Iron Containing Patents (Class 502/316)
  • Patent number: 11760944
    Abstract: This disclosure relates to a procedure, which through the application of a catalyst in homogeneous phase, allows the transformation of heavy hydrocarbons (vacuum residue, atmospheric residue, heavy and extra-heavy crudes) into hydrocarbons of lower molecular weight, characterized because after its application, the hydrocarbons obtain greater API gravity, lower kinematic viscosity and different composition by hydrocarbon families (SARA) that increases the proportion of saturated and aromatic resins and asphalts. The sulphur and nitrogen content is also reduced, resulting in higher yields to high commercial value distillates and a lighter product as compared to the original crude.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: September 19, 2023
    Assignee: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Persi Schacht Hernandez, Jose Manuel Dominguez Esquivel, Benjamin Portales Martinez, Ismael Soto Escalante
  • Patent number: 11524284
    Abstract: An exhaust gas purification device has a metal substrate and a catalyst layer on the metal substrate, wherein the metal substrate is a wound body of one or a plurality of metal foils, at least one of the one or a plurality of metal foils is a perforated metal foil having holes, the catalyst layer contains noble metal catalyst particles and a carrier for carrying the noble metal catalyst particles, and more noble metal catalyst particles are present in the catalyst layer on side surfaces of holes, which face an upstream side of an exhaust gas flow, than in the catalyst layer on side surfaces of holes, which face a downstream side of the exhaust gas flow.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: December 13, 2022
    Assignee: CATALER CORPORATION
    Inventors: Kohei Takasaki, Yuji Matsuhisa, Nobuaki Bando, Hiroshi Ono, Tomohito Mizukami, Tsuyoshi Ito
  • Patent number: 10675612
    Abstract: According to the present invention, a composite including amorphous iron molybdate islands, shows a smaller island size and a uniform distribution of islands compared with a conventional composite including crystalline islands, and thus has a higher specific surface area, thereby exhibiting excellent activity as a catalyst.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: June 9, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Cheolock Song, Gyo Hyun Hwang, Ara Cho, Jungup Bang
  • Patent number: 10059852
    Abstract: The present disclosure provides a metal compound. The metal compound is represented by a formula (I): Cu2A?B2-?O4-? (I). A contains at least one element selected from the groups 6 and 8 of the periodic table. B contains at least one element selected from the group 13 of the periodic table, 0<?<2, and 0<?<1.5. Polymer article containing the metal compound and method for preparing the polymer article as well as selective metallization of a surface of the polymer article are also provided. In addition, the present disclosure provides an ink composition and the selective metallization for a surface of the insulative substrate using the ink composition.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: August 28, 2018
    Assignees: Shenzhen BYD Auto R&D Company Limited, BYD Company Limited
    Inventors: Qing Gong, Wei Zhou, Bifeng Mao, Weifeng Miao
  • Patent number: 9463442
    Abstract: A catalyst is provided, the catalyst comprising rods having mean length of 100 microns or less, the rods comprising a metal molybdate or tungstate, the metal being selected from the group consisting of iron, manganese, nickel, chromium, vanadium, aluminum, silver, titanium, copper, bismuth, and cobalt. A method of making such a catalyst is also provided.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: October 11, 2016
    Assignee: UNIVERSITY COLLEGE CARDIFF CONSULTANTS LIMITED
    Inventors: Zhonjie Lin, Jonathan Keith Bartley, Stuart Hamilton Taylor, Graham John Hutchings, Nicholas Francois Dummer
  • Patent number: 9231246
    Abstract: A method is provided to synthesize nanocomposites containing intercalated FeF2— or Fe2O3— nanoparticles in a graphitic carbon matrix by reaction of a volatile iron compound with a graphite fluoride (CFx) or a graphite oxide (COx). Additionally provided is a nanocomposite material containing intercalated FeF2— or Fe2O3— nanoparticles in a graphitic carbon matrix and its use as an electrochemically active material in particular for use in electrochemical storage cells.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: January 5, 2016
    Assignee: KARLSRUHE INSTITUT FUER TECHNOLOGIE
    Inventors: Anji Reddy Munnangi, Ben Breitung, Maximilian Fichtner, Horst Hahn
  • Patent number: 9073043
    Abstract: The drive of direct-heat-supply type reforming of hydrocarbon at ordinary temperature is necessary in order to realize a self-sustaining, on-site reforming type fuel cell system which does not necessitate the supply of energy from the outside. According to the invention, an oxide, CeO2 or Pr6O11, or a Ce/Zr or Ce/Zr/Y double oxide is used as the oxide containing a rare earth element capable of changing the oxidation number with an active metal and oxygen defects are introduced into the oxide or double oxide by activating the oxide or double oxide with a reducing gas at high temperature. When a reaction gas containing hydrocarbon and oxygen is passed though the catalyst at low temperature, the oxygen defects react with oxygen and thereby return to the original oxide.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: July 7, 2015
    Assignee: National University Corporation Oita University
    Inventors: Katutoshi Nagaoka, Yuusaku Takita, Katutoshi Satou, Hiroyasu Nishiguti
  • Publication number: 20150105580
    Abstract: The present invention relates to a device for treatment of material transported through the device comprising at least one porous element consisting of specific solid metallic structure which allows cross-flow of the material through the porous element and wherein the porous element is coated by a non-acidic metal oxide which is impregnated by palladium (Pd).
