Of Molybdenum Patents (Class 502/321)
  • Patent number: 6332976
    Abstract: The invention concerns an alumina based catalyst containing, expressed as the oxide content by weight, 2-10% by weight of cobalt oxide CoO, 10-30% by weight of molybdenum oxide MoO3 and 4-10% of phosphorous oxide P2O5, with a BET surface area in the range 100-300 m2/g, a crushing strength CSH of more than 1.4 MPa, and an average pore diameter in the range 8-11 nm, the pore volume of pores with diameter of more than 14 nm being less than 0.08 ml/g, or less than 22% of total pore volume, the volume of pores with a diameter of less than 8 nm being at most 0.05 ml/g, or less than 10% of total pore volume, the volume of pores with diameter less than 10 nm being in the range of 20%-70%, the volume of pores with diameter between 10 nm and 13 nm being in the range of 20%-60%, and the volume of pores with a diameter which is in the range 8 to 14 nm being in the range 0.20 ml/g to 0.8 ml/g. The invention also concerns a hydrotreatment process using the catalyst, in particular hydrodesulphuration.
    Type: Grant
    Filed: May 12, 1999
    Date of Patent: December 25, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Samuel Mignard, Nathalie George-Marchal, Virginie Harle, Slavik Kasztelan
  • Patent number: 6331503
    Abstract: The method of the present invention involves the in situ formation of metal-molybdate catalyst particles active for methanol oxidation to formaldehyde, with iron as an example, the catalyst is made by mixing particulate forms of Fe2O3 and MoO3 which form an active Fe2(MoO4)3/MoO3 component inside the reactor during methanol oxidation.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: December 18, 2001
    Assignee: Lehigh University
    Inventors: Israel E. Wachs, Laura E. Briand
  • Publication number: 20010051759
    Abstract: Catalyst based on molibden and silicon having a surface area ranging from 20 to 400 m2/g and a molar ratio Mo/Si>0.
    Type: Application
    Filed: June 23, 1999
    Publication date: December 13, 2001
    Inventors: STEFANO PERATELLO, ANGELA CARATI, GIUSEPPE BELLUSSI, CATERINA RIZZO
  • Publication number: 20010049335
    Abstract: A catalyst for use in the production of vinyl acetate which comprises (1) a catalyst support, (2) palladium, (3) an acid, (4) at least one acetic acid catalyst promoter and (5) at least one vinyl acetate promoter and/or co-promoter. A process for the production of vinyl acetate from ethylene and an oxygen-containing gas using the catalyst.
    Type: Application
    Filed: May 21, 1999
    Publication date: December 6, 2001
    Inventors: SIMON JAMES KITCHEN, DAIYI QIN
  • Publication number: 20010036902
    Abstract: In a catalyst process involving a conversion reaction for organic compounds, e.g. hydrogenations, the catalyst contains at least one support and at least one metal, and is characterized in that it has particles of an average size greater than approximately 1 nm, and more than 80% of particles, the size of which is comprised in the range D±(D.0.2) where D represents the average size of the particles. The catalyst is prepared in a colloidal suspension, in aqueous phase, of the metal oxide or metals to be supported, then depositing this suspension on a support, and optionally reducing the oxide thus supported.
    Type: Application
    Filed: November 30, 2000
    Publication date: November 1, 2001
    Applicant: Institut Francais du petrole.
    Inventors: Carine Petit-Clair, Blaise Didillon, Denis Uzio
  • Patent number: 6291391
    Abstract: An improved method is described for presulfiding and preconditioning a residuum hydrotreating or hydrocracking catalyst as an integrated part of the hydroconversion process in which catalyst is added on-stream intermittently or continuously without interruption of the hydroconversion process. The method is used to condition, activate, or presulfide fresh or regenerated catalyst prior to its addition to the hydroconversion reactor utilizing product streams from the hydroconversion process.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: September 18, 2001
    Assignee: IFP North America, Inc.
