Hydrocarbon Patents (Class 502/31)
  • Patent number: 5397756
    Abstract: For the impregnation into the pores of a hydrocarbon treatment catalyst of a sulfurizing agent chosen from element sulfur and organic polysulfides with the aid of a solvent, the impregnation process totally or partially comprises a constituent of the olefin or olefin fraction type, e.g., of the vegetable oil type, or a similar constituent. The use of such a constituent makes it possible to significantly reduce the exothermal effect which occurs during presulfurization, compared with the exothermal effects obtained without using such a constituent.
    Type: Grant
    Filed: April 1, 1993
    Date of Patent: March 14, 1995
    Assignee: Europeenne de Retraitement de Catalyseurs (EURECAT)
    Inventors: Pierre Dufresne, Bernard Legall, Georges Berrebi
  • Patent number: 5391527
    Abstract: Catalytic composites of the reaction product of a metal halide having Friedel-Crafts activity with the bound surface hydroxyl group of inorganic oxides and containing a zerovalent metal with hydrogenation activity, often are effective catalysts in motor fuel alkylation which, however, undergo rapid deactivation. Deactivated catalysts are readily regenerable by treating the composite from which alkylate feedstock has been removed with hydrogen at temperatures in the range of 10.degree. to 300.degree. C. Multiple regenerations are possible without appreciable activity loss.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: February 21, 1995
    Assignee: UOP
    Inventors: Masami Kojima, Joseph A. Kocal
  • Patent number: 5378250
    Abstract: A process for the production of an ether-rich additive for gasoline, and more particularly, the production of MTBE, TAME and mixtures thereof from light hydrocarbon streams comprising passing the light hydrocarbon stream, preferably from an FCC feedstock, through a superactivated porous particulate medium so as to remove nitrogen compounds, mercaptan and water prior to contacting the feedstock with a catalyst under etherification process conditions. The present invention further includes a process for regenerating the spent superactivated mediums used for purifying the feedstock employed in the process for the production of ether-rich additives for gasoline.
    Type: Grant
    Filed: May 10, 1993
    Date of Patent: January 3, 1995
    Assignee: Intevep, S.A.
    Inventors: Marco A. Marquez, Jose C. Gonzalez, Victor J. Degouveia, Carmelo Bolivar, Orlando Leal, Francisco Yanez
  • Patent number: 5374596
    Abstract: A process for treating alumina mediums used for purifying a hydrocarbon feedstock employed in a process for the production of ether-rich additives for gasoline.
    Type: Grant
    Filed: January 25, 1993
    Date of Patent: December 20, 1994
    Assignee: Intevep, S.A.
    Inventors: Marco A. Marquez, Jose C. Gonzalez, Victor J. Degouveia, Francisco Yanez
  • Patent number: 5358915
    Abstract: A three step process for regenerating spent bleaching clays and acid-activated smectite catalyst granules includes: (1) an extraction step to remove a majority of entrained oil, preferably about 75% to about 95% by weight of the entrained oil, when regenerating bleaching clays; (2) an oxidation step to remove the majority of remaining carbonaceous adsorbates which are not removed by the preceding extraction step, and (3) an acid wash step to restore the acidity normally associated with fresh acid-activated bleaching clays. The features of steps 2 and 3 may be combined into a single step by using an appropriate oxidant, for example, a source of acidic protons, such as peracetic acid.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: October 25, 1994
    Assignee: American Colloid Company
    Inventors: Robert S. Nebergall, Dennis R. Taylor, Carolyn J. Kucharz
  • Patent number: 5310713
    Abstract: Catalytic composites of the reaction product of a metal halide having Friedel-Crafts activity with the bound surface hydroxyl group of inorganic oxides and containing a zerovalent metal with hydrogenation activity, often are effective catalysts in motor fuel alkylation which, however, undergo rapid deactivation. Deactivated catalysts are readily regenerable by treating the composite from which alkylate feedstock has been removed with hydrogen at temperatures in the range of 10 to 300.degree. C. Multiple regenerations are possible without appreciable activity loss.
    Type: Grant
    Filed: April 5, 1993
    Date of Patent: May 10, 1994
    Assignee: UOP
    Inventors: Masami Kojima, Joseph A. Kocal
  • Patent number: 5306681
    Abstract: The isomerization activity of hydroisomerization catalyst is recovered by subjecting the catalyst to a wash using light aromatic solvents at elevated temperature, e.g. toluene at 300.degree. C. This hot aromatic solvent wash may be preceded by a hot hydrogen containing gas strip. Catalyst activity can be maintained by the continuous or periodic addition of light aromatic solvent or light aromatic containing materials to the feeds sent to the isomerization catalyst.
