Of Molybdenum Patents (Class 502/321)
  • Patent number: 5939351
    Abstract: Catalysts and catalyst carriers, in the form of granules having a definite geometric form, characterized by porosity values such that at least 70% of the volume of the pores have a radius corresponding to the peak values of the porosity distribution curve. The catalysts and catalyst carriers are obtained by compression shaping, wherein the lubricant employed is applied to the molding of the chamber (external lubrication).
    Type: Grant
    Filed: March 14, 1996
    Date of Patent: August 17, 1999
    Assignee: Montecatini Technologie s.r.l.
    Inventors: Carlo Rubini, Luigi Cavalli
  • Patent number: 5910608
    Abstract: A coated catalyst which consists of a hollow cylindrical carrier and a catalytically active oxide material applied to the outer surface of the carrier, the applied catalytically active oxide material being applied in a coat thickness of from 10 to 1000 .mu.m, and having a specific catalytic surface area of from 20 to 30 m.sup.2 /g and an abrasion of <10, preferably <5, particularly preferably <0,5, % by weight in the turntable abrasion test. The catalyst is useful in the preparation of acrylic acid by the gas phase oxidation of acroleins.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: June 8, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Peter Weidlich, Gerd Linden
  • Patent number: 5885922
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, copper and one or more of the elements tungsten, niobium, tantalum, chromium and cerium and having a multiphase structure, and their use for the preparation of acrylic acid from acrolein by gas-phase catalytic oxidation, and oxometallates of the HT Cu molybdate structure type which contain Cu, Mo and at least one of the elements W, V, Nb and Ta.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: March 23, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Andreas Tenten, Laszlo Marosi
  • Patent number: 5885923
    Abstract: An exhaust gas cleaner consisting essentially of a first catalyst consisting essentially of a first porous inorganic oxide supporting 1.6-8.7 weight percent of an Ag component, on a metal basis, and a second catalyst consisting essentially of a second porous inorganic oxide supporting 0.1-3.8 weight percent of a Pt component and 1-9.9 weight percent of a W component, each weight percent on a metal basis. The Ag component includes Ag or a compound thereof. The Pt component includes Pt, Pd, Ru, Rh, Ir, and Au. The W component includes W, V, Mn, Mo, Nb, and Ta.
    Type: Grant
    Filed: May 7, 1998
    Date of Patent: March 23, 1999
    Assignee: Kabushiki Kaisha Riken
    Inventors: Kiyohide Yoshida, Gyo Muramatsu, Satoshi Sumiya
  • Patent number: 5866499
    Abstract: In the production of a catalyst containing a catalytically active Mo--V--O phase, the problem exists of keeping the Mo--V--O phase and/or an Mo--V--Ti--O phase substantially free of other catalytically active impurities in order not to catalyze competing reactions at the same time. For this purpose, the invention provides that vanadium oxide and molybdenum oxide are mixed in a ratio of 0.7 to 1% by weight based on V.sub.2 O.sub.5 and MoO.sub.3, the mixture is heated to a temperature above 500.degree. C., the Mo--V--O phase is cooled, ground and then subjected to a reducing treatment, and dispersed on a heated oxidic support, the dispersed material is then ground, and then applied to a suitable macroscopic support, optionally with further additives, and calcined.
    Type: Grant
    Filed: November 6, 1995
    Date of Patent: February 2, 1999
    Assignee: Siemens Aktiengesellschaft
    Inventors: Erich Hums, Michael Kotter, Friedrich Weyland
  • Patent number: 5863855
    Abstract: This invention relates to a catalyst for removal of nitrogen oxides in an exhaust gas by adding ammonia to the exhaust gas and hydrogenating catalytically wherein said catalyst is in a two-layered structure comprising a lower layer which is a molded article consisting of components having denitration activity covered with an upper layer which has a abrasion resistance lower than that of the lower layer and which is a coating of particulate components having 2 peaks in its particle size distribution within the range from 0.1 to 50 .mu.m.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: January 26, 1999
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Shigeru Nojima, Kozo Iida
  • Patent number: 5846507
    Abstract: This invention relates to a catalyst for ammonia synthesis. The main phase of the catalyst is a non-stoichiometric ferrous oxide expressed as Fe.sub.1-x O, which is structurally in a Wustite crystal phase form having the rock salt face-centered cubic lattice with lattice paracueter of 0.427-0.433 nm. This catalyst, which has quick reduction rate and high activity, and remarkably lowers the reaction temperature, is especially applicable as an ideal low-temperature, low-pressure ammonia synthesis catalsyt and can be widely used in ammonia synthesis industry.