    Inventor: James B. MacArthur
  • Patent number: 6291394
    Abstract: Provided are high activity catalysts based upon gamma alumina containing substrates impregnated with one or more catalytically active metals which catalysts in addition contain a nanocrystalline phase of alumina of a crystalline size at the surface of less than 25Å. Also provided are processes for preparing such high activity catalysts and various uses thereof.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: September 18, 2001
    Assignee: Shell Oil Company
    Inventors: Peter Joseph Shukis, James Donald Carruthers, Vincent Joseph Lostaglio
  • Patent number: 6291393
    Abstract: A metal oxide catalyst which can produce acrylic acid by a vapor phase catalytic oxidation of propane in high yield and has excellent abrasion resistance is disclosed. The metal oxide catalyst comprises Mo, V, Sb, A (A represents Nb or Ta) and optionally other metals, and is prepared through the following steps (1) and (2): (1) Step of reacting V+5 and Sb+3 at a temperature of 70° C. or higher in the presence of Mo+6 in an aqueous medium, and bubbling an oxygen-containing gas into the reaction solution during or after the reaction; and (2) Step of adding to the reaction product obtained in step (1) a solution containing a compound comprising A and an aqueous solution of nitric acid or ammonium nitrate, uniformly stirring these components, and then calcining the resulting mixture.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: September 18, 2001
    Assignee: Toagosei Co., Ltd.
    Inventors: Xinlin Tu, Mamoru Takahashi, Madoka Furuta, Hiroshi Niizuma
  • Publication number: 20010009885
    Abstract: Solid mixed oxides composition of formula (I):
    Type: Application
    Filed: January 6, 2000
    Publication date: July 26, 2001
    Inventors: GERARD HECQUET, JEAN-PIERRE SCHIRMANN, MICHEL SIMON, CHARLOTTE PHAM
  • Publication number: 20010007699
    Abstract: Disclosed is a method of coating a catalyst to a support for use in acrolein oxidation reaction. Metallic salt components of the catalyst including molybdate, vanadate and tungstate are dissolved in a liquid to form a suspension of particles of the catalyst. The precipitation of the catalyst particles is controlled by homogenizing the catalyst particles suspended in the liquid. The phase separation between the catalyst particles and the liquid can be substantially slowed down by the homogenization. Then the catalyst is coated on an inert support by applying the suspension of the catalyst particles to the support. In the suspension, the total weight of water is about 0.8 to about 5 times of the total weight of the metallic salts in the catalyst. This method of preparing suspension minimizes the amount of the liquid required to dissolve the metallic salts, which reduces the amount of time and energy to be used in evaporating the liquid from the suspension.
    Type: Application
    Filed: December 22, 2000
    Publication date: July 12, 2001
    Inventors: Won-Ho Lee, Kyung-Hwa Kang, Dong-Hyun Ko, Young-Chang Byun
  • Patent number: 6248687
    Abstract: Presulfurizing process and presulfurization promoter for a desulfurization catalyst to be used in a hydrodesulfurization unit of petroleum refinery of high molecular hydrocarbons, in which fresh metal oxide in said desulfurization catalyst is sulfurized with hydrogen sulfide produced from sulfur-containing compounds in a feed stream. In the invention, a compound having mercapto alkylthio group: HS—CmH2m—S— (in which “m” is an integer of 2 to 4) is added as promoter at a proportion of 10 ppm to 0.5% by weight and presulfurization is promoted at 180 to 260° C.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: June 19, 2001
    Assignees: Nippon Shokubai Co., LTD, Elf Atochem S.A.
    Inventors: Hirokazu Itoh, Kazuaki Abe, Yoshihiro Arita, Einosuke Jodo, Kazuya Hata, Tetsushi Kawamura
  • Publication number: 20010003727
    Abstract: A catalyst which is a complex oxide catalyst represented by the following general formula (1):
    Type: Application
    Filed: December 5, 2000
    Publication date: June 14, 2001
    Applicant: NIPPON SHOKUBAI CO., LTD.
    Inventors: Michio Tanimoto, Daisuke Nakamura, Hiromi Yunoki
  • Patent number: 6239323
    Abstract: The invention relates to a selective catalyst for aromatising hydrocarbons with at least 7 carbon atoms in the chain and to a method of manufacturing the catalyst. The catalyst is characterized by a porous oxide or mixture of oxides of one or more of the elements Ti, Zr and Hf containing in addition, at least at the surface, elements of sub-group V, VI and VII elements in oxidised form in quantities of 0.01 to 10 wt % of the total catalyst weight. The catalyst has a specific surface area of between 30 and 200 m2/g and can repeatedly absorb and release hydrogen in the temperature range 400-700 ° C. It has no strongly acidic or strongly basic centers and can in addition contain compounds of group II or sub-group III elements including the lanthanides, as well as compounds of silicon and aluminium and mixtures thereof.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: May 29, 2001
    Assignee: Institut für Angewandte Chemie Berlin-Adlershof e.V.