    Type: Grant
    Filed: March 26, 1993
    Date of Patent: April 26, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: James J. Schorfheide, Biddanda U. Achia
  • Patent number: 5304522
    Abstract: A process is disclosed for regenerating a spent liquid acid catalyst comprising the steps of:(a) providing a spent liquid acid catalyst comprising HF, sulfolane, and conjunct polymeric byproducts formed during the HF-catalyzed reaction of isoparaffin and olefin to form isoparafinnic alkylate;(b) providing a finely divided solid sorbent, wherein said solid sorbent preferentially and reversibly sorbs said conjunct polymeric byproducts from a mixture containing HF, sulfolane;(c) mixing said spent liquid acid catalyst of step (a) with said solid sorbent of step (b) by charging said spent liquid acid catalyst to the driving fluid inlet of an eductor and drawing a stream containing said solid sorbent into said eductor;(d) holding said mixture of step (c) in contact for time sufficient for said solid sorbent to preferentially sorb at least a portion of said conjunct polymeric byproducts from said spent liquid acid catalyst to produce a conjunct polymer-enriched sorbent and to regenerate said liquid acid catalyst; an
    Type: Grant
    Filed: June 1, 1993
    Date of Patent: April 19, 1994
    Assignee: Mobil Oil Corporation
    Inventors: Rafi Jalkian, Tomas R. Melli
  • Patent number: 5294415
    Abstract: To separate and recover rhodium, the distillation residues of oxo synthesis products are initially treated with an oxidant. Then the reaction mixture is reacted, in the presence of carbon monoxide (or a compound which splits off carbon monoxide), with an aqueous solution of a reagent forming a water-soluble complex compound with rhodium. The reaction mixture breaks into an organic phase and an aqueous phase, the complex goes to the aqueous phase as it is substantially insoluble in the organic phase.
    Type: Grant
    Filed: June 23, 1992
    Date of Patent: March 15, 1994
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Peter Lappe, Ludger Bexten, Dieter Kupies
  • Patent number: 5288673
    Abstract: Catalyst in a slurry phase reactor is rejuvenated in said reactor using a substantially vertical draft tube fully immersed in the slurry which utilizes a rejuvenating gas injected substantially near the bottom of the substantially vertical draft tube whereby catalyst near the bottom of the slurry phase reactor is drawn up the draft tube and discharged from the top of the draft tube near the top of the slurry phase in said reactor, control over the rejuvenation temperature in the substantially vertical draft tube being achieved by means of insulating the draft tube and/or fitting the draft tube with heating or cooling means.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: February 22, 1994
    Assignee: Exxon Research and Engineering Company
    Inventors: William C. Behrmann, Stephen C. Leviness
  • Patent number: 5283216
    Abstract: A cobalt- or ruthenium-containing hydrocarbon synthesis catalyst, subjected to short term, reversible, partial deactivation in a slurry synthesis process can be rejuvenated, i.e., at least about 80+% catalyst activity recovery, by treating the catalyst in the presence of liquid hydrocarbons, preferably the slurry hydrocarbons, with hydrogen at elevated temperatures and pressures.
    Type: Grant
    Filed: September 24, 1992
    Date of Patent: February 1, 1994
    Assignee: Exxon Research and Engineering Company
    Inventor: Willard N. Mitchell
  • Patent number: 5268344
    Abstract: Catalyst in a slurry phase reactor is rejuvenated and uniformly distributed in said reactor using a substantially vertical draft tube fully immersed in the slurry which utilizes a rejuvenating gas injected substantially near the bottom of the substantially vertical draft tube whereby catalyst near the bottom of the slurry phase reactor is drawn up the draft tube and discharged from the top of the draft tube near the top of the slurry phase in said reactor.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: December 7, 1993
    Assignee: Exxon Research & Engineering Company
    Inventors: Larry E. Pedrick, Charles H. Mauldin, William C. Behrmann
  • Patent number: 5260239
    Abstract: Catalyst which has become deactivated during a hydrocarbon synthesis (HCS) process is reactivated - rejuvenated using an external reactivation - rejuvenation vessel resulting in a multiple HCS reaction - catalyst rejuvenation reactor vessel design. Flow of the catalyst is synthesis product slurry from the reactor vessel to the rejuvenation vessel and the flow of rejuvenated catalyst back to the reactor vessel are driven by gravity only.
