Iron Group Metal And Group Iii Metal Containing (i.e., Fe, Co Or Ni And Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/314)
  • Patent number: 7074740
    Abstract: An improved catalyst for hydrodesulfurization of heavy feedstocks is disclosed. The catalyst is adopted for on-stream catalyst replacement in upflow processing units. It is characterized by a smaller peak pore diameter than general purpose hydrotreating catalysts.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: July 11, 2006
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kirk R. Gibson, Richard Threlkel, Pak C. Leung
  • Patent number: 7071371
    Abstract: A gel composition substantially contained within the pores of a solid material is disclosed for use as a catalyst or as a catalyst support in dehydrogenation and dehydrocyclization processes.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: July 4, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Patent number: 7060651
    Abstract: A silica-rich support and a catalyst containing the silica-rich support and a catalytic component. The support has a specific structure characterized by a set of claimed physicochemical properties: in the 29Si MAS NMR spectrum the state of silicon is characterized by the presence of lines with chemical shifts ?100±3 ppm (line Q3) and ?110±3 ppm (line Q4), with the ratio of the integral intensities of the lines Q3/Q4 of from 0.7 to 1.2 (FIG. 1); in the IR spectrum there is an absorption band of hydroxyl groups with the wave number 3620–3650 cm?1 and half-width 65–75 cm?1 (FIG. 2); the carrier has a specific surface area, as measured by the BET techniques from the thermal desorption of argon, SAR=0.5–30 m2/g and the surface, as measured by alkali titration techniques, SNa=10–250 m2/g, with SNa/SAr=5–30.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: June 13, 2006
    Assignee: Zakrytoe Aktsionernoe Obschestvo “Kholdingovaya Katalizatornaya Kompania”
    Inventors: Viktor Vladimirovich Barelko, Bair Sydypovich Balzhinimaev, Sergei Petrovich Kildyashev, Mikhail Grigorievich Makarenko, Anatoly Nikolaevich Parfenov, Ljudmila Grigorievna Simonova, Alexandr Viktorovich Toktarev
  • Patent number: 7045479
    Abstract: Intermediate precursor compositions for use in manufacturing supported reactive catalysts having a controlled coordination structure, and methods for manufacturing such precursor compositions are disclosed. The precursor compositions include a catalyst complex formed from catalyst atoms and a control agent that is applied to a substrate. Reduction of the catalyst complex yields supported reactive catalyst in which a preponderance of the top or outer layer of atoms of the catalyst particles exhibit a controlled coordination number of 2. The supported catalysts are useful for a variety of chemical reactions, including the preparation of hydrogen peroxide with high selectivity.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: May 16, 2006
    Assignee: Headwaters Nanokinetix, Inc.
    Inventors: Bing Zhou, Michael Rueter
  • Patent number: 7033566
    Abstract: A photocatalyst including a metal oxide semiconductor represented by the formula: In1?xMxAO4 wherein M represents a transition metal element, A represents an element belonging to the Group 5a of the Periodic Table and x is a number greater than 0 but smaller than 1.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: April 25, 2006
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hironori Arakawa, Zhigang Zou, Kazuhiro Sayama
  • Patent number: 7030055
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: April 18, 2006
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 7030054
    Abstract: The present invention provides new platinum group metal (“PGM”) free catalytic compositions that comprise silver and/or cobalt stabilized ceria. These compositions facilitate soot oxidation during the regeneration of diesel particulate filters (DPF) thereby replacing PGM formulations. The compositions of the invention are particularly useful as washcoat compositions for DPFs as part of an automotive after-treatment system. Among the formulations tested, the silver-stabilized ceria and cobalt-stabilized ceria formulations e.g. can oxidize soot at 250–300° C. in the presence of NO2 and oxygen, while silver-stabilized ceria can oxidize diesel soot even in the presence of oxygen as the sole oxidizing agent at these temperatures. A perovshite composition containing Ag—La—Mn was very active at temperatures above 300° C.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: April 18, 2006
    Assignee: Ford Global Technologlies, LLC.