    Inventors: Heiner Lieske, Dang Lanh Hoang
  • Patent number: 6239066
    Abstract: Provided are high activity catalysts based upon gamma alumina containing substrates impregnated with one or more catalytically active metals, which catalysts in addition contain a nanocrystalline phase of alumina of a crystalline size at the surface of less than 25 Å. Also provided are processes for preparing such high activity catalysts and various uses thereof.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: May 29, 2001
    Assignee: Shell Oil Company
    Inventors: Peter Joseph Shukis, James Donald Carruthers, Vincent Joseph Lostaglio
  • Patent number: 6207611
    Abstract: A catalyst for hydrodemetalization of heavy oil, especially residuum oil, and a process for preparing the same, wherein said catalyst comprises the metal elements of Groups VIII and/or VIB as active components supported on an alumina carrier having large pores. The total pore volume of said carrier is in the range of 0.80˜1.20 ml/g (by mercury porosimetry method), the specific surface area in the range of 110˜200 m2/g, the peak pore diameter in the range of 15˜20 nm, and the bulk density in the range of 0.50˜0.60 g/ml. In the process of the invention, a physical pore-enlarging agent and a chemical pore-enlarging agent are added simultaneously during the mixing of the pseudoboehmite to a plastic mass, then extruding, drying, calcining, the carrier is obtained, then impregnating with active components by spraying onto the carrier, after drying and calcining, the catalyst is obtained.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: March 27, 2001
    Assignees: China Petro-Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC
    Inventors: Suhua Sun, Weiping Fang, Jiahuan Wang, Guolin Wu, Jianan Sun, Gang Wang, Zemin Fu, Hao Zhang, Yonglin Wang
  • Patent number: 6200927
    Abstract: Provided are high activity catalysts based upon gamma alumina containing substrates impregnated with one or more catalytically active metals, which catalysts in addition contain a nanocrystalline phase of alumina of a crystalline size at the surface of less than 25 Å. Also provided are processes for preparing such high activity catalysts and various uses thereof.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: March 13, 2001
    Assignee: Cytec Technology Corp.
    Inventors: Peter Joseph Shukis, James Donald Carruthers, Vincent Joseph Lostaglio
  • Patent number: 6197719
    Abstract: A process for the activation of perovskite-type oxide by increasing its surface area and/or catalytic activity, which comprises: (i) treating perovskite-type oxide hydrothermally with liquid water with water/perovskite-type oxide ratio of above 0.1 at temperature of 50°-500° C. and period of 0.1-100 h under autogeneous pressure and drying the resulting mass or treating perovskite-type oxide hydrothermally with water vapors with or without any inert gas at space velocity of above 100 h−1, temperature of 200°-1000° C. and a period of 0.1-100 h and (ii) calcining the hydrothermally treated perovskite-type oxide in air or inert gas or under vacuum at temperature of 300°-1000° C. for a period of 0.1-100 h.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: March 6, 2001
    Assignee: Council of Scientific and Industrial Research
    Inventors: Vasant Ramchandra Choudhary, Subhabrata Banerjee
  • Patent number: 6197718
    Abstract: An improved catalyst activation process for olefinic naphtha hydrodesulfurization. This process maintains the sulfur removal activity of the catalyst while reducing the olefin saturation activity.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: March 6, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Garland B. Brignac, Joseph J. Kociscin, Craig A. McKnight
  • Patent number: 6191067
    Abstract: A continuous fiber of titania are made having an average diameter per a monofilament of from 5 to 50 &mgr;m, which has a BET specific surface area of 10 m2/g or more, a pore volume of 0.05 cc/g or more, a volume of pores having a pore diameter of not less than 10 angstroms being 0.02 cc/g or more and an average tensile strength per a monofilament of 0.1 GPa or more, or which has an average tensile strength per a monofilament of 0.5 GPa or more.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: February 20, 2001
    Assignee: Sumitomo Chemical, Ltd.