    Type: Grant
    Filed: December 18, 1992
    Date of Patent: November 9, 1993
    Assignee: Exxon Research & Engineering Company
    Inventor: Stephen J. Hsia
  • Patent number: 5254513
    Abstract: Spent or inactive alumina-supported catalysts removed from a catalytic hydrotreating process and having carbonaceous and metallic deposits thereon are reactivated. After a solvent wash to remove process oils, the spent catalyst is contacted with steam at a temperature of 1000.degree. to about 1250.degree. F. for a period of about 2 to about 5 hours to form a reactivated catalyst suitable for reuse in a catalytic hydrotreating process. Optionally, the steam-treated catalyst can be regenerated by contact with an oxygen-containing gas at a temperature of about 700.degree. to about 900.degree. F. to remove carbon deposits from the catalyst, or, alternatively, the steam-treated catalyst can be acid-leached to remove undesired metals and then contacted with an oxygen-containing gas at an elevated temperature to remove carbon deposits.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: October 19, 1993
    Assignee: Texaco, Inc.
    Inventors: David E. Sherwood, Jr., Johnnie R. Hardee, Jr.
  • Patent number: 5238889
    Abstract: Disclosed is a process for the recovery of catalyst values from mixtures of catalyst compounds and oligomeric materials. The process provides for the separation of (i) an onium iodide compound, (ii) an organotin iodide compound, or (iii) a mixture thereof from a mixture thereof in an oligomer of a .gamma.,.delta.-epoxy-alkene by the steps of (1) intimately contacting the mixture with an extraction solvent selected from hydrocarbons having about 5 to 12 carbon atoms; (2) allowing the mixture of step (1) to separate into 2 phases; and (3) recovering the extraction solvent phase containing iodide compounds (i) and (ii). The oligomer mixture of compounds (i) and/or (ii) is formed during the manufacture of 2,5-dihydrofurans by the isomerization of .gamma.,.delta.-epoxyalkenes.
    Type: Grant
    Filed: August 10, 1992
    Date of Patent: August 24, 1993
    Assignee: Eastman Kodak Company
    Inventors: Stephen N. Falling, Stephen A. Godleski, Lynda W. McGarry
  • Patent number: 5232885
    Abstract: A method of regenerating a contaminant metal-containing, coke deactivated, molecular sieve-free catalyst having at least one hydrogenation metal and at least one Group IV metal deposited on an inorganic oxide support comprising contacting the catalyst with an oxygen-containing gas under conditions sufficient to remove a substantial amount of the coke from the catalyst.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: August 3, 1993
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Mary C. Springman
  • Patent number: 5230791
    Abstract: Spent or inactive alumina-supported catalysts removed from a catalytic hydrotreating process and having carbonaceous and metallic deposits thereon are reactivated. After a solvent wash to remove process oils, the spent catalyst is treated with an organic solvent, such as N-methyl-2-pyrrolidone, at a temperature of 200.degree. to about 500.degree. F. for a period of about 1 to about 12 hours to form the reactivated catalyst suitable for reuse in a catalytic hydrotreating process. Optionally, the solvent treated catalyst can be regenerated by contact with an oxygen-containing gas at a temperature of about 700.degree. to about 900.degree. F. to remove carbon deposits from the catalyst, or, alternatively, the solvent treated catalyst can be acid leached to remove undesired metals and then contacted with an oxygen-containing gas at an elevated temperature to remove carbon deposits.
    Type: Grant
    Filed: July 3, 1991
    Date of Patent: July 27, 1993
    Assignee: Texaco Inc.
    Inventor: David E. Sherwood, Jr.
  • Patent number: 5215652
    Abstract: The invention presented involves a method for regenerating, replacing or treating the catalyst in a hydroprocessing reactor, the method comprising admixing with the feedstock, recycle stream or hydrogen stream of the reactor an additive which comprises a nonionic, organometallic platinum group metal coordination composition which is a) resistant to breakdown under ambient temperatures; b) capable of breakdown at temperatures existing in the vicinity of the catalyst; and c) does not contain a disadvantageous amount of phosphorus, arsenic, sulfur, antimony or halides.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: June 1, 1993
    Assignee: Platinum Plus, Inc.
    Inventors: W. Robert Epperly, Barry N. Sprague, Danny T. Kelso, Wayne E. Bowers
  • Patent number: 5212128
    Abstract: The isomerization activity of hydroisomerization catalyst is recovered by subjecting the catalyst to a wash using light aromatic solvents at elevated temperature, e.g. toluene at 300.degree. C. This hot aromatic solvent wash may be preceded by a hot hydrogen containing gas strip. Catalyst activity can be maintained by the continuous or periodic addition of light aromatic solvent or light aromatic containing materials to the feeds sent to the isomerization catalyst.
