber.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: May 22, 2007
    Assignee: Intelligent Energy, Inc.
    Inventor: Anand Chellappa
  • Patent number: 7179366
    Abstract: A catalyst contains at least one group VIII element and at least molybdenum and/or tungsten, said elements being present at least in part in the catalyst in the dry state in the form of at least one heteropolyanion with formula MxAB6O24H6C(3-2x), tH2O; MxAB6O24H6C(4-2x), tH2O; MxA2B10O38H4C(6-2x), tH2O; MxA2B10O38H4C(8-2x), tH2O; or MxA2B10O38H4C(7-2x), tH2O, in which M is cobalt and/or nickel and/or iron and/or copper and/or zinc, A is one or two elements from group VIII of the periodic table, B is molybdenum and/or tungsten and C is an H+ ion and/or a (NR1R2R3R4)+ type ammonium ion, in which R1, R2, R3 and R4, which may be identical or different, correspond either to a hydrogen atom or to an alkyl group and/or caesium and/or potassium and/or sodium, t is a number between 0 and 15 and x takes a value in the range 0 to 4 depending on the formula.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: February 20, 2007
    Assignee: Institut Francais du Petrole
    Inventors: Virginie Harle, Catherine Martin, Edmond Payen, Carole Lamonier, Pascal Blanchard
  • Patent number: 7169735
    Abstract: The object of the present invention is to provide a catalyst that is highly active and capable of maintaining its activity for a long period of time even in a high-temperature environment. The present invention is a catalyst including: a porous carrier which is comprised of one kind of or two or more kinds of metal oxides; and catalyst particles which are comprised of precious metals or precious metal oxides and supported on the above porous carrier, characterized in that the catalyst particles include: clustered particles formed by the aggregation of first precious metal atoms; and second precious metal ions bound to the above clustered particles. Preferably, the first precious metal and the second precious metal are different metal species which are selected from the group consisting of platinum, palladium, rhodium, ruthenium, silver, gold, iridium and osmium.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: January 30, 2007
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Takeyuki Sagae
  • Patent number: 7160839
    Abstract: A catalyst for purifying NOx is provided which efficiently decomposes and purify the NOx in an exhaust gas in an oxygen-excess atmosphere, excels in resistance to heat and in durability in a high temperature range under a high-temperature oxidizing atmosphere and in the presence of moisture and SOx, and manifests the catalytic activity over a wide range of temperature. It is a catalyst for purifying nitrogen oxides formed by coating (A) a catalytically active component comprising (A-a) iridium and (A-b) at least one element selected from the group consisting of the elements of Group IIIA and Group IVA in the Periodic Table of the Elements with (B) a refractory inorganic compound.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: January 9, 2007
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Hideki Goto, Shigeyoshi Taniguchi, Makoto Horiuchi
  • Patent number: 7150866
    Abstract: The invention relates to a catalyst and a process for the autothermal, catalytic steam reforming of hydrocarbons using the catalyst. The catalyst has a multilayer structure and comprises a lower catalyst layer located directly on a support body and an upper catalyst layer located on the lower catalyst layer, with the lower catalyst layer preferentially catalysing the partial oxidation and the upper catalyst layer preferentially catalysing steam reforming. In a further embodiment, a three-layer catalyst having a further catalyst layer for the carbon monoxide conversion (water gas shift reaction) is described. Each catalyst layer comprises at least one platinum group metal on an oxidic support material. The steam reforming process is carried out in an adiabatic process by passing a feed mixture of hydrocarbons, oxygen and water or water vapour which has been heated to a preheating temperature over the multilayer catalyst.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: December 19, 2006
    Assignee: Umicore AG & Co. KG
    Inventors: Stefan Wieland, Frank Baumann
  • Patent number: 7138353
    Abstract: There is provided a particulate matter combustion catalyst which allows easy combustion of particulate matter collected on the particulate matter filter of a diesel vehicle, at a much lower temperature than by the prior art. The particulate matter combustion catalyst has a construction characterized by an NO oxidation catalyst wherein the catalyst component is carried on an acidic first carrier, and an NO2 decomposition catalyst wherein the catalyst component is carried on a second carrier. Preferably, the NO oxidation catalyst has a precious metal such as platinum carried on an acidic first carrier such as tungstic acid/zirconia, and the NO2 decomposition catalyst has a catalyst component selected from the transition metals carried on a second carrier such as titania, or alternatively, the NO2 decomposition catalyst has at least one metal selected from among alkali metals and alkaline earth metals and a precious metal such as platinum carried on a second carrier such as titania.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: November 21, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Tetsuya Yamashita
  • Patent number: 7138358
    Abstract: A catalyzed diesel particulate matter exhaust filter with improved diesel particulate matter oxidation activity and thermal stability including a porous filter substrate for filtering the diesel particulate matter washcoated with high surface area support alumina, titania, silica and zirconia promoted with one of ceria, lanthanum oxide, tungsten oxide, molybdem oxide, tin oxide for catalytic materials which includes an alkaline earth metal vanadate, and a precious metal
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: November 21, 2006
    Assignee: Sud-Chemie Inc.