    Inventors: Hironobu Koike, Yasuyuki Oki, Yoshiaki Takeuchi
  • Patent number: 6183894
    Abstract: Binary and ternary electrocatalysts are provided for oxidizing alcohol in a fuel cell. The binary electrocatalyst includes 1) a substrate selected from the group consisting of NiWO4 or CoWO4 or a combination thereof, and 2) Group VIII noble metal catalyst supported on the substrate. The ternary electrocatalyst includes 1) a substrate as described above, and 2) a catalyst comprising Group VIII noble metal, and ruthenium oxide or molybdenum oxide or a combination thereof, said catalyst being supported on said substrate.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: February 6, 2001
    Assignee: Brookhaven Science Associates
    Inventors: Radoslav R. Adzic, Nebojsa S. Marinkovic
  • Patent number: 6184173
    Abstract: Multimetal oxides containing Mo, V and at least one of the elements W, Nb, Ti, Zr, Hf, Ta, Cr, Si and Ge and having a special three-dimensional atomic arrangement are used in catalysts for the catalytic gas-phase oxidation of organic compounds.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: February 6, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Andreas Tenten, Laszlo Marosi
  • Patent number: 6177382
    Abstract: In a process for preparing spinel extrudates by extruding molding compositions comprising spinel powder with or without extrusion assistants, stabilizers, shrinkage reducers, pore-formers or mixtures thereof subsequent drying and calcination of the extrudates, the molding composition further comprises aluminum oxides or aluminum oxide hydrates and metal nitrates.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: January 23, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Hesse, Otto Kumberger
  • Patent number: 6171566
    Abstract: A selective catalytic reduction body for the removal of nitrogen oxides (NOx), comprising about 5 to 80% by weight of vanadium, about 0 to 60% by weight of molybdenum, about 0 to 20% by weight of nickel and about 0 to 20% by weight of cobalt, which catalytic body is economically favorable in production cost and superior in removing the nitrogen oxides from exhaust gas, can keep is activity high for a long time by virtue of excellent thermal resistance and poison resistance to sulfur oxides and other chemicals, exhausts un-reacted ammonia and heavy metal fly ash at the lowest amount, and allows the catalyst volume necessary to obtain the same removal degree and the pressure loss attributed to the volume to be minimized.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: January 9, 2001
    Assignee: SK Corporation
    Inventors: Bon cheol Ku, Young Woo Kim, Young Tack Choi
  • Patent number: 6171998
    Abstract: Disclosed is a method of producing a carrier catalyst for a use in acrolein oxidation reaction. Metallic salt components of the catalyst including molybdate, vanadate and tungstate are dissolved in water. An additional metallic salt component of the catalyst is added to the aqueous solution of the salts to form a suspension of the catalyst. In the suspension, the total weight of water is about 0.8 to about 5 times of the total weight of the metallic salts in the catalyst. This method of preparing suspension minimizes the amount of water required to dissolve the metallic salts, which reduces the amount of time and energy to be used in evaporating water from the suspension in the following step of obtaining catalyst. Additionally, in obtaining catalyst from the suspension prepared by this method, it is possible to avoid the deterioration of the catalytic performance since less heat is required to evaporate the water. Disclosed also is a method of producing a carrier-retained catalyst.
    Type: Grant
    Filed: September 23, 1998
    Date of Patent: January 9, 2001
    Assignee: LG Chemical, Ltd.
    Inventors: Won-Ho Lee, Kyung-Hwa Kang, Dong-Hyun Ko, Young-Chang Byun
  • Patent number: 6162350
    Abstract: Hydroprocessing of petroleum and chemical feedstocks using bulk Group VIII/Group VIB catalysts. Preferred catalysts include those comprised of Ni--Mo--W.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: December 19, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart L. Soled, Kenneth L. Riley, Gary P. Schleicher
  • Patent number: 6156695
    Abstract: A hydrodenitrogenation catalyst is prepared by decomposing a nickel (ammonium) molybdotungstate precursor and sulfiding, either pre-use or in situ, the decomposition product.