    Type: Grant
    Filed: November 29, 1991
    Date of Patent: May 18, 1993
    Assignee: Exxon Research & Engineering Company
    Inventors: James J. Schorfheide, Biddanda U. Achia
  • Patent number: 5209840
    Abstract: Spent hydrotreating catalyst having carbonaceous and metallic deposits and of regular geometric shape after being stripped of process oil is fluidized by flowing air upwardly through the catalyst at a velocity sufficient to expand the bed thereby segregating the catalyst particles into a high activity, upper, less-contaminated fraction and a lower, more-contaminated fraction and recycling the high activity fraction to a hydrotreating process. Optionally, the high activity fraction can be regenerated with carbon burnoff or rejuvenated by acid leaching followed by regeneration with carbon burnoff to further improve catalyst activity.
    Type: Grant
    Filed: October 2, 1991
    Date of Patent: May 11, 1993
    Assignee: Texaco Inc.
    Inventors: David E. Sherwood, Jr., Johnnie R. Hardee, Jr., John A. Lemen
  • Patent number: 5210326
    Abstract: A process for the production of an ether-rich additive for gasoline, and more particularly, the production of MTBE, TAME and mixtures thereof from light hydrocarbon streams comprising passing the light hydrocarbon stream, preferably from an FCC feedstock, through a superactivated alumina medium so as to remove nitrogen compounds, mercaptan and water prior to contacting the feedstock with a catalyst under etherification process conditions. The present invention further includes a process for regenerating the spent superactivated alumina mediums used for purifying the feedstock employed in the process for the production of ether-rich additives for gasoline.
    Type: Grant
    Filed: March 6, 1992
    Date of Patent: May 11, 1993
    Assignee: Intevep, S.A.
    Inventors: Marco A. Marquez, Jose C. Gonzalez, Victor J. Degouveia, Francisco Yanez
  • Patent number: 5208194
    Abstract: A process for recovering a Group VIII metal from an organic solution is disclosed. The organic solution is contacted with an acidic ion exchange resin that has sulfonic acid active groups. The invention provides an effective and economical way to recover valuable transition metals from dilute organic solutions.
    Type: Grant
    Filed: February 25, 1992
    Date of Patent: May 4, 1993
    Assignee: Arco Chemical Technology, L.P.
    Inventors: Rangasamy Pitchai, Thomas S. Zak, Kurt E. Soring
  • Patent number: 5191150
    Abstract: A method for separating conjunct polymers and sulfolane from a mixture containing conjunct polymers, sulfolane, and hydrofluoric acid is disclosed, which method comprises the sequential steps of separating hydrofluoric acid from said mixture to provide an intermediate stream containing less than about 30 percent hydrofluoric acid by weight and gravitationally separating said intermediate stream into a sulfolane-enriched stream and a conjunct polymer-enriched stream.
    Type: Grant
    Filed: February 11, 1992
    Date of Patent: March 2, 1993
    Assignee: Mobil Oil Corporation
    Inventors: Jonathan E. Child, Tomas R. Melli, Sergei Yurchak
  • Patent number: 5158670
    Abstract: A catalytic cracking process is provided in which a zeolitic cracking catalyst having the structure of faujasite is first regenerated, then coked at a high catalyst to hydrocarbon weight ratio, and, subsequently utilized to crack a hydrocarbon feed boiling from about 430.degree.F. to 1050.degree. F. at a lower catalyst to hydrocarbon feed ratio.
    Type: Grant
    Filed: April 10, 1991
    Date of Patent: October 27, 1992
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, Gordon F. Stuntz, William G. McKnight
  • Patent number: 5155073
    Abstract: A demetallization process for catalysts used for chemical conversion of hydrocarbons, the catalysts containing at least vanadium as a metal poison, wherein the poisoned catalyst is contacted in a sulfiding zone with a sulfiding agent and a hydrocarbon having a minimum boiling point of about 300.degree. F., the hydrocarbon being at least partially vaporizable at the temperature in the sulfiding zone.
    Type: Grant
    Filed: April 24, 1991
    Date of Patent: October 13, 1992
    Assignee: Coastal Catalyst Technology, Inc.