    Inventors: Albert N Chigapov, Alexei A Dubkov, Brendan Patrick Carberry, Robert Walter McCabe
  • Patent number: 6998366
    Abstract: Raney alloy catalysts applied to a support are described, said catalysts having an extremely thin layer of Raney alloy with a thickness of 0.01 to 100 ?m. These catalysts are prepared by vapor deposition of the appropriate metals under reduced pressure. They are generally suitable for all known hydrogenation and dehydrogenation reactions and are extremely abrasion-resistant.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: February 14, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Mathias Haake, Gerhard Dörsam, Helmut Boos
  • Patent number: 6989346
    Abstract: Olefinically unsaturated hydrocarbons are prepared from corresponding paraffinic hydrocarbons, in particular propylene is prepared from propane, by dehydrogenation over a catalyst comprising an oxide of a transition metal of group IV B of the Periodic Table, eg. TiO2 or ZrO2, and possibly at least one element selected from among elements of transition group VIII, eg. palladium, platinum or rhodium, and/or an element of transition group VI, eg. chromium, molybdenum or tungsten, and/or rhenium and/or tin and possibly a compound of an alkali metal or alkaline earth metal, a compound of main group III or transition group III or zinc.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: January 24, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Daniel Heineke, Michael Baier, Dirk Demuth, Klaus Harth
  • Patent number: 6984310
    Abstract: Alumina having a pore structure characterized by the absence of macropores, no more than 5% of the total pore volume in pores greater than 350 ?, a high pore volume (greater than 0.8 cc/g measured by mercury intrusion) and a bi-modal pore volume distribution character, where the two modes are separated by 10 to 200 ?, and the primary pore mode is larger than the median pore diameter (MPD), calculated either by volume or by surface area, the MPD by volume being itself larger than the MPD by surface area. Also provided are catalysts made from and processes using such alumina.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: January 10, 2006
    Assignee: Shell Oil Company
    Inventors: Josiane M. Ginestra, Russell C. Ackerman, Christian G. Michel
  • Patent number: 6924387
    Abstract: The present invention relates to a sold catalyst for manufacturing of a nitrile compound and a method of preparation thereof. More particularly, this invention relates to the solid catalyst expressed by the following formula (1): BiaAaBbQqOx][(100-z) % DdEeFefNigMomOy+z % SiO2] comprising a core catalytic phase expressed by [(100-z) %=DdEeFefNigMomOy+z % SiO2] and a shell catalytic phase expressed by [BinAaBbQqOx], which increases a yield in the manufacturing of a nitrile compound via ammoxidation of olefin, and the method of preparation thereof.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: August 2, 2005
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Tae-Sun Chang, Deug-Hee Cho, Dong-Koo Lee, Guijia Li, Young Kil Lee
  • Patent number: 6908880
    Abstract: A process is described for the upgrading of hydrocarbon mixtures which boil within the naphtha range containing sulfur impurities, i.e. a hydrodesulfuration process with contemporaneous skeleton isomerization and reduced hydrogenation degree of the olefins contained in said hydrocarbon mixtures, the whole process being carried out in a single step. The process is carried out in the presence of a catalytic system comprising a metal of group VIB, a metal of group VIII and a carrier of acid nature consisting of a mesoporous silico-alumina.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: June 21, 2005
    Assignees: AgipPetroli S.p.A., EniTechnologie S.p.A.
    Inventors: Laura Maria Zanibelli, Virginio Arrigoni, Marco Ferrari, Donatella Berti
  • Patent number: 6902664
    Abstract: A catalyst composition comprising a minor amount of a low acidity, highly dealuminated ultra stable Y zeolite having an Alpha value of less than about 5, preferable less than about 3 and Broensted acidity measured by FT-IR from about 1 to about 20, preferably from about 1-10, micro mole/g of, a homogeneous, amorphous silica-alumina cracking component having an SB ratio of from about 0.7 to about 1.3, wherein a crystalline alumina phase is present in an amount of no greater than about 10%, preferably no greater than 5% and a catalytic amount of hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal, and mixtures thereof is disclosed. The present invention provides for a process for converting hydrocarbonaceous oils comprising contacting the hydrocarbonaceous oils with the catalyst under suitable hydrocarbon conversion conditions.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: June 7, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventor: Hye Kyung C. Timken
  • Patent number: 6903047
    Abstract: The present invention concerns a method for enhancing the activity of vanadium phosphorus oxide (VPO) catalysts. Promoter reagents are grafted onto or reacted with the catalyst surface. An optional calcination and activation heating cycle transforms the catalyst precursor into a final active phase. A preferred VPO catalyst produced has a ratio of molybdenum to vanadium on the surface of the catalyst to molybdenum to vanadium in the overall bulk of the catalyst represented by the equation (Mo/V) Surface?1.10 (Mo/V) overall bulk.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: June 7, 2005
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Pratibha Laxman Gai
  • Patent number: 6881390
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: April 19, 2005
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 6878847