    Inventors: Yinyan Huang, Zhongyuan Dang, Amiram Bar-llan
  • Patent number: 7137249
    Abstract: The present invention provides a method of removing harmful gases from an automobile exhaust. The method of the invention comprises contacting a thermally stable NOx trap composition with a first exhaust gas mixture at a temperature of at least 200° C. The first exhaust gas mixture includes exhaust gases from an internal combustion engine operating in a fuel-lean condition. After, NOx has been absorbed onto the NOx absorber material, the NOx trap composition is then contacted with a second exhaust gas composition. In this step, the second exhaust gas mixture includes exhaust gases from an internal combustion engine operating in a fuel-rich condition. The present invention also provides the NOx trap composition used in the method. The NOx trap of the invention includes a precious metal, a NOx absorber material, an oxide that inhibits the decrease in NOx storing ability of the NOx trap composition, and a support material.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: November 21, 2006
    Assignee: Ford Global Technologies, LLC
    Inventors: John Li, William Watkins, Christian Goralski, Jr.
  • Patent number: 7109145
    Abstract: The invention provides a noble metal-containing supported catalyst which contains one of the noble metals from the group Au, Ag, Pt, Pd, Rh, Ru, Ir, Os or alloys of one or more of these noble metals in the form of noble metal particles on a powdered support material. The particles deposited on the support material have a degree of crystallinity, determined by X-ray diffraction, of more than 2 and an average particle size between 2 and 10 nm. The high crystallinity and the small particle size of the noble metal particles lead to high catalytic activity for the catalyst. It is particularly suitable for use in fuel cells and for the treatment of exhaust gases from internal combustion engines.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: September 19, 2006
    Assignee: Umicore AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl-Anton Starz
  • Patent number: 7060651
    Abstract: A silica-rich support and a catalyst containing the silica-rich support and a catalytic component. The support has a specific structure characterized by a set of claimed physicochemical properties: in the 29Si MAS NMR spectrum the state of silicon is characterized by the presence of lines with chemical shifts ?100±3 ppm (line Q3) and ?110±3 ppm (line Q4), with the ratio of the integral intensities of the lines Q3/Q4 of from 0.7 to 1.2 (FIG. 1); in the IR spectrum there is an absorption band of hydroxyl groups with the wave number 3620–3650 cm?1 and half-width 65–75 cm?1 (FIG. 2); the carrier has a specific surface area, as measured by the BET techniques from the thermal desorption of argon, SAR=0.5–30 m2/g and the surface, as measured by alkali titration techniques, SNa=10–250 m2/g, with SNa/SAr=5–30.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: June 13, 2006
    Assignee: Zakrytoe Aktsionernoe Obschestvo “Kholdingovaya Katalizatornaya Kompania”
    Inventors: Viktor Vladimirovich Barelko, Bair Sydypovich Balzhinimaev, Sergei Petrovich Kildyashev, Mikhail Grigorievich Makarenko, Anatoly Nikolaevich Parfenov, Ljudmila Grigorievna Simonova, Alexandr Viktorovich Toktarev
  • Patent number: 7060652
    Abstract: A liquid electrode mixture for use in a gas sensor having from about 60 to about 240 milligrams of platinum black catalyst; from about 900 to about 1100 milligrams of water; from about 300 to about 400 microliters of 1-propanol; and from about 100 microliters to about 150 microliters of a polymer mixture comprising from about 40% to about 80% PTFE by weight and water.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: June 13, 2006
    Assignees: OmegaPoint Systems, LLC, Transducer Technology, Inc.