    Inventor: Frank J. Elvin
  • Patent number: 5139983
    Abstract: The invention relates to a process making it possible when a refining catalyst is subject preferably in situ to the conventional activation reaction in the presence of hydrogen (generally at above 100.degree. C.) to carry out, as a result of the in situ presence of hydrogen, the sulphurization at the required stoichiometric or non-stoichiometric level of the active metal or metals in the composition of the catalyst. In the absence of hydrogen, the process consists of incorporating into the porosity of the new or regenerated catalyst at least one sulphurizing agent of general formula:R--S(n)--R'in which n is an integer from 3 to 20 and R represents an organic radical.The invention is characterized in that a critical elementary sulphur quantity is added to the sulphurizing agent.
    Type: Grant
    Filed: March 19, 1991
    Date of Patent: August 18, 1992
    Assignee: Europeenne de Retraitement de Catalyseurs (Eurecat)
    Inventors: Georges Berrebi, Bernard Le Gall
  • Patent number: 5132270
    Abstract: Deactivated hydrogenation catalysts of ruthenium metal deposited on an aluminum oxide support are regenerated by treatment with ultrasound.
    Type: Grant
    Filed: July 5, 1991
    Date of Patent: July 21, 1992
    Assignee: Huels Aktiengesellschaft
    Inventors: Gerhard Wachholz, Gerhard Thelen, Heinz-Werner Voges
  • Patent number: 5082987
    Abstract: Method and apparatus are described whereby a caustic-treated hydrocarbon feed mixture having a contaminating concentration of water and sulfur compounds is treated by separating the hydrocarbon feed into a first stream and a second stream. The first stream is contacted with an adsorbent material to produce a reactor feed stream having a significant reduction in the concentration of the contaminating water and sulfur compounds. The reactor feed stream is thereafter contacted in the presence of hydrogen under suitable isomerization conditions with an isomerization catalyst to produce an isomerate product.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: January 21, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Michael E. Olbrich, Rebecca L. Jones, Roger W. Fenstermaker
  • Patent number: 5070064
    Abstract: An improved pretreatment method for preparing powdered catalysts with well controlled particle size distributions that are free of sub 1 micron particles comprising dispersion of the powdered catalyst in liquid comprised of either a) a hydrocarbon containing low levels of a surfactant or, b) a surfactant containing polar protic solvent, followed by decantation of the suspended finely divided sub 1 micron particles and repeating said sequence until essentially 90% of the sub 1 micron particles have been removed.
    Type: Grant
    Filed: August 7, 1989
    Date of Patent: December 3, 1991
    Assignee: Exxon Research and Engineering Company
    Inventors: Edward C. Hsu, John L. Robbins
  • Patent number: 5017535
    Abstract: Disclosed is a process for the ex situ presulfidation of hydrotreating catalysts employing organic sulfur compounds with a boiling point exceeding 100.degree. C. and satisfying the formulaX--R.sup.1 (S--R.sup.2).sub.p S--R.sup.3 --Y (I)wherein p=0, 1 or 2,R.sup.1, R.sup.2, and R.sup.3 may be the same or different and represent alkylene groups having 1-4 carbon atoms,X and Y may be the same or different and have the meaning of --H, --OH, --OR.sup.4 4 or --C(O)OR.sup.5, whereinR.sup.4 has the meaning of an alkyl group or acyl group with 1-3 carbon atoms, andR.sup.5 has the meaning of --H, an ammonium group or an alkyl group with 1-3 carbon atoms.Also disclosed is a process for activating the thus presulfided catalyst.
    Type: Grant
    Filed: June 20, 1990
    Date of Patent: May 21, 1991
    Assignee: Akzo N.V.
    Inventors: Johannes W. F. M. Schoonhoven, Sonja Eijsbouts, Jacobus J. L. Heinerman, Ludwig Eisenhuth
  • Patent number: 5010047
    Abstract: A process for recovering double metal cyanide complex catalyst from a polymer such as polypropylene glycol in a form suitable for use as a polymerization catalyst is described. The process comprises the steps of (a) combining the polymer with a non-polar solvent to precipitate the catalyst and (b) filtering the resulting mixture in the presence of a filter aid to separate the polymer from the precipitated catalyst. In contrast to the prior art methods of catalyst removal, the process of the invention yields polymer uniformly low in color as well as recovered catalyst which may be reused in subsequent polymerizations.
    Type: Grant
    Filed: February 27, 1989
    Date of Patent: April 23, 1991
    Assignee: Arco Chemical Technology, Inc.