    Abstract: A catalyst useful for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. The catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 12, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6875723
    Abstract: A process for the production mixed metal oxide containing catalysts comprising the steps of: dissolution of metals Me=Fe, Ni, Al, Cu, Co, Zn, Cr, in nitric acid providing an acid solution of metal mixed nitrate products, aluminium can be added either as nitrate or hydroxide; addition of a carbonhydrate, an amino acid and/or a carboxylic acid; decomposition at 250-700° C. with free air supply of the acid solution by spraying onto the inner surface of one or more rotary kilns, into a spray calcination fluid bed, into a tower kiln or into a steel band conveyor furnace to iron oxide and NOx; and optionally regeneration of the formed NOx to concentrated nitric acid and recycling of produced nitric acid to the first step.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: April 5, 2005
    Assignee: Haldor Topsoe A/S
    Inventors: Keld Johansen, Petru Gordes
  • Patent number: 6872678
    Abstract: The present invention pertains to a process for activating a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an S-containing organic additive, wherein the catalyst is contacted with hydrogen at a temperature between room temperature and about 600° C., preferably about 100-450° C., and prior to or during the contacting with hydrogen the catalyst is contacted with an organic liquid. Preferably, the contacting with the organic liquid is carried out prior to the contacting with hydrogen. The organic liquid may be a hydrocarbon with a boiling range of 150-500° C., preferably white oil, gasoline, diesel, or gas oil or mineral lube oil. It was found that the application of an organic liquid prior to or during the hydrogen treatment results in catalysts with an increased activity. The invention also comprises catalyst made by the above process and the use of such catalyst in hydrotreating.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: March 29, 2005
    Assignee: Akzo Nobel N.V.
    Inventor: Sonja Eijsbouts
  • Patent number: 6860986
    Abstract: A catalyst composition comprising a low acidity, highly dealuminated ultra stable Y zeolite having an Alpha value of less than about 3 and Broensted acidity measured by FT-IR from about 1 to about 20, preferably from about 1-10, micro mole/g of, an amorphous cracking component and a catalytic amount of hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal, and mixtures thereof is disclosed. The present invention provides for a process for converting hydrocarbonaceous oils comprising contacting the hydrocarbonaceous oils with the catalyst under suitable hydrocarbon conversion conditions. Such processes in include, but are not limited to, single stage hydrocracking, two-stage hydrocracking, series-flow hydrocracking, mild hydrocracking, lube hydrocracking, hydrotreating, lube hydrofinishing, hydrodesulphurization, hydrodenitrification, catalytic dewaxing and catalytic cracking.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: March 1, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye Kyung C. Timken, Lucy Melinda Bull, Thomas V. Harris
  • Patent number: 6818589
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a tungstated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element, yttrium or mixtures thereof, which is preferably ytterbium or holmium, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: November 16, 2004
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 6802958
    Abstract: The invention pertains to a process for preparing spherical oxide particles comprising the steps of shaping a starting material comprising an oxide hydrate into particles of substantially constant length by leading the material to a set of two rolls rotating towards each other followed by leading the material to a roll equipped with grooves to form rod-type shapes, cutting the rod-type shapes into particles of substantially constant length, converting the thus formed particles into spheres, and heating the particles to convert the oxide hydrate into an oxide. The process results in particles in which there is substantially no difference in density between the core portion and the shell portion of the particles, which results in a high abrasion resistance. The particles prepared by the claimed process are particularly suitable for the preparation of hydroprocessing catalysts, more in particular for the preparation of hydroprocessing catalysts suitable for the hydroprocessing of heavy hydrocarbon feeds.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 12, 2004
    Assignees: Nippon Ketjen Co., Ltd., Akzo Nobel NV
    Inventors: Nobuhito Matsumoto, Eiichi Yano, Masafumi Shimowake, Tetsuro Kamo
  • Patent number: 6797839
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, antimony, one or more of the elements W, Nb, Ta, Cr and Ce and nickel and, if required, one or more of the elements Cu, Zn, Co, Fe, Cd, Mn, Mg, Ca, Sr and Ba and having a 2-component structure are used for the gas-phase catalytic oxidative preparation of acrylic acid.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: September 28, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Signe Unverricht
  • Publication number: 20040180784
    Abstract: A method and catalysts and fuel processing apparatus for producing a hydrogen-rich gas, such as a hydrogen-rich syngas are disclosed. According to the method, a CO-containing gas, such as a syngas, contacts a platinum-free ruthenium-cobalt water gas shift (“WGS”) catalyst, in the presence of water and preferably at a temperature of less than about 450° C., to produce a hydrogen-rich gas, such as a hydrogen-rich syngas.