    Type: Grant
    Filed: July 2, 1996
    Date of Patent: December 8, 1998
    Assignee: Zhejiang University of Technology
    Inventors: Huazhang Liu, Ruyu Xu, Zurong Jiang, Zhangneng Hu, Yanying Li, Xiaonian Li
  • Patent number: 5827421
    Abstract: A process for hydrotreating a charge hydrocarbon feed containing components boiling above 1000.degree. F. and sulfur, metals, and carbon residue, to provide product containing decreased levels of components having a boiling point greater than 1000.degree. F., decreased levels of sulfur, particularly decreased sulfur contents in the unconverted 1000.degree. F.+ boiling point products, and reduced sediment, which comprises:contacting said hydrocarbon feed with hydrogen at isothermal hydroprocessing conditions in the presence of, as catalyst, a porous alumina support containing .ltoreq.0.5 wt % of silica, wherein no silicon containing components, particularly silicon oxide, are intentionally added to the alumina, alumina support, impregnating solution or impregnating solutions, and bearing 2.2-6 wt % of a Group VIII metal oxide, 7-24 wt % of a Group VIB metal oxide and 0.0-2.0 wt % of a phosphorus oxide,said catalyst having a Total Surface Area of 195-230 m.sup.2 /g, a Total Pore Volume of 0.
    Type: Grant
    Filed: August 24, 1995
    Date of Patent: October 27, 1998
    Assignee: Texaco Inc
    Inventor: David Edward Sherwood, Jr.
  • Patent number: 5807531
    Abstract: Multimetal oxides containing Mo, V and at least one of the elements W, Nb, Ti, Zr, Hf, Ta, Cr, Si and Ge and having a special three-dimensional atomic arrangement are used in catalysts for the catalytic gas-phase oxidation of organic compounds.
    Type: Grant
    Filed: November 5, 1996
    Date of Patent: September 15, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Andreas Tenten, Laszlo Marosi
  • Patent number: 5808143
    Abstract: Catalysts of the formula I?A.sub.a B.sub.b O.sub.x !.sub.p ?C.sub.c D.sub.d Fe.sub.e Co.sub.f E.sub.i F.sub.j O.sub.y !.sub.q I,whereA is bismuth, tellurium, antimony, tin and/or copper,B is molybdenum and/or tungsten,C is an alkali metal, thallium and/or samarium,D is an alkaline earth metal, nickel, copper, cobalt, manganese, zinc, tin, cerium, chromium, cadmium, molybdenum, bismuth and/or mercury,E is phosphorus, arsenic, boron and/or antimony,F is a rare-earth metal, vanadium and/or uranium,a is from 0.01 to 8,b is from 0.1 to 30,c is from 0 to 4,d is from 0 to 20,e is from 0 to 20,f is from 0 to 20,i is from 0 to 6,j is from 0 to 15,x and y are numbers determined by the valency and frequency of the elements other than oxygen in I, and p and q are numbers whose ratio p/q is in the range from 0.001 to 0.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: September 15, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Karrer, Hans-Peter Neumann, Hans-Dieter Eichhorn, Robin Stuart Jarret
  • Patent number: 5780381
    Abstract: A catalyst for a slurry reactor Fischer-Tropsch conversion process utilizing novel catalysts comprising cobalt promoted with zirconium, molybdenum or zirconium and molybdenum and on a small diameter alumina support. The catalysts have been found to be highly selective for production of liquid hydrocarbons while minimizing production of less desirable oxygen-containing products such as alcohols. The preferred catalysts contain from about 5% to 35% cobalt and from about 0.1% to 10% zirconium or zirconium and molybdenum. The preferred process is carried out in a one or more slurry bubble column reactor stagesin series.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: July 14, 1998
    Assignee: Syncrude Technology Inc.
    Inventors: Geoffrey Robert Wilson, Norman Loren Carr
  • Patent number: 5753582
    Abstract: Impure gas streams containing contaminating amounts of NO.sub.x, e.g., automotive exhaust fumes and industrial waste gases, are purified by contacting same, in the presence of ammonia, at an elevated temperature, with a catalyst composition which comprises an inorganic oxide support substrate having a catalytically effective amount of a metal oxide active phase deposited thereon, such support substrate comprising at least one alumina, aluminate, titanium dioxide and/or zirconium dioxide and such catalytically active phase comprising at least one vanadium oxide and/or molybdenum oxide and/or tungsten oxide, the surface of the support substrate being chemically bonded to the metals V and/or Mo and/or W and the catalyst being devoid of V.sub.2 O.sub.3 and/or MoO.sub.3 and/or WO.sub.3 crystalline phases, and thereby selectively reducing such NO.sub.x values while minimizing the formation of N.sub.2 O.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: May 19, 1998
    Assignee: Rhone-Poulenc Chimie
    Inventors: Eric Garcin, Francis Luck, Raymond Surantyn
  • Patent number: 5750819
    Abstract: Hydroconversion of paraffin containing hydrocarbon feeds is effected over a supported Group VIII and Group VI metal containing catalyst also containing a hydrocracking suppressant such as a Group IB metal, wherein the catalyst is preferably prepared by fixing the Group IB metal on to the support prior to incorporating the Group VI metal on to the support.