    Inventor: Jonathan L. Schuchardt
  • Patent number: 5002914
    Abstract: A process for purifying and recovering the contaminated catalyst solution arising from the carbonylation of methanol, methyl acetate and/or dimethyl ether. The solution contains carbonyl complexes of rhodium, quaternary organophosphorus compounds as organic promoters, undistillable organic impurities, and acetic acid, acetic anhydride and ethylidene diacetate. The carbonyl complex of rhodium together with acetic acid, acetic anhydride and ethylidene diacetate are extracted from the contaminated catalyst solution by using a tri-C.sub.3 - to C.sub.8 -alkylphosphine. The trialkylphosphine phase is separated from the promoter phase and is separated into the volatile constituents acetic acid, acetic anhydride and ethylidene diacetate as well as trialkylphosphine. The rhodium carbonyl complex remaining as the residue and the recovered trialkylphosphine is used for further extraction.
    Type: Grant
    Filed: March 9, 1990
    Date of Patent: March 26, 1991
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Heinz Erpenbach, Winfried Lork, Norbert Weferling, Peter Prinz
  • Patent number: 4992614
    Abstract: A solid catalyst composition which has undergone a partial loss of catalytic activity due to the accumulation of reaction product residue is treated in a chemical conversion process reaction zone in the presence of feedstock(s) with ultrasonic energy of a magnitude and a duration sufficient to restore at least a significant percentage of the lost activity.
    Type: Grant
    Filed: October 2, 1989
    Date of Patent: February 12, 1991
    Assignee: Mobil Oil Corp.
    Inventor: Paul G. Rodewald
  • Patent number: 4988652
    Abstract: An efficient process for recovering a catalyst used in the preparation of .alpha.-(4-isobutylphenyl)propionic acid, which comprises recovering part of a nickel catalyst component, such as nickel carbonyl, from a purge gas, concentrating a reaction product mixture, adding an organic solvent thereto to extract the reaction product, then separating and recovering the majority of the catalyst components from the extraction residue.
    Type: Grant
    Filed: December 26, 1989
    Date of Patent: January 29, 1991
    Assignee: Mitsubishi Gas Chemical Co., Inc.
    Inventors: Yoshikazu Shima, Kazuo Tanaka, Yoshifumi Sato
  • Patent number: 4983558
    Abstract: The invention relates to a process for treating a new or regenerated catalyst containing a support having as a base at least one metal or metalloid oxide and at least one active metal, comprising treating the catalyst with at least one sulfuration agent dissolved in a solvent.The invention is charcterized in that the sulfuration agent is a polysulfide with the following general formulaR'--S.sub.y --R--S.sub.x --R--S.sub.y).sub.n R'where R is a linear or a branched organic radical comprising from 2 to 12 carbon atoms; R' is an alkyl, alkenyl, arylalkyl or arylalkenyl radical comprising from 1 to 12 carbon atoms, R' possibly comprising at least one heteroatom selected from the group consisting of oxygen, nitrogen, and sulfur; x has a value of from 1 to 4; y has a value of from 1 to 8 and n is such that the average molar mass of the polymer is about 5000.
    Type: Grant
    Filed: February 16, 1989
    Date of Patent: January 8, 1991
    Assignee: Institut Francais du Petrole
    Inventors: Maurice Born, Guy Parc, Herve Toulhoat
  • Patent number: 4983559
    Abstract: Presulfurization of a catalyst used, e.g., for hydrocarbon conversion, wherein a polysulfide is employed as the sulfurization agent. In the first stage of the presulfurization, phosphorous, a halogen, or compounds thereof are introduced.
    Type: Grant
    Filed: July 3, 1989
    Date of Patent: January 8, 1991
    Assignee: Europeene de Retraitement de Catalyseurs Eurecat
    Inventor: Georges Berrebi
  • Patent number: 4982043
    Abstract: Catalyst systems, methods to improve a catalyst system, and dimerization processes therewith are provided. Catalyst systems which comprise at least one elemental alkali metal supported on an alkali metal carbonate catalyst support, are contacted with a liquid organic solvent in order to improve the isomer ratio of the desired reaction product(s) to undesired product(s).
    Type: Grant
    Filed: March 20, 1989
    Date of Patent: January 1, 1991
    Assignee: Phillips Petroleum Company
    Inventor: Lori C. Hasselbring
  • Patent number: 4977117
    Abstract: The invention involves a process comprising regenerating a catalyst comprising (a) a support containing at least one oxide of a metal or metalloid and (b) at least one active metal, said process comprising in a first stage treating said catalyst in the absence of hydrogen with at least one sulfurizing agent comprising a polysulfide of the formulaR--S.sub.(n) --R'wherein n is 2 to 20, R is an organic radical of 1-150 carbon atoms per molecule and R' is independently a radical as defined for R or a hydrogen atom, whereby said agent is incorporated at least in part in said catalyst, in a first portion of a second stage, treating the catalyst in the absence of hydrogen and in the presence of steam, moist air or moist inert gas, at a temperature up to 275.degree. C., and, in a second portion of the second stage, treating the catalyst in the presence of hydrogen at a temperature of at least 275.degree. C., wherein in the first stage a nitrogen compound is added.