    Type: Application
    Filed: December 18, 2003
    Publication date: September 16, 2004
    Inventors: Alfred Hagemeyer, Raymond E. Carhart, Karin Yaccato, Michael Herrmann, Andreas Lesik, Christopher James Brooks, Cory Bernard Phillips
  • Patent number: 6780817
    Abstract: A hydrorefining catalyst of a hydrogenation active metal component supported on a refractory porous carrier has a median pore diameter determined by the nitrogen adsorption method of 8 to 20 nm, a pore volume determined by the nitrogen adsorption method of 0.56 cm3/g or greater, and a pore volume of pores with a pore diameter of 50 nm or larger determined by the mercury intrusion porosimetry method of 0.32 cm3/g or greater. Both the demetallizing activity and metal deposition capacity of the catalyst in hydrogenation and demetallizing of heavy oil are high. The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of &ggr;-alumina and having a pore capacity of 0.75 m3/g or larger and a mean pore diameter of 10 to 200 &mgr;m, molding and calcining, and supporting an active metal component on the product.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: August 24, 2004
    Assignee: Japan Energy Corporation
    Inventors: Hiroki Koyama, Toru Saito, Hideaki Kumagai
  • Patent number: 6777371
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 17, 2004
    Inventor: Yumin Liu
  • Patent number: 6770590
    Abstract: An exhaust gas emission purifying catalyst has a catalyst layer (20) supported on a carrier (10). The catalyst layer includes a composite oxide, in which noble metals and occluding agents are mixed in order to inhibit the movement of the occluding agents even at high temperatures and to prevent deterioration of the purifying performance of the catalyst after operation at a high temperature. The composite oxide is comprised of silicon (Si) and at least one of cobalt (Co), zirconium (Zr), iron (Fe), and manganese (Mn).
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: August 3, 2004
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventor: Tetsuya Watanabe
  • Publication number: 20040147393
    Abstract: A process for preparing a multimetal oxide composition comprising one of the elements Mo and V and at least one of the elements Te and Sb, in which part solutions which each contain partial amounts of the required starting compounds of the elemental constituents present in the multimetal oxide composition in dissolved form are prepared from the starting compounds, these part solution streams are combined and mixed and the resulting mix solution stream is broken up into fine droplets, dried by means of a hot gas and the solid obtained is treated thermally at elevated temperature.
    Type: Application
    Filed: August 26, 2003
    Publication date: July 29, 2004
    Applicant: BASF Akiengesellschaft
    Inventors: Hartmut Hibst, Frieder Borgmeier, Klaus Joachim Muller-Engel
  • Patent number: 6740769
    Abstract: A process for producing a molybdenum-bismuth-iron-containing metal oxide fluidized bed catalyst which has a controlled particle diameter and has satisfactory activity and physical properties. In a process for producing a fluidized bed catalyst containing molybdenum-bismuth-iron and silica as a carrier component, dried products formed in a spray drying step and having a particle diameter outside a desired range are pulverized, then the pulverized one is mixed into a slurry before spray drying, the resulting mixture is spray-dried, and the spray-dried particles are subjected to a classification operation to obtain particles having a diameter within the desired range, which are then calcined. The catalyst produced according to the present invention is suitable for producing acrylonitrile by ammoxidation of propylene.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: May 25, 2004
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Kouichi Mizutani, Yoshimi Nakamura, Yutaka Sasaki, Kunio Mori
  • Patent number: 6720284