    Type: Grant
    Filed: November 5, 1996
    Date of Patent: May 12, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Robert J. Wittenbrink, Daniel F. Ryan, William C. Baird, Jr., Kenneth L. Riley, Jack W. Johnson
  • Patent number: 5731460
    Abstract: A catalyst system and process for the oxidative cleavage of alkenes with hydrogen peroxide is provided. The catalyst system comprises a source of ruthenium, a source of molybdenum and a phase transfer agent. The process comprises contacting an alkene with the hydrogen peroxide in the presence of the above catalyst system. Sources of ruthenium and molybdenum comprise the metals, salts or complexes. Preferred sources are RuCl.sub.3 and MoO.sub.3. The phase transfer agent is preferably a quaternary ammonium salt. The process usually takes place in the presence of an organic solvent, preferably t-butanol.
    Type: Grant
    Filed: February 14, 1996
    Date of Patent: March 24, 1998
    Assignee: Solvay Interox Limited
    Inventors: Alexander Johnstone, Paul John Middleton, Miranda Service, William Ronald Sanderson
  • Patent number: 5728894
    Abstract: Disclosed is a method for producing methacrolein, which comprises subjecting isobutylene and/or tert-butanol to gas phase catalytic oxidation with a molecular oxygen-containing gas in the presence of an oxide catalyst composition represented by the formula Mo.sub.12 Bi.sub.a Ce.sub.b K.sub.c A.sub.e B.sub.f O.sub.g, wherein A is Co solely, or a mixture of Co and Mg wherein the atomic ratio of Mg to Co is not more than 0.7, B is Rb, Cs or a mixture thereof, and a, b, c, d, e, f and g are, respectively, the specific atomic ratios of Bi, Ce, K, Fe, A, B and O, relative to 12 atoms of Mo.
    Type: Grant
    Filed: August 26, 1996
    Date of Patent: March 17, 1998
    Assignee: Ashahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Osamu Nagano, Toru Watanabe
  • Patent number: 5703253
    Abstract: This invention relates to ethylene oxide catalyst for the vapor phase production of ethylene oxide from ethylene and oxygen prepared by impregnating a porous, refractory support having a surface area ranging from about 0.05 to about 10 m.sup.2 /g with a solubilized catalytically effective amount of silver, a solubilized promoting amount of alkali metal, a solubilized promoting amount of rhenium, and a solubilized promoting amount of hafnium metal, wherein the Group IVB metal is provided in the form of Group IVB oxycation-containing salts. The catalyst provide substantial initial activity improvement as well as long term selectivity and activity stability improvement over prior art rhenium promoted catalyst, without any loss of initial selectivity advantage.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: December 30, 1997
    Assignee: Shell Oil Company
    Inventors: Wayne E. Evans, Carolus Matthias Anna Maria Mesters
  • Patent number: 5688739
    Abstract: A catalyst having the atomic ratios set forth in the empirical formula below:A.sub.a B.sub.b C.sub.c Ge.sub.d Bi.sub.e Mo.sub.12 O.sub.xwhereA=two or more of alkali metals, In and TlB=one or more of Mg, Mn, Ni, Co, Ca, Fe, Ce, Sm, Cr, Sb, and W; preferably B equals the combination of Fe and at least one element selected from the group consisting of Ni and Co and at least one element selected from the group consisting of Mg, Mn, Ca, Ce, Sn, Cr, Sb, and WC=one or more of Pb, Eu, B, Sn, Te and Cua=0.05 to 5.0b=5 to 12c=0 to 5.0d=0.1 to 2.0e=0.1 to 2.0x=the number of oxygen atoms required to satisfy the valency requirements of the other elements andb>a+c.
    Type: Grant
    Filed: May 3, 1996
    Date of Patent: November 18, 1997
    Assignee: The Standard Oil Company
    Inventors: Tama Lee Drenski, Maria Strada Friedrich, Christos Paparizos, Michael J. Seely, Dev Dhanaraj Suresh
  • Patent number: 5686373
    Abstract: Polymetal oxide materials of the general formula I?A!.sub.p ?B!.sub.q (I),where ##STR1## X.sup.1 is W, Nb, Ta, Cr and/or Ce, X.sup.2 is Cu, Ni, Co, Fe, Mn and/or Zn,X.sup.3 is Sb and/or Bi,X.sup.4 is Li, Na, K, Rb, Cs and/or H,X.sup.5 is Mg, Ca, Sr and/or Ba,X.sup.6 is Si, Al, Ti and/or Zr,X.sup.7 is Mo, W, V, Nb and/or Ta,a is from 1 to 8,b is from 0.2 to 5,c is from 0 to 23,d is from 0 to 50,e is from 0 to 2,f is from 0 to 5,g is from 0 to 50,h is from 4 to 30,i is from 0 to 20,x and y are each a number which is determined by the valency and frequency of the elements other than oxygen in I and p and q are non-zero numbers whose ratio p/q is from 160:1 to 1:1,and their use as catalysts.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: November 11, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Friedrich-Georg Martin, Hartmut Hibst, Laszlo Marosi, Veronika Kohl
  • Patent number: 5686376
    Abstract: Rinsing dyed or white fabrics in a chelator-containing rinse bath restores color and brightness. Rinse added compositions comprising chelators such as diethylenetriaminepentaacetate or ethylenediamine disuccinate are used to restore the appearance of colored and white fabrics whose drab appearance has been caused by interactions with metal ions, especially copper and nickel. Compositions comprising the chelators in combination with fabric care auxiliaries such as fabric softeners, cellulase enzymes and chlorine scavengers are provided.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: November 11, 1997