    Type: Application
    Filed: April 17, 2013
    Publication date: April 16, 2015
    Inventor: Werner Bonrath
  • Publication number: 20150105244
    Abstract: An electrode material for a direct fuel cell or an electrochemical hydrogenation electrolytic tank, includes component A, or component B, or the mixture of component A and component B. The component A is any one of or a mixture of two or more than two of HnNb2O5, HnV2O5, HnMoO3, HnTa2O5 or HnWO3 at any ratio, where 0<n?4. The component B is any one of or a mixture of two or more than two of Nb2O5, V2O5, MoO3, Ta2O5, WO3 at any ratio.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventors: Hansong Cheng, Chaoqun Han, Ming Yang, Gang Ni, Liang Huang, Libin Pei
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Patent number: 8932977
    Abstract: A catalyst for the electrolysis of water molecules and hydrocarbons, the catalyst including catalytic groups comprising A1-xB2-yB?yO4 spinels having a cubical M4O4 core, wherein A is Li or Na, B and B? are independently any transition metal or main group metal, M is B, B?, or both, x is a number from 0 to 1, and y is a number from 0 to 2. In photo-electrolytic applications, a plurality of catalytic groups are supported on a conductive support substrate capable of incorporating water molecules. At least some of the catalytic groups, supported by the support substrate, are able to catalytically interact with water molecules incorporated into the support substrate. The catalyst can also be used as part of a photo-electrochemical cell for the generation of electrical energy.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: January 13, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: G. Charles Dismukes, Martha Greenblatt
  • Patent number: 8901028
    Abstract: A process for the complete or partial oxidation of hydrocarbons comprises contacting a C1-C8 hydrocarbon and hydrogen peroxide in the presence of a heterogeneous catalyst under conditions suitable to convert the C1-C8 hydrocarbon to at least one corresponding C1-C8 oxygenate product, wherein the heterogeneous catalyst provides confinement and contains both Brønsted-Lowry and Lewis acid centers. Particularly useful catalysts may include, for example, metal-modified ZSM-5 and other zeolites.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: December 2, 2014
    Assignee: University College Cardiff Consultants Limited
    Inventors: Graham John Hutchings, Jose Antonio Lopez-Sanchez, Ceri Hammond, Nikolaos Dimitratos, Nicholas Fracois Dummer
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8883100
    Abstract: The present invention relates to a particle filter comprising a porous carrier body, an SCR active component and an oxidation catalyst, wherein the SCR active component is present as coating on the exhaust-gas entry surface and the inner surface of the porous carrier body and the oxidation catalyst as coating on the exhaust-gas exit surface of the porous carrier body. According to the invention the oxidation catalyst changes its function depending on operating conditions. In normal operation it serves as NH3 slip catalyst for oxidizing excess NH3 and during filter regeneration it operates according to the 3-way principle for converting NOx and CO. The invention also relates to a method for producing the particle filter, the use of the particle filter for treating exhaust gases from the combustion of fossil, synthetic or biofuels as well as an exhaust-gas cleaning system which contains the particle filter according to the invention.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: November 11, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Martin Paulus, Klaus Wanninger
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8845998
    Abstract: A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 30, 2014
    Inventor: Yasuo Ishikawa
  • Patent number: 8835343
    Abstract: A method of preparing a nitrogen containing electrode catalyst by converting a high surface area metal-organic framework (MOF) material free of platinum group metals that includes a transition metal, an organic ligand, and an organic solvent via a high temperature thermal treatment to form catalytic active sites in the MOF. At least a portion of the contained organic solvent may be replaced with a nitrogen containing organic solvent or an organometallic compound or a transition metal salt to enhance catalytic performance. The electrode catalysts may be used in various electrochemical systems, including a proton exchange membrane fuel cell.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: September 16, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Di-Jia Liu, Shengqian Ma, Gabriel A. Goenaga
  • Publication number: 20140213441
    Abstract: The present invention provides an electrocatalytic material and a method for making an electrocatalytic material. There is also provided an electrocatalytic material comprising amorphous metal or mixed metal oxides. There is also provided methods of forming an electrocatalyst, comprising an amorphous metal oxide film.