    Abstract: The invention relates to an Au/Fe2O3 catalyst comprised of a particle-shaped, co-catalytically active Fe2O3 supporting material with metallic Au clusters deposited thereupon which have a diameter of less than 4.5 nm. The catalyst materials can be obtained by: a) reacting a water-soluble Fe(III) salt in an aqueous medium with a base; b) impregnating the hydroxide gel which is formed thereby and which is still moist with a solution of a water-soluble Au compound in order to deposit complexed Au clusters on the surface of the hydroxide gel; c) removing water from the suspension of the reaction product formed thereby; d) subjecting the dried reaction product to a calcination at temperatures ranging from 350 and 700° C. The inventive catalyst material is especially suited for selective low-temperature CO oxidation in reformate hydrogen which is used as combustible gas for polymer electrolyte membrane (PEM) fuel cells.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: April 13, 2004
    Assignee: Zentrum fur Sonnenenergie- und Wasserstoff Forschung Baden-Wurttemberg Gemeinnutizige Stiftung
    Inventor: Vojtech Plzak
  • Publication number: 20040050754
    Abstract: The invention pertains to a hydroprocessing catalyst suitable for the conversion of heavy hydrocarbon oils, which comprises 7-20 wt. % of Group VI metal, calculated as trioxide, and about 0.5-6 wt. % of Group VIII metal, calculated as oxide, on a carrier comprising alumina, the catalyst having a surface area of about 100-180 m2/g, a total pore volume of about 0.55 ml/g or more, a % PV(>200 Å d) of at least about 50%, a % PV(>1,000 Å d) of at least about 5%, a % PV(100-1,200 Å d) of at least about 85%, a % PV(>4,000 Å d) of about 0-2%, and a % PV(>10,000 Å d) of about 0-1%. The catalyst of the present invention shows improved metals and asphaltene removal, combined with appropriate sulfur, nitrogen, and Conradson carbon removal. Additionally, the catalyst shows a decrease in sediment formation and an improved conversion in ebullating bed operations. In fixed bed operation, the catalyst produces product with an improved storage stability.
    Type: Application
    Filed: October 23, 2003
    Publication date: March 18, 2004
    Inventors: Satoshi Abe, Akira Hino, Katsuhisa Fujita
  • Patent number: 6706660
    Abstract: A lean NOx catalyst and method of preparing the same is disclosed. The lean NOx catalyst includes a ceramic substrate, an oxide support material, preferably &ggr;-alumina, deposited on the substrate and a metal promoter or dopant introduced into the oxide support material. The metal promoters or dopants are selected from the group consisting of indium, gallium, tin, silver, germanium, gold, nickel, cobalt, copper, iron, manganese, molybdenum, chromium, cerium, vanadium, oxides thereof, and combinations thereof. The &ggr;-alumina preferably has a pore volume of from about 0.5 to about 2.0 cc/g; a surface area of between about 80 to 350 m2/g; an average pore size diameter of between about 3 to 30 nm; and an impurity level of less than or equal to 0.2 weight percent. In a preferred embodiment the &ggr;-alumina is prepared by a sol-gel method, with the metal doping of the &ggr;-alumina preferably accomplished using an incipient wetness impregnation technique.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: March 16, 2004
    Assignee: Caterpillar Inc
    Inventor: Paul W. Park
  • Publication number: 20040042948
    Abstract: An object of the present invention is to improve the decomposition at low temperatures of perfluorocompounds containing only fluorine as a halogen, such as CF4, C2F6 and the like. In the present invention, a perfluorocompound containing only fluorine as a halogen is brought into contact with a catalyst comprising Al, Ni and W as catalytically active ingredients and comprising a mixed oxide or complex oxide of Ni and Al and a mixed oxide or complex oxide of W and Ni, in the presence of steam or a combination of steam and air at a temperature of 500 to 800° C. to convert the fluorine in the perfluorocompound to hydrogen fluoride. Employment of the catalyst of the present invention improves the decomposition at low temperatures and hence makes it possible to decompose the perfluoro-compound at a high percentage of decomposition at a lower temperature.