    Assignee: The Procter & Gamble Company
    Inventors: John Robert Rusche, Ellen Schmidt Baker, Axel Masschelein
  • Patent number: 5681790
    Abstract: This invention relates to a novel catalyst for preparing methacrylic acid by gas phase oxidation of methacrolein obtained by gas phase catalytic oxidation of isobutylene or t-butanol. The catalyst is represented by the formula:P.sub.a Mo.sub.11 V.sub.b Du.sub.c X.sub.d Q.sub.e Z.sub.f O.sub.gwhereinX is at least one of potassium, rubium, cessium, and thallium;Z is at least one of lead, antimony, chromium, iron, bismuth, cerium, and zinc;Q is at least one of organic quaternary ammonium cations consisting of ##STR1## in which R, R.sub.1, R.sub.2, R.sub.3 and R.sub.4 are each independently selected from the group consisting of C.sub.1 -C.sub.5 alkyl or C.sub.1 -C.sub.5 substituted alkyl having functional groups;a is a number from 0.8 to 1.6;b is a number from 0.6 to 2;c is a number from 0.1 to 0.8;d is a number from 0.7 to 2.2;e is a number from 0.01 to 0.1;f is a number from 0 to 0.5; andg is a number of oxygens required to satisfy the valence requirements of the other elements present.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: October 28, 1997
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Young Chul Kim, Ki Hwa Lee, Eun Hee Jin
  • Patent number: 5677261
    Abstract: A catalyst which consists of a carrier and a catalytically active oxide material applied to the surface of the carrier is prepared by a process in which the carrier is first moistened with, as an adhesive liquid, an aqueous solution of an organic substance boiling at above 100.degree. C. at atmospheric pressure and a layer of active oxide material is then bonded to the surface of the moistened carrier by bringing it into contact with dry, finely divided active oxide material and the adhesive liquid is then removed from the moistened carrier coated with active oxide material.
    Type: Grant
    Filed: November 24, 1995
    Date of Patent: October 14, 1997
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Tenten, Peter Weidlich, Gerd Linden
  • Patent number: 5663113
    Abstract: Disclosed is an ammoxidation catalyst composition for use in producing acrylonitrile from propylene, or methacrylonitrile from isobutene or tert-butanol, by ammoxidation of the propylene or of the isobutene or tert-butanol, comprising an oxide catalyst composition represented by the formula:Mo.sub.12 (Bi.sub.1-a A.sub.a).sub.b Fe.sub.c Co.sub.d X.sub.e Y.sub.f O.sub.g,wherein A is at least one rare earth element, X is at least one element selected from the group consisting of nickel, magnesium, zinc and manganese, Y is at least one element selected from the group consisting of potassium, rubidium and cesium, a is a number of from 0.6 to 0.8, b is a number of from 0.5 to 2, c is a number of from 0.1 to 3, d is a number of from more than 0 to 10, e is a number of from 0 to 8, f is a number of from 0.01 to 2, and g is a number determined by the valence requirements of the other elements present.
    Type: Grant
    Filed: February 16, 1996
    Date of Patent: September 2, 1997
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hideo Midorikawa, Ken Someya
  • Patent number: 5658842
    Abstract: Disclosed is an ammoxidation catalyst composition for use in producing acrylonitrile from propylene, or methacrylonitrile from isobutene or tert-butanol, by ammoxidation of the propylene or of the isobutene or tert-butanol, comprising an oxide catalyst composition represented by the formula:Mo.sub.12 (Bi.sub.1-a A.sub.a).sub.b Fe.sub.c Ni.sub.d X.sub.e Y.sub.f O.sub.g,whereinA is at least one rare earth element,X is at least one element selected from magnesium and zinc,Y is at least one element selected from potassium, rubidium and cesium,a is a number of from 0.6 to 0.8,b is a number of from 0.5 to 2,c is a number of from 0.1 to 3,d is a number of from 4 to 10,e is a number of from 0 to 3,f is a number of from 0.01 to 2, andg is a number determined by the valence requirements of the other elements present.
    Type: Grant
    Filed: December 27, 1995
    Date of Patent: August 19, 1997
    Assignee: Asahi Kasei Kogyo Kabushiki Kaisha
    Inventors: Hideo Midorikawa, Ken Someya, Kunitoshi Aoki, Osamu Nagano
  • Patent number: 5656567
    Abstract: A catalyst unit (16), in which a quantity of a relatively expensive material such as platinum is replaced by a greater quantity of a relatively inexpensive material such as palladium. Thus, material cost saved by "tailoring" a pack is used to pay for a large quantity of a cheaper material. Although the cheaper material is generally less intrinsically efficient than the expensive material, a sufficient additional amount of the cheaper material can be used to more than compensate for this lack of efficiency. Thus, a catalytic pack of high catalytic efficiency, low material cost, low metal loss and long run duration can be produced.