    Type: Grant
    Filed: March 29, 1989
    Date of Patent: December 11, 1990
    Assignee: Europeenne de Retraitement de Catalyseurs
    Inventors: Georges Berrebi, Pierre Dufresne
  • Patent number: 4973743
    Abstract: This invention provides a process for preparing an oligomer of at least one polyunsaturated aliphatic C.sub.12-22 monocarboxylic acid ester in the presence of boron trifluoride resulting in a high yield or predominantly trimeric product which, upon hydrolysis, affords a high yield of polybasic, predominantly trimeric, acids. This invention further provides such a process with excellent recovery of the boron trifluoride.
    Type: Grant
    Filed: October 27, 1989
    Date of Patent: November 27, 1990
    Assignee: Henkel Corporation
    Inventors: Stephen W. Turner, Charles W. Blewett
  • Patent number: 4914237
    Abstract: This invention relates to an improvement in a fixed bed process for producing tert-butyl-derivatives of aromatic amines, e.g., para-phenylenediamine and toluenediamine by the reaction of isobutylene with the corresponding aromatic diamine in the presence of a highly acidic crystalline alumino-silicate catalyst. The improvement for regenerating the catalyst during operation constitutes adding sufficient water to the catalyst to provide sufficient saturation of the catalyst during the reaction and generally retard the reaction and then substantially decreasing the quantity of added water or reducing the amount of water added.
    Type: Grant
    Filed: November 29, 1988
    Date of Patent: April 3, 1990
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Rakesh Agrawal
  • Patent number: 4914256
    Abstract: A solid catalyst composition which has undergone a partial loss of catalytic activity due to the accumulation of reaction product residue is treated in a chemical conversion process reaction zone in the presence of feedstock(s) with ultrasonic energy of a magnitude and a duration sufficient to restore at least a significant percentage of the lost activity.
    Type: Grant
    Filed: June 30, 1988
    Date of Patent: April 3, 1990
    Assignee: Mobil Oil Corp.
    Inventor: Paul G. Rodewald
  • Patent number: 4912071
    Abstract: The present invention relates to a method of unloading a catalyst from a reactor wherein the reactor is filled with mixed liquid of condensed ring aromatic hydrocarbon having a required number of ring members, i.e. preferably 2 to 4 ring members, and gas oil, to wet the catalyst so as to form a coating of film on the catalyst before unloading the catalyst from the reactor.
    Type: Grant
    Filed: October 28, 1987
    Date of Patent: March 27, 1990
    Assignees: Kashima Engineering Co., Ltd., Softard Industries Co., Ltd.
    Inventors: Toyoo Kaijima, Tomiyasu Hirachi, Katsuhiko Kawakami, Junichi Takano
  • Patent number: 4908341
    Abstract: A method for regenerating a spent porous crystalline catalyst, optionally associated with a metal component such as noble and/or base metal(s), is described. The method comprises contacting the spent catalyst which has become deactivated by accumulation of carbonaceous residue with one or more light aromatic compounds under conditions resulting in reactivation of said catalyst. The light aromatic compounds employed are ones which have the capability of penetrating the catalyst, so as to contact the carbonaceous residue contained therein, undergoing alkylation by alkyl fragments contributed by components of the carbonaceous residue and diffusing from or otherwise escaping the catalyst.
    Type: Grant
    Filed: October 20, 1987
    Date of Patent: March 13, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Ann L. Pruden, Chaya Venkat, Darrell D. Whitehurst
  • Patent number: 4904369
    Abstract: A process for the production of hydrogen-enriched hydrocarbonaceous products which process comprises: (a) converting a heavy, asphaltene-containing hydrocarbonaceous residual oil, wherein at least 80% of the residual oil boils above 650.degree. F. (343.degree. C.), in the presence of hydrogen and a particulate catalyst at residual oil conversion conditions in a reaction zone to produce a liquid effluent stream comprising particulate catalyst and normally liquid hydrocarbonaceous compounds; (b) contacting at least a portion of the liquid effluent stream from step (a) with water and a hydrocarbonaceous solvent comprising at least one aromatic hydrocarbon; and (c) gravitationally separating the resulting admixture from step (b) into a solvent phase comprising the normally liquid hydrocarbonaceous compounds and essentially free of solids, and an aqueous phase comprising essentially all of the particulate catalyst.