    Type: Application
    Filed: August 20, 2003
    Publication date: March 4, 2004
    Inventors: Shuichi Kanno, Shin Tamata, Shinichi Ichikawa, Terufumi Kawasaki, Hisao Yamashita
  • Patent number: 6693059
    Abstract: A process useful for the catalytic gas phase oxidation of alkanes to unsaturated aldehydes or carboxylic acids uses catalysts of particular compositions formed in a particular manner.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: February 17, 2004
    Assignee: Rohm and Haas Company
    Inventor: Manhua Lin
  • Patent number: 6689712
    Abstract: A hydrorefining catalyst containing a metal belonging to group VIB of the Periodic Table and phosphorus is made by bringing the supporting liquid into contact with a porous carrier formed of inorganic oxide. The supporting liquid is an aqueous solution of a metal belonging to group VIB of the Periodic Table, a phosphorus compound, a hydroxycarboxylic acid, and hydrogen peroxide added to water. Thee hydroxycarboxylic acid content of the supporting liquid is such that molar ratio of group VIB metal:hydroxycarboxylic acid is 1:0.05 to 1:1 and the hydrogen peroxide content of the supporting liquid is such that molar ratio of group VIB metal:hydrogen peroxide is 1:0.03 to 1:1. The catalyst made with the supporting liquid has excellent desulfurization activity.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: February 10, 2004
    Assignee: Japan Energy Corporation
    Inventor: Hideo Tanaka
  • Patent number: 6683024
    Abstract: A sorbent composition is provided which can be used in the desulfurization of a hydrocarbon-containing fluid such as cracked gasoline or diesel fuel. The sorbent composition contains a support component and a promoter component with the promoter component being present as a skin on the support component. Such sorbent composition is prepared by a process of impregnating a support component with a promoter component, wherein the promoter component has been melted under a melting condition, followed by drying, calcining, and reducing to thereby provide the sorbent composition.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: January 27, 2004
    Assignee: ConocoPhillips Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Patent number: 6680272
    Abstract: Co-precipitated CoCuMn and CoCuMg catalysts are used in Fischer-Tropsch synthesis.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: January 20, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Philippe Buess, Raphael Frans Ivo Caers, Alfred Frennet, Eric Ghenne, Claude Hubert, Norbert Kruse
  • Patent number: 6673237
    Abstract: A method of increasing the selective desulfurization of naphtha feed streams that includes: combining a naphtha feed stream with a hydrogen containing gas to form a combined feed stream and reacting the combined feed stream over a monolithic honeycomb catalyst bed containing hydrodesulfurization catalyst components to give a desulfurized naphtha. In conducting such an illustrative embodiment, the percent desulfurization of the naphtha is preferably greater than about 50% and the percent olefin hydrogenation of the naphtha is preferably less than about 50%. The monolithic honeycomb catalyst bed of one alternative and illustrative embodiment preferably has a channel density of about 25 to 1600 cells per square inch; a channel size from about 0.1 to 10 mm; and a channel wall thickness of about 0.01 to about 2.0 mm. The illustrative method should be carried out such that the octane number (R+M/2) of the naphtha feed stream is reduced by no more than 3.0 at 95% desulfurization and preferably no more than 1.5.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Corning Incorporated
    Inventors: Wei Liu, Tinghong Tao
  • Patent number: 6673741
    Abstract: A guard catalyst, comprising an alumina support and molybdenum and/or tungsten and nickel and/or cobalt supported on the alumina support, wherein the total ammonia integral adsorption heat of said alumina support does not exceed 25 J/g, the percentage taken up by the ammonia integral adsorption heat of the ammonia differential adsorption heat greater than 100 kJ/mol does not exceed 10% of the total ammonia integral adsorption heat. Compared to the catalysts of the prior art, the guard catalyst has higher catalytic activity, less coke deposit, lower reduction rate of pore volume, better stability of activity, and higher strength.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: January 6, 2004
    Assignees: China Petroleum and Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Xiaohong Kang, Kui Wang, Weizheng Dong, Qinghe Yang, Li Zhu
  • Patent number: 6670515
    Abstract: A material composed of ultrafine particles, comprising at least a metal element M having catalytic properties and at least a metal element M′ having a standard oxidation potential less than that of M, part at least of M′ atoms being in oxidized form, the average size of the particles being less than 50 nm, at least 80% in number of the particles having an average size less than 10 nm. One particle of the material is constituted by at least a metal element M with oxidation level 0, or by at least a metal element M′ in oxidized form, or by at least a metal element M′ with oxidation level 0, or by the combination of at least two species selected from the three previous species. The material is useful as a catalyst for hydrogenation or coupling reactions.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: December 30, 2003
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Jean-Marie Dubois, Yves Fort, Olivier Tillement
  • Publication number: 20030232235
    Abstract: An improved metal alloy fuel cell electrocatalyst composition containing platinum, rhodium, molybdenum, and nickel iron or a combination thereof.