    Inventors: Edward L. Gollar, III, Joseph R. Stetter, Nathan Schattke
  • Patent number: 7045486
    Abstract: The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 ?m, preferably from about 10 ?m to about 300 ?m. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure is placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: May 16, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, David P. Vanderwiel, Anna Lee Y. Tonkovich, Yufei Gao, Eddie G. Baker
  • Patent number: 7037878
    Abstract: An aircraft environmental control system includes a catalytic converter having ozone-destroying capability. A surface of the catalytic converter is anodized to form an anodized layer, and the metal oxide layer is washcoated to form a washcoat layer. An ozone destroying catalyst is impregnated in the anodized and washcoat layers. The catalyst may include one or more metals. For example, a bimetallic catalyst may include a precious metal and a transition metal.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: May 2, 2006
    Assignee: Honeywell International Inc.
    Inventors: Di-Jia Liu, Daniel R. Winstead, Peter M. Michalakos
  • Patent number: 7030052
    Abstract: The invention relates to a process for hydrogenating an aromatic amine that has at least one amino group bound to an aromatic nucleus with hydrogen in the presence of a supported catalyst that contains at least ruthenium as active metal. The catalyst support has a BET surface area in the range from greater than 30 m2/g to less than 70 m2/g and more than 50% of the pore volume of the catalyst support is formed by macropores having a pore diameter of greater than 50 nm and less than 50% are mesopores having a pore diameter of 2 to 50 nm.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: April 18, 2006
    Assignee: Degussa AG
    Inventors: Guido Stochniol, Bernd Jaeger, Thomas Haas, Norbert Finke, Werner Burkhardt, Juergen Grunert
  • Patent number: 7030055
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: April 18, 2006
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 7030053
    Abstract: A catalyst composition and a process of using a catalyst composition for preparing high molecular weight hydrocarbons, such as polymethylene, from a fluid containing hydrogen and carbon monoxide are disclosed. The catalyst composition contains ruthenium and a treated silica support component. The treated silica support component is prepared by a process including contacting a silica support component, such as silicon dioxide, and a treating agent, such as a silicon-containing compound.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: April 18, 2006
    Assignee: ConocoPhillips Company
    Inventors: Jianhua Yao, James B. Kimble
  • Patent number: 7005404
    Abstract: A substrate having a catalytic surface thereon characterized as a coating of metal oxide and noble metal particles in the nominal diameter size distribution range of <3 microns, and more particularly <1 micron, is produced by thermal spraying a mixture of large size particles (e.g., in a nominal size distribution range of >10 micrometers) of hydroxides, carbonates or nitrates of the metals: cerium, aluminum, tin, manganese, copper, cobalt, nickel, praseodymium or terbium particles; and hydroxides, carbonates or nitrates of the noble metals: ruthenium, rhodium, palladium, silver, iridium, platinum and gold onto the substrate. The coating adheres to the surface and provides desirable catalyst properties.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: February 28, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventor: Ting He
  • Patent number: 6992039
    Abstract: A method for uniformly dispersing noble metal particles on a porous carrier by first mixing an alkoxide product of aluminum or silicon and a noble metal precursor together; then mixing a surfactant into the mixture; then mixing ammonia solution into the mixture to form a hydroxide of aluminum or silicon; then mixing a reducing agent into the mixture to convert the noble metal precursor into noble metal nanoparticles dispersed on the hydroxide; then separating the noble metal nanoparticles and the hydroxide from the mixture before calcining the hydroxide into an oxide of aluminum or silicon.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: January 31, 2006
    Assignees: General Motors Corporation, Chinese Academy of Sciences
    Inventors: Long Jiang, Jinru Li, Mei Cai, Jerry Dale Rogers
  • Patent number: 6992040
    Abstract: A process for preparing a shell-type catalyst which comprises applying to a substantially nonporous inorganic support material having a BET surface area of <80 m2/g, a catalytically active outer shell of a suspension containing at least one water soluble noble metal compound and a substantially water insoluble coating compound, drying the suspension onto the support material, and activating the coated support material in a reducing gas stream.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: January 31, 2006