    Type: Application
    Filed: September 4, 2012
    Publication date: July 31, 2014
    Inventors: Simon Trudel, Curtis Berlinguette
  • Patent number: 8791280
    Abstract: This invention relates to catalyst carriers to be used as supports for metal and metal oxide catalyst components of use in a variety of chemical reactions. More specifically, the invention provides a process of formulating an alpha alumina carrier that is suitable as a support for silver and the use of such catalyst in chemical reactions, especially the epoxidation of ethylene to ethylene oxide. The composition comprises at least one hydrated precursor of alpha alumina; an optional alpha alumina; and a binder. The composition is substantially free of seeding particles.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: July 29, 2014
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventor: Nabil Rizkalla
  • Publication number: 20140187412
    Abstract: In one embodiment, an aqueous dispersion liquid contains at least one particles selected from tungsten oxide particles and tungsten oxide composite particles. A mean primary particle diameter (D50) of the particles is in the range of 1 nm to 400 nm. In the aqueous dispersion liquid, concentration of the particles is in the range of 0.1 mass % to 40 mass %, and pH is in the range of 1.5 to 6.5. The aqueous dispersion liquid excels in dispersibility of particles and capable of maintaining good liquidity for a long period.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicants: TOSHIBA MATERIALS CO., LTD., KABUSHIKI KAISHA TOSHIBA
    Inventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
  • Patent number: 8703641
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds end up in the supernatant. The metals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of metal ions in at least one of the metal residuals, and for at least one of the metal residuals recovered as a metal precursor feed for use in the co-precipitation reaction. In one embodiment, the resin functions as an anion exchange resin with an acidic supernatant to recover Group VIB metal residuals, and a cation exchange resin with a basic supernatant to recover Promoter metal residuals. An effluent stream from the process to waste treatment contains less than 50 ppm metals.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra, Ping Wang, Soy Uckung
  • Patent number: 8696943
    Abstract: A catalyst for producing a carbon nanofiber is obtained by dissolving or dispersing [I] a compound containing Fe element; [II] a compound containing Co element; [III] a compound containing at least one element selected from the group consisting of Ti, V, Cr, and Mn; and [IV] a compound containing at least one element selected from the group consisting of W and Mo in a solvent to obtain a solution or the fluid dispersion, and then impregnating a particulate carrier with the solution or the fluid dispersion. A carbon nanofiber is obtained by bringing a carbon element-containing compound into contact with the catalyst in a vapor phase at a temperature of 300 degrees C. to 500 degrees C.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: April 15, 2014
    Assignee: Showa Denko K.K.
    Inventors: Eiji Kambara, Akihiro Kitazaki
  • Patent number: 8664146
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Publication number: 20140054179
    Abstract: Provided are carbon fibers with low metal ion elution amount without subjecting to high-temperature heat treatment, in which the metal ion may be sometimes precipitated on an electrode of electrochemical devices such as batteries and capacitors to cause short-circuit. The carbon fibers comprises Fe, at least one catalyst metal selected from the group consisting of Mo and V, and a carrier; wherein the carbon fibers have an R value (ID/IG) as measured by Raman spectrometry of 0.5 to 2.0 and have an electrochemical metal elution amount of not more than 0.01% by mass.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji YAMAMOTO, Yuusuke Yamada, Takeshi Nakamura
  • Publication number: 20140024525
    Abstract: A catalyst is provided, the catalyst comprising rods having mean length of 100 microns or less, the rods comprising a metal molybdate or tungstate, the metal being selected from the group consisting of iron, manganese, nickel, chromium, vanadium, aluminium, silver, titanium, copper, bismuth, and cobalt. A method of making such a catalyst is also provided.