    Type: Application
    Filed: February 12, 2003
    Publication date: December 18, 2003
    Applicant: Symyx Technologies, Inc.
    Inventors: Alexander Gorer, Peter Strasser, Martin Devenney, Qun Fan, Konstantinos Chondroudis, Daniel M. Giaquinta, Ting He, Hiroyuki Oyanagi, Kenta Urata, Kazuhiko Iwasaki, Hiroichi Fukuda
  • Patent number: 6660683
    Abstract: Compositions for reduction of gas phase reduced nitrogen species and NOx generated during a partial or incomplete combustion catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise (i) an acidic metal oxide containing substantially no zeolite, (ii) an alkali metal, alkaline earth metal, and mixtures thereof, (iii) an oxygen storage component, and (iv) a noble metal component, preferably rhodium or iridium, and mixtures thereof, are disclosed. Preferably, the compositions are used as separate additives particles circulated along with the circulating FCC catalyst inventory. Reduced emissions of gas phase reduced nitrogen species and NOx in an effluent off gas of a partial or incomplete combustion FCC regenerator provide for an overall NOx reduction as the effluent gas stream is passed from the FCC regenerator to a CO boiler, whereby as CO is oxidized to CO2 a lesser amount of the reduced nitrogen species is oxidized to NOx.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: December 9, 2003
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, John Allen Rudesill
  • Patent number: 6638892
    Abstract: A process for the conversion of syngas by contact of syngas under conversion conditions with catalyst having as components zinc oxide, copper oxide, aluminum oxide, Y zeolite and clay in which (A) in a one step process for conversion of syngas to dimethyl ether, the catalyst has as components an extruded mixture of zinc oxide, copper oxide, gamma aluminum oxide, Y zeolite and clay; (B) in a two step process for conversion of syngas to light olefins, a catalyst system is employed that has in the first step a catalyst mixture of zinc oxide, copper oxide, aluminum oxide, Y zeolite and clay and the catalyst employed in the second step is SAPO-34; SAPO-34 modified with lanthanum(III) nitrate hexahydrate; SAPO-34 modified with magnesium nitrate hexahydrate; SAPO-34 modified with tributyl borate or SAPO-34 modified with triethyl phosphate or (C) in a two step process for conversion of syngas to light olefins, the pressure on the effluent from the contact of syngas with a mixture of zinc oxide, copper oxide, aluminum
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: October 28, 2003
    Assignee: ConocoPhillips Company
    Inventors: An-hsiang Wu, Jianhua Yao, Charles A. Drake
  • Patent number: 6632772
    Abstract: A method of coating a catalyst to a support for use in acrolein oxidation reaction. Metallic salt components of the catalyst including molybdate, vanadate and tungstate are dissolved in a liquid to form a suspension of particles of the catalyst. The precipitation of the catalyst particles is controlled by homogenizing the catalyst particles suspended in the liquid. The phase separation between the catalyst particles and the liquid can be substantially slowed down by the homogenization. Then the catalyst is coated on an inert support by applying the suspension of the catalyst particles to the support. In the suspension, the total weight of water is about 0.8 to about 5 times of the total weight of the metallic salts in the catalyst. This method of preparing suspension minimizes the amount of the liquid required to dissolve the metallic salts, which reduces the amount of time and energy to be used in evaporating the liquid from the suspension.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: October 14, 2003
    Assignee: LG Chemical, Ltd.