    Type: Grant
    Filed: July 15, 1997
    Date of Patent: December 5, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Roman Krycak, Hilda Vroman, Teh C. Ho, Kenneth L. Riley
  • Patent number: 6143687
    Abstract: A denitration catalyst for use in the reduction of nitrogen oxides contained in an exhaust gas containing highly deliquescent salts as dust with ammonia, which bears thereon a porous coating of a water-repellent organic resin, a porous coating of a mixture of a water-repellent organic resin with inorganic oxide particles, or a porous coating of a mixture of a water-repellent organic resin with catalyst component particles. The denitration catalyst can be prepared, for example, by coating the surface of a denitration catalyst with an aqueous dispersion containing a water-repellent organic resin having a lower concentration, drying the coating, further coating the dried coating with an aqueous dispersion containing a water-repellent organic resin having a higher concentration, and then drying the coating to form a porous coating of a water-repellent organic resin.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: November 7, 2000
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Naomi Imada, Yasuyoshi Kato
  • Patent number: 6143928
    Abstract: A mixed metal oxide catalytic system consisting of molybdenum, vanadium, palladium, lanthanum, niobium and X, wherein X is copper and/or chromium, providing higher yields of acrylic acid and acrolein in the low temperature oxidation of propylene with a molecular oxygen-containing gas without the production of side products such as CO.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: November 7, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Yajnavalkya Subrai Bhat, Syed Irshad Zaheer, Abdullah Bin Nafisa
  • Patent number: 6124499
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, copper and one or more of the elements tungsten, niobium, tantalum, chromium and cerium and having a multiphase structure, and their use for the preparation of acrylic acid from acrolein by gas-phase catalytic oxidation, and oxometallates of the HT Cu molybdate structure type which contain Cu, Mo and at least one of the elements W, V, Nb and Ta.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: September 26, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Andreas Tenten, Laszlo Marosi
  • Patent number: 6090745
    Abstract: The invention provides a method for preparing catalysts, containing metals of groups VI and VIII on a carrier. The metals of groups VI and VIII metals are introduced in the form of a compound of formula M.sub.x A B.sub.12 O.sub.40 in which M is cobalt and/or nickel, A is phosphorus, silicon and/or boron, B is molybdenum and/or tungsten and x is 2 or more, 2.5 or more, or 3 or more depending on whether A is respectively phosphorus, silicon or boron. The catalysts thus obtained are useful for hydro-treating hydrocarbon feedstocks.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: July 18, 2000
    Assignee: Elf Antar France
    Inventors: Jean-Luc DuBois, Edmond Payen, Michel Fournier, Pascal Blanchard, Anne Griboval
  • Patent number: 6087297
    Abstract: A mixed metal oxide catalytic system consisting of molybdenum, vanadium, lanthanum and palladium providing higher yields of acetic acid in low temperature single stage oxidation of ethane with molecular oxygen-containing gas without or with reduced production of by-products such as ethylene and CO.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: July 11, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Mohammad H. Al-Hazmi, Asad Khan
  • Patent number: 6080893
    Abstract: A mixed oxide solid composition of formula (I):Mo.sub.12 W.sub.a Bi.sub.b Fe.sub.c Co.sub.d Ni.sub.e Si.sub.f K.sub.g Sn.sub.h O.sub.x (I)where O.ltoreq.a.ltoreq.5, 0.5.ltoreq.b.ltoreq.5, 0.1.ltoreq.c.ltoreq.10, 0.5.ltoreq.d.ltoreq.10, 0.ltoreq.e.ltoreq.10, 0.ltoreq.f.ltoreq.15, 0.ltoreq.g.ltoreq.1, 0.ltoreq.h.ltoreq.2 and x is the quantity of oxygen bonded to the other elements and depends on their oxidation states, is used in the manufacture of acrolein by oxidizing propylene, the solid composition reacting with propylene according to the redox reaction (1):solid.sub.oxidized +propylene.fwdarw.solid.sub.reduced +acrolein(I)To manufacture acrolein, gaseous propylene is passed over a solid composition of formula (I), to conduct the redox reaction (1) by operating at a temperature of 200 to 600.degree. C., at a pressure of 1.01.times.10.sup.4 to 1.01 to 10.sup.6 Pa (0.1 to 10 atmospheres) and with a residence time of 0.01 second to 90 seconds, in the absence of molecular oxygen.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: June 27, 2000
    Assignee: Elf Atochem, S.A.
    Inventors: Gerard Hecquet, Jean-Pierre Schirmann, Michel Simon, Gilles Descat, Eric Etienne
  • Patent number: 6063728
    Abstract: An ammoxidation catalyst comprising a compound oxide of Mo, V, Nb, and at least one element selected from the group consisting of Te and Sb, wherein the compound catalyst exhibits an X-ray diffraction pattern satisfying the following relationship:0.40.ltoreq.R.ltoreq.0.75wherein R represents the intensity ratio defined by the following formula:R=P.sub.1 /(P.sub.1 +P.sub.2)wherein P.sub.1 and P.sub.2 represent the intensities of peak 1 and peak 2 appearing at diffraction angles (2.theta.) of 27.3.+-.0.3.degree. and 28.2.+-.0.3.degree., respectively.By the use of the ammoxidation catalyst of the present invention, not only can acrylonitrile or methacrylonitrile be produced in high yield, but also oxidative decomposition of ammonia feedstock into nitrogen can be effectively suppressed, thereby enabling an improved utilization of ammonia as a feedstock.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: May 16, 2000
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hidenori Hinago, Satoru Komada
  • Patent number: 6060422
    Abstract: A process for producing acrylic acid from propane and oxygen gas through a vapor-phase catalytic oxidation reaction, said process comprising conducting the reaction using as a catalyst a metal oxide containing metallic elements Mo, V, Sb, and A (provided that A is at least one element selected from the group consisting of Nb, Ta, Sn, W, Ti, Ni, Fe, Cr, and Co). The metal oxide is prepared by a process including specific steps (1) and (2). The metal oxide may be supported on a compound containing specific elements.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: May 9, 2000
    Assignee: Toagosei Co., Ltd.