    Type: Application
    Filed: August 12, 2011
    Publication date: January 23, 2014
    Inventors: Zhonjie Lin, Jonathan Keith Bartley, Stuart Hamilton Taylor, Graham John Hutchings, Nicholas Francois Dummer
  • Publication number: 20140024861
    Abstract: [Problem] Catalyst for use in selective reduction of propionaldehyde in acrolein and/or acrylic acid and/or acrylonitrile containing propionaldehyde and/or propionic acid and/or propionitrile at low concentration. In particular, a novel catalyst for selectively reducing propionaldehyde from acrolein containing the propionaldehyde. [Solution] Catalyst for use in selective reduction of propionaldehyde in acrolein containing the propionaldehyde, characterized in that the catalyst contains Mo as an indispensable component, and at least one element selected from a group comprising P, Si, W, Ti, Zr, V, Nb, Ta, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, In, Tl, Sn, Ag, As, Ge, B, Bi, La, Ba, Sb, Te, Ce, Pb, Mg, K, Rb, Cs and Al.
    Type: Application
    Filed: January 26, 2012
    Publication date: January 23, 2014
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Kimito Okumura, Toru Kawaguchi, Yasushi Kobayashi
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Patent number: 8609575
    Abstract: A catalyst of one or more complex oxides having a nominal composition as set out in formula (1): AxB1-y-zMyPzOn (1) wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with atomic number 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with atomic number 25 to 30; P is selected from one or more elements with atomic number 44 to 50 and 76 to 83; x is defined as a number where 0<x?1; y is defined as a number where 0?y<0.5; and z is defined as a number where 0<z<0.2.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: December 17, 2013
    Assignee: Very Small Particle Company Limited
    Inventors: Peter Cade Talbot, Jose Antonio Alarco, Geoffrey Alan Edwards
  • Patent number: 8598065
    Abstract: A process for charging a longitudinal section of a catalyst tube with a homogeneous fixed catalyst bed section whose active composition is at least one multielement oxide or comprises elemental silver on an oxidic support body and whose geometric shaped catalyst bodies and shaped inert bodies have a specific inhomogeneity of their longest dimensions.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: December 3, 2013
    Assignee: BASF SE
    Inventors: Martin Dieterle, Klaus Joachim Müller-Engel
  • Patent number: 8586786
    Abstract: A catalyst for use in the production of an unsaturated aldehyde and/or an unsaturated carboxylic acid, the catalyst comparing (or, preferably, being composed of) a mixed oxide containing molybdenum, bismuth and iron, which has improved methanical strength, is produced by a method including the steps of (1) drying an aqueous solution or an aqueous slurry containing raw materials of the catalyst and then firstly calcining a dried product in a molecular oxygen-containing gas atmosphere to obtain a calcined product; (2) heating the calcined product obtained in Step (1) in the presence of a reducing material to obtain a reduced product having a mass loss of 0.05 to 6%; and (3) secondly calcining the reduced product obtained in Step (2) in a molecular oxygen-containing gas atmosphere.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 19, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Naoki Miura, Eiichi Shiraishi, Koichi Nagai
  • Patent number: 8546634
    Abstract: There is provided a method for production of a conjugated diene from a monoolefin having four or more carbon atoms by a fluidized bed reaction. The method for production of a conjugated diolefin includes bringing a catalyst in which an oxide is supported on a carrier into contact with a monoolefin having four or more carbon atoms in a fluidized bed reactor in which the catalyst and oxygen are present, wherein the method satisfies the following (1) to (3): (1) the catalyst contains Mo, Bi, and Fe; (2) a reaction temperature is in the range of 300 to 420° C.; and (3) an oxygen concentration in a reactor outlet gas is in the range of 0.05 to 3.0% by volume.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hideo Midorikawa, Hiroyuki Yano, Takashi Kinoshita
  • Publication number: 20130217923
    Abstract: The present invention relates to novel structured catalysts based on sintered metal fibers (SMF) coated by a basic oxide layer with Pd-nanoparticles, to reactions of organic compounds with hydrogen in the presence of said catalyst and an organic base as well as to vitamins, carotinoids, perfume ingredients, and/or food or feed ingredients prepared by using this reaction.
    Type: Application
    Filed: July 1, 2011
    Publication date: August 22, 2013
    Applicant: DSM IP ASSETS B.V.