    Type: Grant
    Filed: March 9, 1995
    Date of Patent: August 12, 1997
    Assignee: PGP Industries, Inc.
    Inventor: Alan Edward Heywood
  • Patent number: 5639798
    Abstract: A catalyst and slurry reactor Fischer-Tropsch conversion process utilizing novel catalysts comprising cobalt promoted with molybdenum or molybdenum and zirconium on a small diameter inorganic oxide support. The catalysts have been found to be highly selective for production of liquid hydrocarbons while minimizing production of less desirable oxygen-containing products such as alcohols. The preferred catalysts contain from about 5% to 50% cobalt and from about 0.1% to 10% molybdenum or molybdenum and zirconium.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 17, 1997
    Assignee: Wexford P.A. Syncrude Limited Partnership
    Inventors: Geoffrey Robert Wilson, Norman L. Carr
  • Patent number: 5597773
    Abstract: This invention relates to ethylene oxide catalyst for the vapor phase production of ethylene oxide from ethylene and oxygen prepared by impregnating a porous, refractory support having a surface area ranging from about 0.05 to about 10 m.sup.2 /g with a solubilized catalytically effective amount of silver, a solubilized promoting amount of alkali metal, a solubilized promoting amount of rhenium, and a solubilized promoting amount of hafnium metal, wherein the Group IVB metal is provided in the form of Group IVB oxycation-containing salts. The catalyst provide substantial initial activity improvement as well as long term selectivity and activity stability improvement over prior art rhenium promoted catalyst, without any loss of initial selectivity advantage.
    Type: Grant
    Filed: December 29, 1994
    Date of Patent: January 28, 1997
    Assignee: Shell Oil Company
    Inventors: Wayne E. Evans, Carolus M. A. M. Mesters
  • Patent number: 5550095
    Abstract: There is provided a process for efficient production of a solid catalyst usable for synthesis of methacrylic acid from methacrolein which comprises adding a lower alcohol or acetone to a dried product obtained from a mixed solution or aqueous slurry containing at least Mo, P and V as catalyst components and shaping the mixture by extrusion molding.
    Type: Grant
    Filed: November 4, 1994
    Date of Patent: August 27, 1996
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Hiroyuki Naito, Masato Otani, Motomu Oh-Kita, Toru Kuroda
  • Patent number: 5525567
    Abstract: The invention concerns a catalytic composition for olefin disproportion (also known as metathesis) produced by dissolving a tungsten and/or molybdenum compound, more particularly a tungsten and/or molybdenum halide substituted with one or more phenoxo groups containing at least two hydrocarbon substituents in the ortho, ortho' positions, in a medium produced by mixing at least one quaternary ammonium halide and/or at least one quaternary phosphonium halide, at least one aluminum halide, and an organometallic aluminum compound.The invention also concerns an olefin disproportion process using this composition.
    Type: Grant
    Filed: January 25, 1995
    Date of Patent: June 11, 1996
    Assignee: Institut Francais du Petrole
    Inventors: Yves Chauvin, Francoise Di Marco-Van Tiggelen
  • Patent number: 5510309
    Abstract: There is provided a method for preparing an acidic solid comprising a Group IVB metal oxide modified with an oxyanion of a Group VIB metal. An example of this acidic solid is zirconia, modified with tungstate. This modified solid oxide may be used as a catalyst, for example, to isomerize C.sub.4 to C.sub.8 paraffins. The modified solid oxide is prepared by co-precipitating the Group IVB metal oxide along with the oxyanion of the Group VIB metal.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: April 23, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Clarence D. Chang, Charles T. Kresge, Jose G. Santiesteban, James C. Vartuli
  • Patent number: 5472925
    Abstract: A catalyst for the production of a nitrile from an alkane, which satisfies the following conditions 1 and 2:1 the catalyst is represented by the empirical formula:Mo.sub.a V.sub.b Te.sub.c X.sub.x O.sub.n (1)wherein X is at least one element selected from the group consisting of Nb, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Sb, Bi, B and Ce,when a=1,b=0.01 to 1.0,c=0.01 to 1.0,x=0.01 to 1.0,and n is a number such that the total valency of the metal elements is satisfied; and2 the catalyst has X-ray diffraction peaks at the following angles of 2.theta. in its X-ray diffraction pattern:Diffractionangles of 2.theta. (.degree.)22.1.+-.0.328.2.+-.0.336.2.+-.0.345.2.+-.0.350.0.+-.0.3.