    Type: Grant
    Filed: November 14, 1988
    Date of Patent: February 27, 1990
    Assignee: UOP
    Inventor: John G. Gatsis
  • Patent number: 4902662
    Abstract: The invention relates to a process for preparing a mercury collecting solid mass containing a carrier and copper, at least partly as copper sulfide, comprising the following steps of:(a) incorporating with the carrier at least one copper compound other than a sulfide,(b) optionally roasting said carrier,(c) incorporating therewith at least one organic polysulfide, and(d) thermally treating the resultant mass, in non-oxidizing atmosphere, under gas scavenging.The invention also concerns a regenerating process for a mercury recovery mass, containing a carrier, and copper, at least partly as copper sulfide, comprising incorporating with said mass, after a decrease of its mercury recovery efficiency and after removal of at least a part of its mercury content, an organic polysulfide, and finally subjecting it to a thermal treatment, in non-oxidizing atmosphere, under gas scavenging.
    Type: Grant
    Filed: May 25, 1988
    Date of Patent: February 20, 1990
    Assignee: Institut Francais du Petrole
    Inventors: Herve Toulhoat, Michel Roussel, Philippe Varin
  • Patent number: 4892646
    Abstract: A method for treating a porous crystalline catalyst optionally associated with a metal component such as a noble and/or base metal(s) is described. The method comprises contacting the catalyst with a low molecular weight aromatic compound under coking conditions. Such a treatment method increases the cycle length and the useful life of the catalyst. Using the treated catalyst in a dewaxing process and regenerating the catalyst by treating with hydrogen and a low molecular weight hydrocarbon.
    Type: Grant
    Filed: May 2, 1988
    Date of Patent: January 9, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Chaya Venkat, Darrell D. Whitehurst
  • Patent number: 4863884
    Abstract: Method for treating particulate used oil-coated catalysts to provide a rejuvenated catalyst material in a rejuvention vessel assembly. The pressurizable vertically-oriented vessel assembly has inlet and outlet openings for the catalyst and washing fluids, and has a removable lower sub-assembly head portion which contains a conical shaped grid unit located therein. The vessel assembly is arranged to permit solvent washing, vacuum drying and acid treatment and gas drying of the used catalyst in a bed supported above the conical grid, by upward flow and recycle of the washing liquids and fluidization of the catalyst. Following rejuvenation of the catalyst, it is withdrawn from the vessel downwardly through the conical shaped grid and out through a central withdrawal conduit containing a slide valve unit for further processing or use as desired.
    Type: Grant
    Filed: May 25, 1988
    Date of Patent: September 5, 1989
    Assignee: HRI, Inc.
    Inventors: Kenneth G. Tasker, John D. Milligan
  • Patent number: 4824814
    Abstract: A process for treating a catalyst useful to promote the conversion of a substantially hydrocarbon feedstock containing at least one first metal at least a portion of which is deposited on the catalyst forming a first metal-containing catalyst, which process comprises:contacting the catalyst with at least one component of at least one second metal selected from the group consisting of antimony, tin, gallium, indium, zinc, tellurium and mixtures thereof to increase the second metal content of the catalyst, anddemetallizing the first metal-containing catalyst to provide a demetallized catalyst having a reduced first metal content.
    Type: Grant
    Filed: September 21, 1987
    Date of Patent: April 25, 1989
    Assignee: Chemcat Corporation
    Inventors: Frank J. Elvin, Jin S. Yoo
  • Patent number: 4820671
    Abstract: A proces for regenerating a spent catalyst comprising uranium and a poly-substituted cyclopentadienyl ligand comprising contacting the deactivated catalyst with hydrogen under reaction conditions. The regenerated catalyst is active in the selective dimerization of propylene to 4-methyl-1-pentene.
    Type: Grant
    Filed: January 11, 1988
    Date of Patent: April 11, 1989
    Assignee: The Dow Chemical Company
    Inventors: Thomas A. Chamberlin, James C. Stevens
  • Patent number: 4800186
    Abstract: A method of regenerating a deactivated fluorocarbonsulfonic acid polymer catalyst by contacting the deactivated catalyst with a solvent combination wherein a first solvent swells the structure of the polymer and the other acts as a diluent to modify the swelling action of the first. The combination dissolves the deactivating components.
    Type: Grant
    Filed: October 28, 1987
    Date of Patent: January 24, 1989
    Assignee: The Dow Chemical Company
    Inventor: Emmett L. Tasset