    Inventors: Mamoru Takahashi, Xinlin Tu, Toshiro Hirose, Masakazu Ishii
  • Patent number: 6043186
    Abstract: An ammoxidation catalyst comprising a compound oxide which contains, in specific atomic ratios, molybdenum; vanadium; niobium; at least one element selected from tellurium and antimony; and at least one element selected from ytterbium, dysprosium, erbium, neodymium, samarium, lanthanum, praseodymium, europium, gadolinium, terbium, holmium, thulium, lutetium and scandium. By the use of the ammoxidation catalyst of the present invention, the ammonia-based yield of acrylonitrile or methacrylonitrile can be largely increased without sacrificing the propane- or isobutane-based yield of acrylonitrile or methacrylonitrile. Thus, the feed-stock ammonia can be efficiently utilized in the ammoxidation of propane or isobutane while achieving an efficient utilization of propane or isobutane.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: March 28, 2000
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Satoru Komada, Kazuyuki Hamada
  • Patent number: 6037304
    Abstract: An improved catalyst for the production of unsaturated nitrites from their corresponding olefins, the catalyst having the atomic ratios described by the empirical formula Bi.sub.a Mo.sub.b V.sub.c Sb.sub.d Nb.sub.e A.sub.f B.sub.g O.sub.x and methods of using the same.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: March 14, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Mazhar Abdulwahed, Khalid El Yahyaoui
  • Patent number: 6037306
    Abstract: A hydrotreating catalyst containing molybdenum and/or tungsten for light oil distillates, said catalyst contains tungsten oxide and/or moybdenum oxide, nickel oxide and cobalt oxide supported on an alumina carrier, the content of said tungsten oxide and/or molybdenum oxide is from 4 wt % to less than 10 wt %, the content of nickel oxide 1.about.5 wt %, the content of cobalt oxide 0.01.about.1 wt %, the atom ratio of nickel-cobalt to nickel, cobalt-tungsten and/or molybdenum is 0.3.about.0.9. Compared with the prior art, the catalyst has lower metal content, but higher activity at low-temperature. The catalyst is especially suitable for use in the hydrodemercaptanization process of light oil distillates.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: March 14, 2000
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Guofu Xia, Mei Zhu, Enze Min, Yahua Shi, Mingfeng Li, Hong Nie, Zhiping Tao, Haitao Huang, Runqiang Zhang, Jian Li, Zhishan Wang, Guopeng Ran
  • Patent number: 6034270
    Abstract: A process for the selective preparation of acetic acid from a gaseous feed comprising ethane, ethylene or mixtures thereof plus oxygen at elevated temperature, which comprises bringing the gaseous feed into contact with a catalyst comprising the elements Mo, Pd, Re, X and Y in gram atom ratios a:b:c:d:e in combination with oxygenMo.sub.a Pd.sub.b Re.sub.c X.sub.d Y.sub.e (I)where the symbols X, Y have the following meanings:X=Cr, Mn, Nb, B, Ta, Ti, V and/or WY=Bi, Ce, Co, Cu, Te, Fe, Li, K, Na, Rb, Be, Mg, Ca, Sr, Ba, Ni, P, Pb, Sb, Si, Sn, Tl and/or U;the indices a, b, c, d and e are the gram atom ratios of the corresponding elements, wherea=1, b>0, c>0, d=0.05-2, e=0-3.
    Type: Grant
    Filed: November 19, 1998
    Date of Patent: March 7, 2000
    Assignee: Hoechst Research & Technology Deutschland GmbH & Co. KG
    Inventors: Holger Borchert, Uwe Dingerdissen, Jens Weiguny
  • Patent number: 6030920
    Abstract: An oxide catalyst comprising the elements Mo, V, Nb and Pd. The novel catalytic system provides both higher selectivity and yield of acetic acid in the low temperature one step vapor phase direct oxidation of ethane with molecular oxygen containing gas without production of side products such as ethylene and CO.