    Inventors: Werner Bonrath, Lioubov Kiwi-Minsker, Igor Iouranov
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Publication number: 20130178670
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst comprises an extruded modified support, and a precious metal. The processes for making the catalysts comprises modifying the catalyst, extruding the catalyst, and impregnating the precious metal onto the catalyst.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 11, 2013
    Applicant: Celanese International Corporation
    Inventor: Celanese International Corporation
  • Patent number: 8481451
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking, a method of preparing the same, and a method of preparing olefin by the hydrocarbon steam cracking by using the catalyst, and more specifically, to a catalyst for hydrocarbon steam cracking for preparing light olefin including an oxide catalyst (0.5?j?120, 1?k?50, A is transition metal, and x is a number corresponding to the atomic values of Cr, Zr, and A and values of j and k) represented by CrZrjAkOx, wherein the composite catalyst is a type that has an outer radius r2 of 0.5R to 0.96R (where R is a radius of a cracking reaction tube), a thickness (t; r2?r1) of 2 to 6 mm, and a length h of 0.5r2 to 10r2, a method of preparing the same, and a method of preparing light olefins by using the same.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 9, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-Han Kang, Jonghun Song, Junseon Choi
  • Patent number: 8481450
    Abstract: Methods and systems for contacting of a crude feed with one or more catalysts to produce a total product that includes a crude product are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product has an MCR content of at most 90% of the MCR content of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: July 9, 2013
    Assignee: Shell Oil Company
    Inventor: Opinder Kishan Bhan
  • Patent number: 8476184
    Abstract: The invention relates to a bulk catalyst composition comprising metal oxidic particles comprising one or more Group VIII metals and two or more Group VIB metals, which bulk catalyst composition comprises first metal oxidic particles comprising one or more first Group VIII metals and one or more first Group VIB metals and separately prepared second metal oxidic particles comprising one or more second Group VIII metals and one or more second Group VIB metals, wherein the composition of Group VIB and Group VIII metals in the first and second metal oxidic particles are different, wherein the first and second oxidic bulk particles-are separately shaped to separate first and second shaped bulk catalyst particles, which are combined, preferably into a homogeneous blend, to form the bulk catalyst composition. The invention further relates to a process for the preparation of the bulk catalyst composition and to hydroprocessing a hydrocarbon feed using the bulk catalyst composition.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: July 2, 2013
    Assignee: Albemarle Corporation
    Inventors: Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Bob Gerardus Oogjen, Marinus Bruce Cerfontain, Johannes Cornelis Sitters
  • Patent number: 8475921
    Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
  • Patent number: 8465713
    Abstract: A catalyst composition represented by the general formula XVO4/S wherein XVO4 stands for TransitionMetal-Vanadate, or a mixed TransitionMetal-/RareEarth-Vanadate, and S is a support comprising TiO2.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: June 18, 2013
    Assignee: Treibacher Industrie AG
    Inventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
  • Publication number: 20130130151
    Abstract: A metal alloy catalyst for the oxygen reduction reaction in fuel cells is disclosed. The catalyst contains the metals Pd, M1 and M2. M1 and M2 are different metals selected from Co, Fe, Au, Cr and W, excluding the combination PdCoAu.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 23, 2013
    Applicant: Ilika Technologies Ltd.
    Inventors: Karen Marie Brace, Brian Elliot Hayden, Christopher Edward Lee, Thierry Le Gall
  • Publication number: 20130131399
    Abstract: A process for producing a catalyst, the process comprising the steps of: impregnating a first metal from a first metal precursor on a support to form a first impregnated support; calcining the first impregnated support; impregnating a second metal from a second metal precursor on the first impregnated support to form a second impregnated support; calcining the second impregnated support to form the catalyst, wherein the catalyst has a total metal loading of at least 2 wt. % based on the total weight of the catalyst. A method for hydrogenating alkanoic acids in the presence of the catalyst is also disclosed.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Ana Rita Almeida, Graham Ormsby
  • Patent number: 8420878
    Abstract: The present invention relates to a complex oxide catalyst of Bi/Mo/Fe and an oxidative dehydrogenation of 1-butene in the presence of a catalyst herein. A catalyst of the present invention is superior to the conventional Bi/Mo catalyst in thermal and mechanical stabilities, conversion and selectivity toward 1,3-butadiene, while showing a long-term catalytic activity.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: April 16, 2013
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Chae-Ho Shin, Jung-Hyun Park, Eunae Noh, Kyoungho Row, Ji Won Park
  • Patent number: 8415268
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 9, 2013
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8410328
    Abstract: A method of preparing multicomponent bismuth molybdate catalysts composed of four metal components and a method of preparing 1,3-butadiene using the catalyst, and particularly, to multicomponent bismuth molybdate catalysts composed of a divalent cationic metal, a trivalent cationic metal, bismuth and molybdenum, a preparation method thereof, and a method of preparing 1,3-butadiene from a C4 mixture including n-butene and n-butane using oxidative dehydrogenation are described.