    Inventors: Won-Ho Lee, Kyung-Hwa Kang, Dong-Hyun Ko, Young-Chang Byun
  • Patent number: 6620973
    Abstract: A catalyst composition for the production of unsaturated aldehydes by the oxidation of the corresponding olefins, and methods of making and using such catalyst compositions. The catalysts of the present invention include compositions of the formula: MoaPdbBicFedX1eX2fX3gOz, wherein X1 is an element selected from Co, Ni, V, Pt, Rh, or mixtures thereof; X2 is an element selected from Al, Ga, Ge, Mn, Nb, Zn, Ag, P, Si, W, or mixtures thereof; X3 is an element selected from K, Mg, Rb, Ca, Sr, Ba, Na, In, or mixtures thereof; a is 1; b is 0<b<0.3; c is 0<c<0.9; d is 0<d<0.9; e is 0<e<0.9; f is 0<f<0.9; g is 0<g<0.3; and z is an integer representing the number of oxygen atoms required to satisfy the valency of Mo, Pd, Bi, Fe, X1, X2, and X3 in the catalyst composition. Using the methods of the present invention, one may effectively oxidize the desired starting materials at relatively high levels of conversion, selectivity, and productivity, and with minimal side products.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: September 16, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Asad Ahmad Khan
  • Publication number: 20030166465
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Application
    Filed: January 21, 2003
    Publication date: September 4, 2003
    Inventor: Gyanesh P. Khare
  • Patent number: 6608001
    Abstract: A method for producing small spherical particles that are especially useful as catalysts and catalyst supports employed in chemical processes is disclosed. According to some embodiments, the method includes impregnating a porous support with a metal or metal oxide and dissolving the support to release spherical particles. In certain embodiments the support that is employed in the method comprises a number of spherical voids which determine the size of the spherical particles, and preferably have micrometer range diameters. One embodiment of an attrition resistant Fischer-Tropsch catalyst comprises a plurality of micrometer size spherical metal and/or metal oxide particles that are prepared according to the above-described method.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: August 19, 2003
    Assignee: ConocoPhillips Company
    Inventor: Joe D. Allison
  • Patent number: 6596897
    Abstract: A fluidized-bed catalyst for producing acrylonitrile by the ammoxidation of propylene, which comprises a silica carrier and a composite having the following formula: AaCcDdNafFegBihMiMo12Ox wherein A selected from the group consisting of potassium, rubidium, cesium, samarium, thallium and mixtures thereof; C is selected from the group consisting of phosphorus, arsenic, boron, antimony, chromium and mixtures thereof; D is selected from nickel, cobalt or mixtures thereof; M is selected from tungsten, vanadium or mixtures thereof. The catalyst of the present invention particularly suits the use under higher pressure and higher duties, and still maintains very high single-pass yield of acrylonitrile and a high ammonia conversion. This catalyst particularly suits the requirement for existing acrylonitrile plants to raise capacity. For new plants it can also reduce the investment on the catalyst and the pollution.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: July 22, 2003
    Assignees: China Petro-Chemical Corporation, Research Institute of Petroleum Processing
    Inventors: Xingya Guan, Xin Chen, Lianghua Wu
  • Publication number: 20030111391
    Abstract: A catalyst for removing arsenic from petroleum feedstocks comprising a porous refractory support impregnated with at least 8 wt. % of a Group VIB metal and an amount of Group VIII metal such that the atomic ratio of Group VIII metal to Group VIB metal is between about 1.5 and 2.5. A method of making such catalyst and a process for removing arsenic metals from a petroleum fraction using said catalyst.
    Type: Application
    Filed: December 17, 2001
    Publication date: June 19, 2003
    Inventor: Opinder Kishan Bhan
  • Patent number: 6576584
    Abstract: A method for producing a hydrotreating catalyst which relates to the production of a solid catalyst composed of a carrier impregnated with an active component, to give a catalyst for hydrotreating hydrocarbon oils, which contains a large quantity of a hydrogenation-active component and uniform, crystalline composite metal compound, and shows high catalytic activity.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 10, 2003
    Assignee: Tonen Corporation
    Inventors: Masahiko Iijima, Takao Hashimoto, Yoshinobu Okayasu, Takeshi Isoda
  • Publication number: 20030102253
    Abstract: A method of increasing the selective desulfurization of naphtha feed streams that includes: combining a naphtha feed stream with a hydrogen containing gas to form a combined feed stream and reacting the combined feed stream over a monolithic honeycomb catalyst bed containing hydrodesulfurization catalyst components to give a desulfurized naphtha. In conducting such an illustrative embodiment, the percent desulfurization of the naphtha is preferably greater than about 50% and the percent olefin hydrogenation of the naphtha is preferably less than about 50 %. The monolithic honeycomb catalyst bed of one alternative and illustrative embodiment preferably has a channel density of about 25 to 1600 cells per square inch; a channel size from about 0.1 to 10 mm; and a channel wall thickness of about 0.01 to about 2.0 mm. The illustrative method should be carried out such that the octane number (R+M/2) of the naphtha feed stream is reduced by no more than 3.0 at 95% desulfurization and preferably no more than 1.
    Type: Application
    Filed: November 28, 2001
    Publication date: June 5, 2003
    Inventors: Wei Liu, Tinghong Tao