    Type: Grant
    Filed: February 7, 1994
    Date of Patent: December 5, 1995
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takashi Ushikubo, Kazunori Oshima, Atsushi Kayo, Tiaki Umezawa, Ken-ichi Kiyono, Itaru Sawaki, Hiroya Nakamura
  • Patent number: 5470815
    Abstract: The present invention relates to a novel multicomponent oxide catalyst, more specifically, a highly active and selective catalyst composition which plays a vital role to produce unsaturated nitrile compounds by reacting paraffinoid hydrocarbons with ammonia and oxygen. The formula of catalyst composition of the present invention is represented as A.sub.a B.sub.b C.sub.c D.sub.d In.sub.e Ga.sub.f Bi.sub.g Mo.sub.i O.sub.x. wherein:A is alkali metal, alkali earth metal, silver or copper;B is nickel, cobalt, iron, chromium, ruthenium, palladium or manganese;C is zinc, cadmium, cerium, tin, phosphorus, antimony, lead, tellurium, germanium or aluminum;D is titanium, zirconium, vanadium, niobium, tantalum, lanthanum, neodymium, gadolinium or tungsten; and, a, b, c, d, e, f, g and i is the mole of each component, wherein, a is 0 to 10; b is 0 to 5; c is 0 to 15; d is 0 to 14; e is 0 to 2; f is 0 to 7; g is 1 to 25; i is 12 to 40; and, 12.ltoreq.a+b+c+d+e+f+g.ltoreq.40.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: November 28, 1995
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jong-Seob Kim, Seong-Ihl Woo
  • Patent number: 5422328
    Abstract: A process for preparing a catalyst useful for producing a nitrile by a gas phase catalytic oxidation reaction of an alkane with ammonia, which comprises drying a solution or slurry containing molybdenum, vanadium and tellurium by a spray drying method or a freeze-drying method and heat-treating the resulting dried product.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: June 6, 1995
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Takashi Ushikubo, Itaru Sawaki, Kazunori Oshima, Kei Inumaru, Satoshi Kobayakawa, Ken-ichi Kiyono
  • Patent number: 5420091
    Abstract: A method of preparing a catalyst used for producing methacrylic acids through gas phase catalytic oxidation of methacrolein with molecular oxygen. The catalyst is represented by the formula:P.sub.a Mo.sub.b V.sub.c Ge.sub.d X.sub.e Y.sub.f Z.sub.g O.sub.hwherein P, Mo, V, Ge and O represent phosphorous, molybdenum, vanadium, germanium and oxygen, respectively; X represents at least one element selected from the group consisting of arsenic, antimony, bismuth, zirconium, tellurium, silver and boron; Y represents at lest one element selected from the group consisting of iron, copper, zinc, chromium, magnesium, tantalum, manganese, barium, gallium, cerium and lanthanum; Z represents at least one element selected from the group consisting of potassium, rubidium, cesium and thallium, and a, b, c, d, e, f, g and h represent the atomic ratios of the respective elements, and when b=12, then a=0.5-3, c=0.01-3, d=0.01-3, e=0-3, f=0-3, g=0.
    Type: Grant
    Filed: July 13, 1993
    Date of Patent: May 30, 1995
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Toru Kuroda, Motomu Oh-Kita
  • Patent number: 5418202
    Abstract: This invention relates to ethylene oxide catalyst for the vapor phase production of ethylene oxide from ethylene and oxygen prepared by impregnating a porous, refractory support having a surface area ranging from about 0.05 to about 10 m.sup.2 /g with a solubilized catalytically effective amount of silver, a solubilized promoting amount of alkali metal, a solubilized promoting amount of rhenium, and a solubilized promoting amount of hafnium metal, wherein the Group IVB metal is provided in the form of Group IVB oxo salts. The catalyst provide substantial initial activity improvement as well as long term selectivity and activity stability improvement over prior art rhenium promoted catalyst, without any loss of initial selectivity advantage.
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: May 23, 1995
    Assignee: Shell Oil Company
    Inventors: Wayne E. Evans, Carolus M. A. M. Mesters
  • Patent number: 5395971
    Abstract: A process for making unsaturated .alpha.-amines from olefins wherein the process includes adding an aminating agent, an olefin and a molybdenum based catalyst to a reaction vessel having a nitrogen atmosphere. The catalyst may be described by the general formula LL'MoO.sub.2, L.sub.2 L'MoO.sub.2, or LL'MoO(X--Y).
    Type: Grant
    Filed: March 11, 1994
    Date of Patent: March 7, 1995
    Assignee: The Board of Regents of The University of Oklahoma
    Inventors: Kenneth M. Nicholas, Anurag S. Srivastava
  • Patent number: 5384301
    Abstract: A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas:[(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k,[(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or[Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.kwherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.
    Type: Grant
    Filed: July 23, 1993
    Date of Patent: January 24, 1995
    Assignee: Massachusetts Institute of Technology
    Inventors: Maria Flytzani-Stephanopoulos, Wei Liu
  • Patent number: 5380696
    Abstract: Disclosed herein is a liquid phase oxidation catalyst which comprises a metal substrate and an outectoid coating containing palladium and, molybdenum and/or tungsten coated on the substrate.According to the invention, the oxidation catalyst possessing excellent catalytic activity for oxidation which cannot be obtained by a catalyst prepared by means of pure palladium plating can be obtained. When palladium is compared with platinum, the cost of the latter is about four time larger than that of the former and the gravity of the latter is about two times larger than that of the former so that, if the same thickness of the metal is plated, the cost of the precious metal is advantageously reduced to about 1/8.Also disclosed is a process of preparing this oxidation catalyst.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: January 10, 1995
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Matsunori Sawada, Minoru Ogiso
  • Patent number: 5364825
    Abstract: Multimetal oxide compositions of the formula I[X.sup.1.sub.a X.sup.2.sub.b O.sub.x ].sub.p [X.sup.3.sub.c X.sup.4.sub.d X.sup.5.sub.e X.sup.6.sub.f X.sup.7.sub.g X.sup.2.sub.h O.sub.y ].sub.q(I)whereX.sup.1 is bismuth, tellurium, antimony, tin and/or copper,X.sup.2 is molybdenum and/or tungsten,X.sup.3 is an alkali metal, thallium and/or samarium,X.sup.4 is an alkaline earth metal, nickel, cobalt, copper, manganese, zinc, tin, cadmium and/or mercury,X.sup.5 is iron, chromium, cerium and/or vanadium,X.sup.6 is phosphorus, arsenic, boron and/or antimony,X.sup.7 is a rare-earth metal, titanium, zirconium, niobium, tantalum, rhenium, ruthenium, rhodium, silver, gold, aluminum, gallium, indium, silicon, germanium, lead, thorium and/or uranium,a is from 0.01 to 8,b is from 0.
    Type: Grant
    Filed: May 21, 1993
    Date of Patent: November 15, 1994
    Assignee: BASF Aktiengesellschaft
    Inventors: Hans-Peter Neumann, Hans Martan, Hermann Petersen, Walter Doerflinger
  • Patent number: 5349109
    Abstract: A process for making unsaturated .alpha.-amines from olefins wherein the process includes adding an aminating agent, an olefin and a molybdenum based catalyst to a reaction vessel having a nitrogen atmosphere. The catalyst may be described by the general formula LL'MoO.sub.2, L.sub.2 L'MoO.sub.2, or LL'MoO(X-Y).
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: September 20, 1994
    Assignee: The Board of Regents of the University of Oklahoma
    Inventors: Kenneth M. Nicholas, Anurag S. Srivastava
  • Patent number: 5330958
    Abstract: A configuration of cylindrical catalyst granules displays a trilobed or triangular cross-section provided with three through-bores equidistant from each other, each of which through-bores has its axis parallel to the axis of the cylindrical granule.
    Type: Grant
    Filed: December 1, 1992
    Date of Patent: July 19, 1994
    Assignee: Montecatini Technologie S.p.A.
    Inventors: Augusto Viola, Massimo Brusa, Bernardo Merighi, Giuseppe Gubitosa
  • Patent number: 5260250
    Abstract: A catalyst for the production of ethylene and/or acetic acid by oxidation of ethane and/or ethylene with a molecular oxygen-containing gas in the presence of a catalyst composition comprising the elements A, X and Y in the combination with oxygen, the gram-atom ratios of the elements A:X:Y being a:b:c;wherein A=Mo.sub.d Re.sub.e W.sub.f ; X=Cr, Mn, Nb, Ta, Ti, V and/or W; Y=Bi, Ca, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U; a=1; b=0 to 2; c=0 to 2; d+e+f+a; d is either zero or greater than zero; e is greater than zero; and f is either zero or greater than zero.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: November 9, 1993
    Assignee: BP Chemicals Limited
    Inventor: Melanie Kitson
  • Patent number: 5238898
    Abstract: There is provided a catalyst and a process for the direct partial oxidation of methane with oxygen, whereby hydrocarbons having at least two carbon atoms are produced. The catalyst used in this reaction is a spinel oxide, such as MgMn.sub.2 O.sub.4 or CaMn.sub.2 O.sub.4, modified with an alkali metal, such as Li or Na.
    Type: Grant
    Filed: August 26, 1992
    Date of Patent: August 24, 1993
    Assignee: Mobil Oil Corp.
    Inventors: Scott Han, Lorenzo C. DeCaul, Robert E. Palermo, Dennis E. Walsh
  • Patent number: 5236881
    Abstract: A coal extract hydrocracking catalyst having particular utility in a two stage coal extracting process which has a first liquid hydrogen donor solvent oil extraction stage and a second stage comprising catalytic hydrocracking of the extract. Desired levels of hydrocracking and hydrogenation of the extract, with an acceptable level of naphthene formation, are achieved by using on the coal extract hydrocracking catalyst a mixture of a promoted W or Mo catalyst with an unpromoted W or Mo catalyst.