    Type: Grant
    Filed: August 24, 2008
    Date of Patent: April 2, 2013
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Young Min Chung, Tae Jin Kim, Seong Jun Lee, Yong Seung Kim, Seung Hoon Oh, In Kyu Song, Hee Soo Kim, Ji Chul Jung, Ho Won Lee
  • Patent number: 8404204
    Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 26, 2013
    Assignee: Rockwood Italia SpA
    Inventors: Marino Sergi, Christian Egger
  • Patent number: 8394262
    Abstract: The invention describes a catalyst comprising at least one metal from group VIB, at least two metals from group VIII termed the major promoter VIII-1 and co-promoters VIII-i, where i is in the range 2 to 5, and at least one support constituted by a porous refractory oxide, in which the elements from group VIII are present in proportions defined by the atomic ratio [VIII-1/(VIII-1+ . . . +VIII-i)], said ratio being in the range 0.5 to 0.85, as well as a process for the hydrotreatment of heavy hydrocarbon feeds, comprising at least one hydrodemetallization step and at least one hydrodesulphurization step, and employing a catalyst in accordance with the invention with an identical atomic ratio in each of the hydrodemetallization and hydrodesulphurization steps.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: March 12, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Bertrand Guichard, Denis Guillaume
  • Patent number: 8377289
    Abstract: A complex metal oxide catalyst comprising a Group VIII metal MI and at least two Group VIB metals MII and MIII, wherein the molar ratio of Group VIII metal MI to Group VIB metals MII+MIII is 1:9-9:1 and the molar ratio of the Group VIB metals MII and MIII is 1:5 to 5:1. When applied to the hydrodesulfurization of diesel, the catalyst exhibits a super high HDS activity. The sulfur level in the diesel can be reduced from 1200 ppm to 27 ppm under a gentle operating condition.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 19, 2013
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Can Li, Zongxuan Jiang, Lu Wang
  • Patent number: 8372779
    Abstract: The present invention relates to a porous metal organic framework comprising a bidentate organic compound coordinated to a metal ion selected from the group of metals consisting of Al, Fe and Cr, with the bidentate organic compound being derived from a dicarboxylic acid, wherein the framework has a structure whose projection along [001] has a pattern in which each side of a hexagon is bounded by a triangle. The present invention further relates to shaped bodies and a process for preparing the porous metal organic framework and its use.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 12, 2013
    Assignee: BASF SE
    Inventors: Markus Schubert, Ulrich Mueller, Stefan Marx
  • Patent number: 8361923
    Abstract: A process is provided for producing a complex oxide catalyst which exhibits superior catalytic activity in a vapor phase catalytic oxidation reaction, particularly in production of unsaturated aldehyde and unsaturated carboxylic acid. The process is characterized by the steps of preparing an aqueous slurry by mixing a complex oxide containing molybdenum and cobalt with an acid and water; drying the aqueous slurry; and calcining the resulting dried solid. Preferably, the complex oxide is obtained as follows: a molybdenum- and cobalt-containing complex oxide catalyst which has been used in a vapor phase catalytic oxidation reaction is mixed with an aqueous extracting solution obtained by dissolving at least one of ammonia and an organic base in water, to thereby extract molybdenum and cobalt into the aqueous phase; and the aqueous phase is dried and is then calcined under an atmosphere of an oxidizing gas.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 29, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hirotsugu Kano, Eiichi Shiraishi
  • Publication number: 20130006019
    Abstract: The present invention refers to a catalyst for aldehyde production, in particular formaldehyde or acetaldehyde production, through selective oxidation of alkanol, especially methanol or ethanol, with oxygen, said catalyst having a spinel structure. The catalyst typically comprises a Feaq+Vb+Moc+y+?zO4 spinel structure wherein ? is an optional cation vacancy and wherein wherein z=3?q?x?y and q×a+x×b+y×c=8 in concentrations corresponding to 0.6<q<3, 0<x<1.5, 0<y<1 and 0<z<1.3 and 2<a<3, 3<b<5 and 3<c<6. The present invention further refers to a process for producing said catalyst and to the use of said catalyst for selective oxidation of alkanol, preferably methanol or ethanol, with oxygen to aldehyde, preferably formaldehyde or acetaldehyde.
    Type: Application
    Filed: January 19, 2011
    Publication date: January 3, 2013
    Inventors: Arne Andersson, Robert Haggblad