    Type: Grant
    Filed: December 24, 1997
    Date of Patent: February 29, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Edouard Mamedov, Mohammed H. Al-Hazmi, Anis H. Fakeeha, Mustaf A. Soliman, Yousef S. Al-Zeghayer, Ahmed S. Al-Fatish, Abdulsalm A. Al-Arify
  • Patent number: 6028027
    Abstract: Catalysts comprising iron and potassium and, if desired, further elements, which catalysts are suitable for dehydrogenating hydrocarbons to give the corresponding olefinically unsaturated hydrocarbons, are prepared by calcining a finely divided dry or aqueous mixture of an iron compound with a potassium compound and, if desired, compounds of further elements in a first step that agglomerates having a diameter of from 5 to 50 .mu.m and formed from smaller individual particles are obtained and, in a second step, preferably after shaping, calcining it at from 300 to 1000.degree. C., with the maximum calcination temperature in the second step preferably being at least 30.degree. below the calcination temperature in the first step. The catalysts thus prepared are useful, in particular, for dehydrogenating ethylbenzene to give styrene.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: February 22, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Baier, Christopher William Rieker, Otto Hofstadt, Wolfgang Buchele, Wolfgang Jurgen Popel, Hermann Petersen, Norbert Neth
  • Patent number: 6025298
    Abstract: The present invention provides a denitration catalyst which is designed to show a drop of the mechanical strength of the carrier to an acceptable extent even when used with an exhaust gas containing sulfur oxides while making the use of excellent water resistance or electrical insulating properties inherent to glass fibers and a process therefor. The denitration catalyst comprises a catalytically active component supported on a structure comprising a glass fiber free of B.sub.2 O.sub.3, an inorganic filler and an inorganic binder.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: February 15, 2000
    Assignees: Nichias Corporation, Mitsubishi Heavy Industries, Ltd.
    Inventors: Kiyoaki Imoto, Jun Tanabe, Osamu Naito, Atsushi Morii, Shuya Nagayama
  • Patent number: 6025523
    Abstract: Solid mixed oxides composition of formula (I):Mo.sub.12 V.sub.a Sr.sub.b W.sub.c Cu.sub.d Si.sub.e O.sub.x(I)2.ltoreq.a.ltoreq.14, 0.1.ltoreq.B.ltoreq.6, 0.ltoreq.c.ltoreq.12, 0.ltoreq.d.ltoreq.6, 0.ltoreq.e.ltoreq.15; x is the quantity of oxygen bonded to the other elements and depends on their oxidation states, are used in the manufacture of acrylic acid by oxidation of acrolein, the said solid composition reacting with acrolein according to the redox reaction (1):SOLID.sub.oxidized +ACROLEIN.fwdarw.SOLID.sub.reduced +ACRYLIC ACID(1).To manufacture acrylic acid, a gaseous mixture of acrolein and of water vapor and, if appropriate, of an inert gas is passed over a solid composition of formula (I), to conduct the redox reaction (1) by operating at a temperature of 200 to 500.degree. C., at a pressure of 1.01.times.10.sup.4 to 1.01.times.10.sup.6 Pa (0.1 to 10 atmospheres), and with a residence time of 0.01 second to 90 seconds, in the absence of molecular oxygen.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: February 15, 2000
    Assignee: ELF Atochem S.A.
    Inventors: Gerard Hecquet, Jean-Pierre Schirmann, Michel Simon, Charlotte Pham
  • Patent number: 6017846
    Abstract: An improved catalyst for the production of unsaturated nitriles from their corresponding olefins, the catalyst composition having the atomic ratios described by the empirical formula Bi.sub.a Mo.sub.b V.sub.c Sb.sub.d Nb.sub.e Ag.sub.f A.sub.g B.sub.h O.sub.x and methods of using the same.
    Type: Grant
    Filed: January 11, 1999
    Date of Patent: January 25, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Mazhar Abdulwahed, Khalid El Yahyaoui
  • Patent number: 6013597
    Abstract: An oxide catalyst comprising the elements Mo, V and Nb with small amounts of phosphorus, boron, hafnium, Te and/or As. The modified catalyst provides both higher selectivity and yield of acetic acid in the low temperature oxidation of ethane with molecular oxygen-containing gas. A process for the higher selective production of acetic acid by the catalytic oxidation of ethane with oxygen, in the presence of the improved catalyst.