    Assignee: Degussa AG
    Inventors: Herbert Müller, Stefan Bösing, Walter Behl
  • Patent number: 6964936
    Abstract: A method of making a catalyst with monolayer or sub-monolayer metal by controlling the wetting characteristics on the support surface and increasing the adhesion between the catalytic metal and an oxide layer. There are two methods that have been demonstrated by experiment and supported by theory. In the first method, which is useful for noble metals as well as others, a negatively-charged species is introduced to the surface of a support in sub-ML coverage. The layer-by-layer growth of metal deposited onto the oxide surface is promoted because the adhesion strength of the metal-oxide interface is increased. This method can also be used to achieve nanoislands of metal upon sub-ML deposition. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: November 15, 2005
    Assignee: Sandia Corporation
    Inventor: Dwight R. Jennison
  • Patent number: 6958309
    Abstract: A pretreatment method for increasing the average pore size of a catalyst support is disclosed which increases the diffusivity and effectiveness factor ?. The pretreatment method includes calcining the support in moisturized air at an elevated temperature sufficient to increase the average pore size. In some embodiments, the support may be treated with an acidic/basic solution prior to the calcination step. Alternatively, the calcination step may occur in a gas mixture including water/air/acidic (or basic) gases.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: October 25, 2005
    Assignee: ConocoPhillips Company
    Inventors: Daxiang Wang, Tianyan Niu, Gloria I. Straguzzi, Harold A. Wright, Robin G. Cnossen
  • Patent number: 6933259
    Abstract: This composite oxide powder can secure a large pore volume even after calcination at high temperature and, when a catalyst is formed by loading a noble metal on this composite oxide powder, noble metal grain growth can be suppressed. The composite oxide powder comprises particles of an oxide of a metal M1 and an oxide of a metal M2 which does not dissolve in the oxide of the metal M1, the oxide of the metal M1 and the oxide of the metal M2 being dispersed at the nanometer level. Since different oxides serve as a barrier to each other, sintering is suppressed. Therefore, in the case of composite oxide powder comprising Ce as a metal M1 and Al as a metal M2, grain growth is small even after exposed to high temperature and pores of 3.5-100 nm secure a volume of 0.07 cc/g or more after calcination at 600° C. for 5 hours and a volume of 0.04 cc/g or more after calcination at 800° C. for 5 hours.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: August 23, 2005
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Miho Hatanaka, Akira Morikawa, Akihiko Suda, Hideo Sobukawa, Kiyoshi Yamazaki
  • Patent number: 6919065
    Abstract: A particulate supported noble metal phase-controlled catalyst material having 5-1000 ?m surface area of 50?500 m2/gm is provided for use in direct catalytic production of hydrogen peroxide (H2O2) product from hydrogen and oxygen-containing feedstreams. The catalyst is made by depositing phase controlled crystals of a noble metal such as palladium on a suitable particulate support material such as carbon black, by utilizing a precursor solution of the metal and a suitable control ionic polymer having molecular weight of 300-8000 such as sodium polyacrylate in a selected metal to polymer molar ratio of 1:0.1 to 1:10, which procedure provides desired phase control of the noble metal atoms to form widely dispersed minute noble metal crystals on the support material. The invention includes methods for making the catalyst, and also a process for utilizing the catalyst to directly produce high yields of hydrogen peroxide (H2O2) product from hydrogen and oxygen-containing gaseous feedstreams.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: July 19, 2005
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Bing Zhou, Lap-Keung Lee
  • Patent number: 6908880
    Abstract: A process is described for the upgrading of hydrocarbon mixtures which boil within the naphtha range containing sulfur impurities, i.e. a hydrodesulfuration process with contemporaneous skeleton isomerization and reduced hydrogenation degree of the olefins contained in said hydrocarbon mixtures, the whole process being carried out in a single step. The process is carried out in the presence of a catalytic system comprising a metal of group VIB, a metal of group VIII and a carrier of acid nature consisting of a mesoporous silico-alumina.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: June 21, 2005
    Assignees: AgipPetroli S.p.A., EniTechnologie S.p.A.
    Inventors: Laura Maria Zanibelli, Virginio Arrigoni, Marco Ferrari, Donatella Berti
  • Patent number: 6906002
    Abstract: A catalyst able to overcome defects of an absorption reduction-type NOx purifying catalyst, such as poor NOx purifying capability at low temperatures and low SOx desorbing property, is provided. The catalyst is an absorption reduction-type NOx purifying catalyst where NOx absorbent particles and support particles having supported thereon a catalyst component are mixed. Preferably, acidic support particles are added to the support particle, the NOx absorbent particles are a metal oxide having a base point, and the metal oxide is rare earth-added zirconia. In conventional catalysts, the NOx absorbent such as alkali metal having strong basicity exposes the catalyst component present together on the same support to the basic condition to decrease the catalytic performance.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: June 14, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Tetsuya Yamashita, Toshiaki Tanaka
  • Patent number: 6897177
    Abstract: A process for preparing a cobalt based catalyst precursor includes, in a support impregnation stage, impregnating a coated catalyst support comprising porous catalyst support particles coated with carbon, with a cobalt salt, and partially drying the impregnated support. Thereafter, in a calcination stage, the partially dried impregnated support is calcined, to obtain the cobalt based catalyst precursor. The cobalt based catalyst precursor can then, in a reduction stage, be reduced to obtain a cobalt based Fischer-Tropsch catalyst.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 24, 2005
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Peter Jacobus Van Berge, Jan Van De Loosdrecht, Jacobus Lucas Visagie
  • Patent number: 6881701
    Abstract: The present invention provides a coating composition for substrates. The coating composition of the present invention generally includes a silicate binder and a plurality of photocatalytic particles. The silicate binder functions as a bonding agent to establish the coating on the substrate. A plurality of photocatalyst particles are dispersed throughout the silicate binder. The particles are included in an amount that provides sufficient distribution of the particles in the resulting coating. The incorporation of the present invention onto substrates prevents algal growth on building materials utilizing the coated substrates.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: April 19, 2005
    Assignee: 3M Innovative Properties Company
    Inventor: Jeffry L. Jacobs
  • Patent number: 6881390
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: April 19, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 6875717
    Abstract: A method and system for the in situ synthesis of a combinatorial library including impregnating a first component with a second component. The method and system advantageously may be employed in the synthesis of materials for screening for usefulness as a catalyst.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: April 5, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus G. Lugmair, Damodara M. Poojary, Alfred Hagemeyer, Daniel M. Giaquinta
  • Patent number: 6861387
    Abstract: The invention provides a noble metal-containing supported catalyst which contains one of the noble metals from the group Au, Ag, Pt, Pd, Rh, Ru, Ir, Os or alloys of one or more of these noble metals in the form of noble metal particles on a powdered support material. The particles deposited on the support material have a degree of crystallinity, determined by X-ray diffraction, of more than 2 and an average particle size between 2 and 10 nm. The high crystallinity and the small particle size of the noble metal particles lead to high catalytic activity for the catalyst. It is particularly suitable for use in fuel cells and for the treatment of exhaust gases from internal combustion engines.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 1, 2005
    Assignee: Umicore AG & Co. KG
    Inventors: Karsten Ruth, Peter Biberbach, Karl Anton Starz
  • Patent number: 6849571
    Abstract: A catalyst (5) for selectively oxidizing carbon monoxide, wherein a noble metal (3) and an active oxygen supply material (4) capable of oxidizing carbon monoxide are supported on a substrate (6). Favorable selective oxidation of carbon monoxide can be obtained by setting the distance between the noble metal (3) and the active oxygen supply material (4) such that the noble metal (3) is close enough to accept active oxygen from the active oxygen supply material (4), and preferably within 0.1 mm. This catalyst (5) for selectively oxidizing carbon monoxide is effective at removing carbon monoxide from a reformate gas whose main component is hydrogen and which is supplied to a fuel cell.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: February 1, 2005
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Maki Hoshino, Hiroaki Kaneko
  • Patent number: 6802958
    Abstract: The invention pertains to a process for preparing spherical oxide particles comprising the steps of shaping a starting material comprising an oxide hydrate into particles of substantially constant length by leading the material to a set of two rolls rotating towards each other followed by leading the material to a roll equipped with grooves to form rod-type shapes, cutting the rod-type shapes into particles of substantially constant length, converting the thus formed particles into spheres, and heating the particles to convert the oxide hydrate into an oxide. The process results in particles in which there is substantially no difference in density between the core portion and the shell portion of the particles, which results in a high abrasion resistance. The particles prepared by the claimed process are particularly suitable for the preparation of hydroprocessing catalysts, more in particular for the preparation of hydroprocessing catalysts suitable for the hydroprocessing of heavy hydrocarbon feeds.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 12, 2004
    Assignees: Nippon Ketjen Co., Ltd., Akzo Nobel NV
    Inventors: Nobuhito Matsumoto, Eiichi Yano, Masafumi Shimowake, Tetsuro Kamo
  • Patent number: 6797663
    Abstract: An exhaust gas clean-up catalyst having a catalytic layer which contains, as an occluding agent, at least one (potassium and/or the like) chosen from a group consisting of alkaline metals and alkaline earth metals. The catalytic layer consists of a first catalytic layer (20) which contains the occluding agent (potassium and/or the like) and an acid material (30) having a high affinity to the occluding agent, and a second catalytic layer (40) which contains the occluding agent and does not contain the acid material.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: September 28, 2004
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Tetsuya Watanabe, Osamu Nakayama, Keisuke Tashiro, Kinichi Iwachido, Hiroshi Tanada
  • Patent number: 6794330
    Abstract: It is an object of the present invention to provide an exhaust gas purifying catalyst formed as a single catalyst that has a great deal of flexibility when being assembled into an exhaust system and that is capable of executing both an NOx absorbing function and a three-way function in a desired manner. To attain the this object, an absorbent catalyst layer to which an absorbent agent such as potassium and an acid material such as zeolite are added, an absorbent agent block layer formed of zeolite, and a three-way catalyst layer to which an acid material such as phosphorus is added are bonded together on a cordierite carrier. The acid material in the absorbent catalyst layer and the absorbent agent block layer inhibit the movement of the absorbent agent to the three-way catalyst layer, and transform the absorbent agent into harmless and stable potassium phosphate even if the absorbent agent reaches the three-way catalyst.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: September 21, 2004
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Hiroshi Tanada, Osamu Nakayama, Keisuke Tashiro, Kinichi Iwachido, Tetsuya Watanabe
  • Publication number: 20040176619
    Abstract: Novel ruthenium catalysts can be obtained by:
    Type: Application
    Filed: December 11, 2003
    Publication date: September 9, 2004
    Inventors: Dominic Vanoppen, Melanie Maas-Brunner, Ulrich Kammel, Jan-Dirk Arndt