    Type: Grant
    Filed: April 13, 1992
    Date of Patent: August 17, 1993
    Assignee: Coal Industry (Patents) Limited
    Inventor: Michael A. Jones
  • Patent number: 5221656
    Abstract: A hydroprocessing catalyst and process of using such catalyst wherein such catalyst has at least one hydrogenation metal deposited on an inorganic oxide support and is further characterized by a surface area of greater than about 220 m.sup.2 /g, a pore volume of about 0.23-0.30 cc/g in pores greater than about 600 Angstroms radius, an average pore radius of about 30-70 Angstroms in pores less than 600 Angstroms, and an incremental pore volume curve with a maximum at about 25-50 Angstroms radius.
    Type: Grant
    Filed: March 25, 1992
    Date of Patent: June 22, 1993
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Albert L. Hensley, Jr., Simon G. Kukes, David C. Arters
  • Patent number: 5217936
    Abstract: A monolithic, structured catalyst for the preparation of aldehydes. Alcohol is converted to a corresponding aldehyde by partial oxidation of the alcohol using the catalyst which includes an active catalytic material and a monolithic, inert carrier for the same. The active material includes oxides of molybdenum and oxides of chromium, vanadium, aluminum, iron, tungsten, manganese and mixtures thereof.
    Type: Grant
    Filed: March 12, 1992
    Date of Patent: June 8, 1993
    Assignee: Haldor Topsoe A/S
    Inventors: Bent Sarup, Poul E. H. Nielsen, Viggo L. Hansen, Keld Johansen
  • Patent number: 5166122
    Abstract: A process for producing a denitration catalyst suitable for catalytically reducing nitrogen oxides in exhaust gases having a low dust content with ammonia is provided, which process comprises adding water to catalyst raw materials affording titanium oxide, molybdenum oxide and vanadium oxide at the time of calcination respective proportions thereof being in the range of Ti/Mo/V=97-65/3-20/0-15 atomic %, to make slurry, followed by coating the slurry onto a metal substrate and drying. Molybdenum oxide particles are coated on a titanium oxide particle at calcination, which makes the grindability of the catalyst particle easy and improve its adherence to the metal substrate.
    Type: Grant
    Filed: November 21, 1990
    Date of Patent: November 24, 1992
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Nobue Teshima, Yasuyoshi Kato, Takashi Michimoto
  • Patent number: 5116796
    Abstract: The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.
    Type: Grant
    Filed: October 26, 1988
    Date of Patent: May 26, 1992
    Assignee: The University of Oregon
    Inventors: David J. Edlund, Richard G. Finke, Robert J. Saxton
  • Patent number: 5114899
    Abstract: This present invention relates to a disproportionation catalyst and a process for preparing a disproportionation catalyst comprising forming a calcined composite comprising at least one of molybdenum and rhenium supported on an inorganic oxide support and contacting the calcined composite with an organosilane compound selected from the group consisting of silanes containing at least one silicon-hydrogen bond per molecule, silanes containing at least one silicon-silicon bond per molecule and mixtures thereof, and to a process for the disporportionation of olefinic hydrocarbons comprising contacting at least one olefinic hydrocarbon with a catalyst comprising at least one of molybdenum and rhenium supported on an inorganic oxide support promoted with an organosilane compound selected from the group consisting of silanes containing at least one silicon-hydrogen bond per molecule, silanes containing at least one silicon-silicon bond per molecule and mixtures thereof.
    Type: Grant
    Filed: August 27, 1990
    Date of Patent: May 19, 1992
    Assignee: Shell Oil Company
    Inventor: Jiang-Jen Lin
  • Patent number: 5106802
    Abstract: A catalyst for the purification of the exhaust gas from a diesel engine, which catalyst comprises a honeycomb carrier possessing through holes disposed parallelly to the direction of flow of the exhaust gas and a catalyst component possessing a specific surface area of not more than 200 m.sup.2 /g and deposited on said carrier in a ratio of from 0.01 to 100 g per liter of said carrier and which catalyst possesses a specific surface area of from 0.1 to 5,000 m.sup.2 /liter of said catalyst.
    Type: Grant
    Filed: February 25, 1991
    Date of Patent: April 21, 1992
    Assignee: Nippon Shokubai Kagaku Kogyo Co., Ltd.
    Inventors: Makoto Horiuchi, Koichi Saito
  • Patent number: 5077258
    Abstract: Metal catalytic film comprising a flexible substrate having a surface, a catalytic metal layer adherent to said surface of the substrate and having a thickness ranging from 200 to 1000 Angstroms.Method for forming metal catalytic film on a flexible substrate having a surface in a vacuum chamber comprising the steps of evacuating the vacuum chamber to a predetermined vacuum, introducing a substantially inert heavy gas into the vacuum chamber, creating a vapor stream of molecules of a catalytic metal in the vacuum chamber whereby the molecules of the catalytic metal are scattered by the inert heavy gas and are subsequently deposited upon the surface of the substrate to form a catalytic metal layer to a thickness ranging from 200 to 1000 Angstroms.
    Type: Grant
    Filed: June 15, 1990
    Date of Patent: December 31, 1991
    Assignee: Flex Products, Inc.
    Inventors: Roger W. Phillips, Lauren R. Wendt