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: January 11, 2000
    Assignee: Saudi Basic Industries Corporation
    Inventors: Khalid Karim, Mohammed H. Al-Hazmi, Edouard Mamedov
  • Patent number: 6001768
    Abstract: In the process for preparing an aromatic carbonate from an aromatic hydroxy compound, CO and O.sub.2 in the presence of a quaternary salt and a base, use is advantageously made of supported catalysts which, in the reaction-ready state, contain a platinum metal, a platinum metal compound or a complex containing a platinum metal compound on a support comprising a metal oxide whose metal can occur in a plurality of oxidation states.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: December 14, 1999
    Assignee: Bayer Aktiengesellschaft
    Inventors: Hans-Josef Buysch, Carsten Hesse, Jorg-Dietrich Jentsch, Johann Rechner, Eberhard Zirngiebl
  • Patent number: 5985787
    Abstract: The invention concerns a novel presulphuration process for a hydrocarbon conversion catalyst. Presulphuration is preferably carried out offsite (ex-situ). The catalyst presulphuration process is characterized in that a presulphuration agent is used which contains (a) at least one first sulphur compound with a decomposition point T1 of less than 220.degree. C. and (b) at least one second sulphur compound with a decomposition point greater than about 220.degree. C.
    Type: Grant
    Filed: June 14, 1994
    Date of Patent: November 16, 1999
    Assignee: Europenne De Retraitement De Catalyseurs Eurecat
    Inventors: Pierre Dufresne, Nilanjan Brahma, Stephen R. Murff
  • Patent number: 5965099
    Abstract: A catalyst and a method for producing the catalyst, for catalytic reduction of NO.sub.x and oxidation of hydrocarbons, the catalyst comprises a zinc, copper and aluminum spinel to which, at least one element selected from palladium, platinum, rhodium, ruthenium, osmium, iridium, rhenium and/or rare earth metals, such as lanthanum and cerium, vanadium, titanium, niobium, molybdenum, tungsten and/or salts thereof and/or oxides thereof has been added.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: October 12, 1999
    Assignees: Daimler-Benz Aktiengesellschaft, BASF Aktiengesellschaft
    Inventors: Martin Hartweg, Andrea Seibold, Leonhard Walz, Thomas Fetzer, Bernd Morsbach
  • Patent number: 5962367
    Abstract: A support suitable for catalyst having a surface area in the range of from 80 to 200 m.sup.2 /g, a pore volume of from 0.3 to 0.5 ml/g, a side compression strength of from 70 to 240 N/cm and a pore diameter of from 60 to 200 Angstom units. The support contains from 60% to 100% by weight titania (TiO.sub.2) and from 0% to 40% by weight alumina (Al.sub.2 O.sub.3). The support is produced by raw material of titania. The invention also provides process for producing said support and catalyst employing the same.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: October 5, 1999
    Assignee: Dequing Chemical Industry and Technologies Co., Ltd.
    Inventors: Binglong Shen, Dingyi Li, Yanlai Shen
  • Patent number: 5948243
    Abstract: A composition comprises a hydrodesulfurization or hydrodenitrogenation, or both, catalyst component and a support component which comprises aluminum, zirconium, and a borate. A process for making the composition comprises the steps of (1) contacting an aluminum salt, a zirconium salt, and an acidic boron compound under a condition sufficient to effect the production of a support component comprising aluminum, zirconium, and borate and (2) combining a hydrodesulfurization or hydrodenitrogenation, or both, catalyst component with the support component. Also disclosed are processes for removing organic sulfur compounds or organic nitrogen compounds, or both, from hydrocarbon-containing fluids which comprise contacting a hydrocarbon-containing fluid, with a hydrogen-containing fluid, in the presence of a catalyst composition.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: September 7, 1999
    Assignee: Phillips Petroleum Company
    Inventor: Lyle R. Kallenbach
  • Patent number: 5945371
    Abstract: A catalyst composition and a process for hydrodealkylating a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon are disclosed. The composition comprises an alumina, molybdenum oxide, and zinc oxide. The process comprises contacting a fluid which comprises a C.sub.9 + aromatic compound with the catalyst composition under a condition sufficient to effect the conversion of a C.sub.9 + aromatic compound to a C.sub.6 to C.sub.8 aromatic hydrocarbon.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: August 31, 1999
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake