Metal Contaminant Passivation Patents (Class 502/521)
  • Patent number: 4954467
    Abstract: This invention comprises improvements to processes for the catalytic cracking of hydrocarbon feedstocks. One such improvement to catalytic cracking processes provides compositions comprising metals passivating agents having an increased degree of stability. These compositions comprise aqueous suspensions of antimony by vinyl copolymers, aqueous suspensions of antimony oxide by diesters of phosphoric acid, or aqueous suspensions of antimony oxide by cellulose derivatives. Another improvement to catalytic cracking processes provides a process for reducing the viscosity of liquid suspensions of metals passivating agents without substantially reducing the stability of the liquid suspension by the utilization of at least two different particle ranges of metals passivating agents. A further improvement to catalytic cracking processes provides an efficient utilization of metals passivating agents by introducing the selected agent into the catalyst regeneration cycle of a catalytic cracking unit.
    Type: Grant
    Filed: October 28, 1988
    Date of Patent: September 4, 1990
    Assignee: Phillips Petroleum Company
    Inventors: Marvin M. Johnson, Donald C. Tabler
  • Patent number: 4948769
    Abstract: The invention provides a catalyst composition useful in treating hydrocarbons contaminated with vanadium residues, the catalyst comprising a zeolite, a matrix and certain heavier alkaline earth metal oxides.
    Type: Grant
    Filed: March 27, 1989
    Date of Patent: August 14, 1990
    Assignee: Unilever Patent Holdings B.V.
    Inventor: Andrew P. Chapple
  • Patent number: 4944865
    Abstract: A process for cracking high metals content feedstocks which comprises contacting said feedstocks under catalytic cracking conditions with a novel catalytic cracking composition comprising a solid cracking catalyst and a magnesium oxide diluent.
    Type: Grant
    Filed: September 19, 1986
    Date of Patent: July 31, 1990
    Assignee: Chevron Research Company
    Inventors: Mario L. Occelli, James V. Kennedy
  • Patent number: 4939109
    Abstract: This invention comprises improvements to processes for the catalytic cracking of hydrocarbon feedstocks. One such improvement to catalytic cracking processes provides compositions comprising metals passivating agents having an increased degree of stability. These compositions comprise aqueous suspensions of antimony by vinyl copolymers, aqueous suspensions of antimony oxide by diesters of phosphoric acid, or aqueous suspensions of antimony oxide by cellulose derivatives. Another improvement to catalytic cracking processes provides a process for reducing the viscosity of liquid suspensions of metals passivating agents without substantially reducing the stability of the liquid suspension by the utilization of at least two different particle ranges of metals passivating agents. A further improvement to catalytic cracking processes provides an efficient utilization of metals passivating agents by introducing the selected agent into the catalyst regeneration cycle of a catalytic cracking unit.
    Type: Grant
    Filed: September 15, 1986
    Date of Patent: July 3, 1990
    Assignee: Phillips Petroleum Company
    Inventors: Marvin M. Johnson, Donald C. Tabler
  • Patent number: 4935121
    Abstract: A process for reactivating a spent, metal-contaminated zeolite-containing cracking catalyst composition comprises the substantially simultaneous contacting with a fluorine compound (preferably HH.sub.4 F) and a metals passivating agent (preferably a compound of Sb or Ca). The thus reactivated cracking catalyst composition is employed in a catalytic cracking process.
    Type: Grant
    Filed: June 22, 1989
    Date of Patent: June 19, 1990
    Assignee: Phillips Petroleum Company
    Inventors: Chia-Min Fu, Michael K. Maholland, Richard E. Lowery
  • Patent number: 4933095
    Abstract: This invention comprises improvements to processes for the catalytic cracking of hydrocarbon feedstocks. One such improvement to catalytic cracking processes provides compositions comprising metals passivating agents having an increased degree of stability. These compositions comprise aqueous suspensions of antimony by vinyl copolymers, aqueous suspensions of antimony oxide by diesters of phosphoric acid, or aqueous suspensions of antimony oxide by cellulose derivatives. Another improvement to catalytic cracking processes provides a process for reducing the viscosity of liquid suspensions of metals passivating agents without substantially reducing the stability of the liquid suspension by the utilization of at least two different particle ranges of metals passivating agents. A further improvement to catalytic cracking processes provides an efficient utilization of metals passivating agents by introducing the selected agent into the catalyst regeneration cycle of a catalytic cracking unit.
    Type: Grant
    Filed: October 28, 1988
    Date of Patent: June 12, 1990
    Assignee: Phillips Petroleum Company
    Inventors: Marvin M. Johnson, Donald C. Tabler
  • Patent number: 4929583
    Abstract: Hydrocarbons containing vanadium are converted to lower boiling fractions employing a zeolitic cracking catalyst containing a significant concentration of a vanadium passivator.
    Type: Grant
    Filed: June 16, 1988
    Date of Patent: May 29, 1990
    Assignee: Chevron Research Company
    Inventors: Eugene A. Pasek, Norman C. Morgan
  • Patent number: 4927795
    Abstract: This invention comprises improvements to processes for the catalytic cracking of hydrocarbon feedstocks. One such improvement to catalytic cracking processes provides compositions comprising metals passivating agents having an increased degree of stability. These compositions comprise aqueous suspensions of antimony by vinyl copolymers, aqueous suspensions of antimony oxide by diesters of phosphoric acid, or aqueous suspensions of antimony oxide by cellulose derivatives. Another improvement to catalytic cracking processes provides a process for reducing the viscosity of liquid suspensions of metals passivating agents without substantially reducing the stability of the liquid suspension by the utilization of at least two different particle ranges of metals passivating agents. A further improvement to catalytic cracking processes provides an efficient utilization of metals passivating agents by introducing the selected agent into the catalyst regeneration cycle of a catalytic cracking unit.
    Type: Grant
    Filed: October 28, 1988
    Date of Patent: May 22, 1990
    Assignee: Phillips Petroleum Company
    Inventors: Donald C. Tabler, Marvin M. Johnson
  • Patent number: 4921824
    Abstract: An improved composition and method for passivating vanadium on or in a catalytic cracking catalyst during the process of catalytic cracking of hydrocarbons is described. The improved method comprises mixing discrete particles of lanthanum oxide and, optionally, other rare earth oxides along with the catalyst and the hydrocarbon during the catalytic cracking process.
    Type: Grant
    Filed: June 30, 1988
    Date of Patent: May 1, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Arthur A. Chin, Michael S. Sarli
  • Patent number: 4919787
    Abstract: An improved method for passivating metals in a hydrocarbon feedstock during catalytic cracking has been discovered. The method involves contacting the feedstock with a passivating agent comprising a precipitated porous rare earth oxide, alumina, and aluminum phosphate precipitate. The passivating agent may be coated on a cracking catalyst, be part of the matrix of a cracking catalyst, or be added to the cracking operation as discrete particles.
    Type: Grant
    Filed: April 7, 1989
    Date of Patent: April 24, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Arthur W. Chester, Pochen Chu, Albin Huss, Jr., Garry W. Kirker
  • Patent number: 4913801
    Abstract: The present invention is directed to a method of using cerium and/or cerium contaning compounds to passivate nickel contaminants in hydrocarbon feedstocks which are used in catalytic cracking processes.
    Type: Grant
    Filed: June 17, 1988
    Date of Patent: April 3, 1990
    Assignee: Betz Laboratories, Inc.
    Inventor: David R. Forester
  • Patent number: 4900428
    Abstract: Hydrocarbon feedstocks containing relatively high levels of vanadium contaminants are converted by catalytic cracking to products of lower average molecular weight by contacting the feedstock with a catalyst comprising (1) a crystalline aluminosilicate zeolite dispersed in a matrix and (2) a vanadium passivating agent selected from the group consisting of cerium, praseodymium, neodymium, gadolinium and compounds thereof. The passivating agent is present in the catalyst in an amount greater than about 1.0 weight percent, calculated as the oxide of the vanadium passivating agent and based on the carbon-free weight of the catalyst. The passivating agent is also present in an amount such that the weight ratio of the passivating agent to any lanthanum present in the catalyst, calculated based on the respective oxides, is greater than about 1.0. The total weight of all rare earths present in the catalyst is greater than about 2.
    Type: Grant
    Filed: September 11, 1986
    Date of Patent: February 13, 1990
    Assignee: Union Oil Company of California
    Inventor: Zoltan C. Mester
  • Patent number: 4894354
    Abstract: A method for making a catalyst containing a vanadium passivating agent in the form of anatase crystalline TiO.sub.2 including a method for processing hydrocarbon feeds containing vanadium.
    Type: Grant
    Filed: October 28, 1988
    Date of Patent: January 16, 1990
    Assignee: Intevep, S.A.
    Inventors: Nelson P. Martinez, Jose R. Velasquez, Juan A. Lujano
  • Patent number: 4889615
    Abstract: A catalytic cracking process especially useful for the catalytic cracking of high metals content feeds including resids in which the feed is cracked in the presence of a catalyst additive comprising a dehydrated magnesium-aluminum hydrotalcite which acts as a trap for vanadium as well as an agent for reducing the content of sulfur oxides in the regenerator flue gas. The additive is used in the form of a separate additive from the cracking catalyst particles in order to keep the vanadium away from the cracking catalyst and so preserve the activity of the catalyst.
    Type: Grant
    Filed: December 6, 1988
    Date of Patent: December 26, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Arthur A. Chin, Ivy D. Johnson, Charles T. Kresge, Michael S. Sarli
  • Patent number: 4835128
    Abstract: A system is provided for passivating metals, such as vanadium, deposited on a catalyst during a conversion reaction. Spent catalyst particles containing the metal deposits are introduced into a regenerator, and passivating particles containing the passivating materials are also introduced into the regenerator. The passivating particles and the catalyst particles are separated after they have exited from the regenerator. At least a portion of the separated passivating particles are recycled to the regenerator, and the regenerated, separated catalyst particles are reintroduced into a reaction zone, such as a riser conversion zone.
    Type: Grant
    Filed: December 4, 1986
    Date of Patent: May 30, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Jonathan E. Child, Ajit V. Sapre
  • Patent number: 4830730
    Abstract: Unclouded solutions of antimony hydrocarbylthiolate suitable for metals passivation are produced utilizing an amine. In one embodiment of the invention the amine is included with the antimony oxide and hydroxyhydrocarbylthio reactants to produce the passivating agent. In another embodiment of the invention, the metals passivation additive is produced by combining antimony oxide with a hydroxhydrocarbylthiol to produce a reaction mixture which is thereafter contacted with an amine. The resulting product is useful for the passivation of metals deposited on cracking catalysts.
    Type: Grant
    Filed: February 2, 1988
    Date of Patent: May 16, 1989
    Assignee: Phillips Petroleum Company
    Inventor: Ernest B. Boston
  • Patent number: 4824815
    Abstract: This invention relates to a catalyst suitable for use in a fluid catalytic process and a method of using the catalyst on hydrocarbons containing one or more poison metal of vanadium or nickel to convert the hydrocarbons to lower boiling fractions. The catalyst contains a particulate and substantially water-insoluble strontium compound (in addition to a conventional zeolite and catalyst matrix) which reacts with and traps the metal poison to preserve the structure of the zeolite and, in addition, lowers the coke make and hydrogen production.
    Type: Grant
    Filed: February 13, 1987
    Date of Patent: April 25, 1989
    Assignee: Exxon Research and Engineering Company
    Inventor: Edwin L. Kugler
  • Patent number: 4824814
    Abstract: A process for treating a catalyst useful to promote the conversion of a substantially hydrocarbon feedstock containing at least one first metal at least a portion of which is deposited on the catalyst forming a first metal-containing catalyst, which process comprises:contacting the catalyst with at least one component of at least one second metal selected from the group consisting of antimony, tin, gallium, indium, zinc, tellurium and mixtures thereof to increase the second metal content of the catalyst, anddemetallizing the first metal-containing catalyst to provide a demetallized catalyst having a reduced first metal content.
    Type: Grant
    Filed: September 21, 1987
    Date of Patent: April 25, 1989
    Assignee: Chemcat Corporation
    Inventors: Frank J. Elvin, Jin S. Yoo
  • Patent number: 4816135
    Abstract: A method for making a catalyst containing a vanadium passivating agent in the form of anatase crystalline TiO.sub.2 including a method for processing hydrocarbon feeds containing vanadium.
    Type: Grant
    Filed: October 19, 1987
    Date of Patent: March 28, 1989
    Assignee: Intevep, S.A.
    Inventors: Nelson P. Martinez, Jose R. Velasquez, Juan A. Lujano
  • Patent number: 4814066
    Abstract: A spent zeolite-containing catalytic cracking catalyst composition is reactivated by a process comprising the steps of contacting the catalyst composition with a solution of a suitable ammonium compound (preferably an aqueous solution of NH.sub.4 NO.sub.3) and thereafter contacting the ammonium-exchanged cracking catalyst composition with a suitable fluorine compound (preferably a aqueous solution of NH.sub.4 F). A catalytic cracking process employs the reactivated cracking catalyst composition.
    Type: Grant
    Filed: May 19, 1988
    Date of Patent: March 21, 1989
    Assignee: Phillips Petroleum Company
    Inventor: Chia M. Fu
  • Patent number: 4810358
    Abstract: A cracking catalyst composition comprising a zeolitic, crystalline aluminosilicate, a matrix material and a barium titanium oxide. The catalyst composition is particularly suitable for cracking metal-containing hydrocarbon feedstocks.
    Type: Grant
    Filed: August 27, 1987
    Date of Patent: March 7, 1989
    Assignee: Akzo N.V.
    Inventor: Cornelis J. Groenenboom
  • Patent number: 4791085
    Abstract: A cracking catalyst composition comprising a zeolitic, crystalline aluminosilicate, a matrix material and a barium titanium oxide. The catalyst composition is particularly suitable for cracking metal-containing hydrocarbon feedstocks.
    Type: Grant
    Filed: March 7, 1986
    Date of Patent: December 13, 1988
    Assignee: Akzo N.V.
    Inventor: Cornelis J. Groenenboom
  • Patent number: 4784752
    Abstract: Poisoning of a cracking catalyst by contaminant metals such as nickel, vanadium and iron during fluid catalytic cracking of hydrocarbon charge stock containing the contaminant metals is suppressed by depositing minor amounts of a bismuth-containing passivating agent on the catalyst, desirably, a weight ratio of bismuth to nickel equivalents (nickel+0.2 vanadium+0.1 iron) of about 0.01:1 to about 1:1. The passivating agent can also comprise mixtures of compounds of bismuth and antimony, bismuth and tin.
    Type: Grant
    Filed: May 5, 1987
    Date of Patent: November 15, 1988
    Assignee: Chevron Research Company
    Inventors: Periaswamy Ramamoorthy, Ashok S. Krishna
  • Patent number: 4781816
    Abstract: A process for cracking hydrocarbon containing feed streams, which have an initial boiling point of at least 400.degree. F. and contain at least about 5 ppmw vanadium, is carried out in the presence of a catalyst composition comprising a physical mixture of (a) zeolite embedded in an inorganic refractory matrix material and (b) at least one oxide of Be, Mg, Ca, Sr, Ba or La, preferably MgO, on a silica containing support material.
    Type: Grant
    Filed: October 19, 1987
    Date of Patent: November 1, 1988
    Assignee: Phillips Petroleum Company
    Inventors: Fu Ming Lee, Clifford M. Shiblom, Jr.
  • Patent number: 4770765
    Abstract: In a catalytic cracking process which includes contacting a hydrocarbon feedstock in a contacting zone in the presence of solid composition containing molecular sieve-containing catalyst capable of promoting hydrocarbon cracking at conditions effective to crack the hydrocarbon feedstock to lower boiling components, the improvement comprising conducting the contacting in the presence of at least one metal component, other than the catalyst, containing calcium and tin. A composition of matter comprising such catalyst and metal component is also disclosed.
    Type: Grant
    Filed: July 14, 1987
    Date of Patent: September 13, 1988
    Assignee: Katalistiks International, Inc.
    Inventors: Robert Bartek, Gerald M. Woltermann
  • Patent number: 4750987
    Abstract: A process is disclosed for the conversion of a hydrocarbon oil feed having a significant content of vanadium to lighter oil products by contacting the feed under conversion conditions in a conversion zone with a catalyst containing a metal additive to immobilize vanadium compounds. Conversion conditions are such that coke and vanadium are deposited on the catalyst in the conversion zone. Coked catalyst is regenerated in the presence of an oxygen containing gas at a temperature sufficient to remove the coke and regenerated catalyst is recycled to the conversion zone for contact with fresh feed. The metal additive is present on the catalyst in an amount sufficient to immobilize the vanadium compounds in the presence of oxygen containing gas at the catalyst regeneration temperature.
    Type: Grant
    Filed: November 7, 1986
    Date of Patent: June 14, 1988
    Assignee: Ashland Oil, Inc.
    Inventors: H. Wayne Beck, James D. Carruthers, Edward B. Cornelius, William P. Hettinger, Jr., Stephen M. Kovach, James L. Palmer, Oliver J. Zandona
  • Patent number: 4746459
    Abstract: An aqueous sol composition from the group consisting of antimony and tin sols useful in restoring the activity of metal contaminated molecular sieve cracking catalysts which comprises a major portion of an aqueous antimony sol or tin sol containing between 1-50% by weight of antimony oxide as Sb.sub.2 O.sub.5 or tin oxide as SnO.sub.2 and between 0.1-20% by weight of a compatable water-soluble surfactant which is capable of producing a water-in-oil emulsion and having an HLB of at least 6.0.
    Type: Grant
    Filed: January 9, 1987
    Date of Patent: May 24, 1988
    Assignee: Nalco Chemical Company
    Inventor: Morris Kaplan
  • Patent number: 4743358
    Abstract: A strontium colloid system is introduced into a hydrocarbon conversion process to suppress the harmful effects of one or more metal contaminants in the hydrocarbon feedstock on the active component(s) of the catalyst used in said process. The strontium compound in the colloid system reacts with or traps the metal contaminants before they contact the active component(s) of said catalyst, thereby reducing catalyst deactivation, coke make and hydrogen production relative to that obtained had said compound been introduced into the process in non-colloid form. In a preferred embodiment, the strontium colloid system is introduced into the reaction zone of said process and, preferably, with at least a portion of the hydrocarbon feedstock to said process.
    Type: Grant
    Filed: December 10, 1986
    Date of Patent: May 10, 1988
    Assignee: Exxon Research and Engineering Company
    Inventors: Edwin L. Kugler, Richard P. Rhodes
  • Patent number: 4727053
    Abstract: A novel cracking catalyst, a method of preparing same and an improved hydrocarbon cracking process are provided wherein adverse effects of metals such as nickel, vanadium, iron, copper and cobalt in the cracking catalyst are precluded or mitigated by contacting the cracking catalyst with an antimony treating agent comprising at least one of elemental antimony and compounds thereof and a lithium treating agent comprising at least one of elemental lithium and compounds thereof whereby there is added to said catalyst a modifying amount of each antimony treating agent and lithium treating agent with the weight ratio of antimony to lithium being such as to provide passivation of contaminating metals greater than the sum of the passivation effect of each of antimony treating agent and lithium treating agent individually.
    Type: Grant
    Filed: August 11, 1986
    Date of Patent: February 23, 1988
    Assignee: Phillips Petroleum Company
    Inventors: Brent J. Bertus, Darrell W. Walker
  • Patent number: 4707461
    Abstract: Hydrocarbons containing vanadium are converted to lower boiling fractions employing a zeolitic cracking catalyst containing a significant concentration of a calcium-containing additive e.g. calcium corbonate dolomite and amorphous as a vanadium passivating calcium silicate agent.
    Type: Grant
    Filed: October 30, 1985
    Date of Patent: November 17, 1987
    Assignee: Chevron Research Company
    Inventors: Bruce R. Mitchell, Roger F. Vogel
  • Patent number: 4704375
    Abstract: A catalyst containing a vanadium passivating agent in the form of anatase crystalline TiO.sub.2.
    Type: Grant
    Filed: May 19, 1986
    Date of Patent: November 3, 1987
    Assignee: Intevep, S.A.
    Inventors: Nelson P. Martinez, Jose R. Valasquez, Juan A. Lujano
  • Patent number: 4686197
    Abstract: An improved catalyst demetallization process involves chlorinating the metal contaminated catalyst at elevated temperatures and contacting the chlorinated catalyst with a liquid aqueous composition to produce a demetallized catalyst. Improved catalytic activity is obtained utilizing a catalyst comprising at least one crystalline material capable of promoting the hydrocarbon conversion, and cooling the chlorinated catalyst prior to contact with the liquid aqueous composition. An improved hydrocarbon conversion process is also disclosed.
    Type: Grant
    Filed: July 2, 1986
    Date of Patent: August 11, 1987
    Assignee: ChemCat Corporation
    Inventor: Frank J. Elvin
  • Patent number: 4680105
    Abstract: A new composition of matter comprises nickel phosphate and titanium phosphate, preferably prepared by coprecipitation. A process for removing metals from a hydrocarbon-containing feed stream, in particular a heavy oil, comprises hydrotreatment in the presence of a solid catalyst composition comprising nickel phosphate and titanium phosphate (preferably coprecipitated).
    Type: Grant
    Filed: May 5, 1986
    Date of Patent: July 14, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Daniel M. Coombs, Ted H. Cymbaluk, Brent J. Bertus, Simon G. Kukes
  • Patent number: 4666584
    Abstract: A method and apparatus for passivating the adverse catalytic effects of metal contaminated hydrocarbon feedstocks is described. The method is directed at the use of control means to regulate the residence time of the catalyst in the passivation zone and to regulate the reducing gas flow rate to the passivation zone.
    Type: Grant
    Filed: March 25, 1985
    Date of Patent: May 19, 1987
    Assignee: Exxon Research and Engineering Company
    Inventors: Edward C. Luckenbach, Carl F. Bertsch
  • Patent number: 4664779
    Abstract: A method to restore the activity of a cracking catalyst which has been deactivated at least partially by metals contamination which involves contacting the cracking catalyst with an aluminum containing treating agent.
    Type: Grant
    Filed: March 17, 1986
    Date of Patent: May 12, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Brent J. Bertus, Dwight L. McKay, H. Wayne Mark
  • Patent number: 4632748
    Abstract: In a cracking process wherein used zeolitic catalyst is withdrawn from the cracking zone and treated with steam and then returned to the cracking zone, the improvement comprising diluting the steam with an organic compound.
    Type: Grant
    Filed: January 22, 1985
    Date of Patent: December 30, 1986
    Assignee: Phillips Petroleum Co.
    Inventors: Brent J. Bertus, Chia-Min Fu
  • Patent number: 4601815
    Abstract: This invention is directed to a method of using tin to passivate cracking catalysts contaminated with vanadium. The improvement resides in the use of tin alone without the need for synergists such as antimony, phosphorus, and/or sulfur compounds.
    Type: Grant
    Filed: December 27, 1984
    Date of Patent: July 22, 1986
    Assignee: Betz Laboratories, Inc.
    Inventors: David R. Forester, Raymon C. Barlow
  • Patent number: 4584283
    Abstract: A method of restoring activity to a cracking catalyst which has been at least partially deactivated by metals contamination which involves contacting the cracking catalyst with a treating agent comprising a source of aluminum.
    Type: Grant
    Filed: September 29, 1982
    Date of Patent: April 22, 1986
    Assignee: Phillips Petroleum Company
    Inventors: Brent J. Bertus, H. Wayne Mark, Dwight L. McKay
  • Patent number: 4562167
    Abstract: A novel cracking catalyst, a method of preparing same and an improved hydrocarbon cracking process are provided wherein adverse effects of metals such as nickel, vanadium, iron, copper and cobalt in the cracking catalyst are precluded or mitigated by contacting the cracking catalyst with (A) at least one of elemental antimony and compounds thereof and (B) at least one of element tin and compounds thereof whereby there is added to said catalyst a modifying amount of each of (A) and (B) with the weight ratio of antimony to tin being such as to provide passivation of the contaminating metals greater than the sum of the passivation effects of each of (A) and (B) individually. In general the ratio will be in the range of from 0.001:1 to 1000:1, and preferably will be in the range of 0.05:1 to 50:1.
    Type: Grant
    Filed: April 9, 1984
    Date of Patent: December 31, 1985
    Assignee: Phillips Petroleum Company
    Inventors: Brent J. Bertus, Dwight L. McKay
  • Patent number: 4552647
    Abstract: A process for economically converting carbo-metallic oils to lighter products. The carbo-metallic oils contain 650.degree. F.+ material which is characterized by containing material which will not boil below about 1025.degree. F., a carbon residue on pyrolysis of at least about 2, and a nickel plus vanadium content of at least about 4 parts per million. This process comprises adding an additive to the feedstock consisting of a compound containing titanium, zirconium, or aluminum so as to restore cracking activity of high metal contaminated and deactivated, zeolite containing catalysts, resulting from processing of these carbo-metallic oils.
    Type: Grant
    Filed: April 18, 1984
    Date of Patent: November 12, 1985
    Assignee: Ashland Oil, Inc.
    Inventors: William P. Hettinger, Jr., Stephen M. Kovach, Hubert W. Beck
  • Patent number: 4551231
    Abstract: Contaminating metals including nickel, vanadium, iron and copper are deposited on a fluid cracking catalyst during the processing of carbo-metallic containing oils such as residual oils, reduced crudes or topped crudes. These contaminating metals lead to undesirous side reactions such as dehydrogenation, coking and methyl group removal which adversely affect conversion and gasoline selectively. Furthermore vanadia deactivates the crystalline zeolite component of the catalyst in addition to causing catalyst agglomeration because of its pentoxide melting point by treatment with a reducing gas such as ammonia. The ammonia is added as ammonia or in the presence of diluents such as nitrogen, carbon dioxide, flue gas, fuel gas and steam. The reaction of ammonia with vanadium produces vanadium nitride which is water insoluble and facilitates the disposal of high vanadium containing spent of deactivated catalyst by landfill techniques.
    Type: Grant
    Filed: August 8, 1983
    Date of Patent: November 5, 1985
    Assignee: Ashland Oil, Inc.
    Inventors: Stephen M. Kovach, James L. Palmer
  • Patent number: 4535066
    Abstract: A cracking catalyst used to crack oil to produce gasoline or higher-boiling hydrocarbon fuel is contacted with both (A) antimony or a compound thereof such as antimony tris(0,0-dipropyl phosphorodithioate) and (B) a modifying composition consisting essentially of carbon, hydrogen, nitrogen, and sulfur produced by the treatment of a metal salt of a dialkyl dithiocarbamate with a hydrolyzable germanium (IV) compound such as germanium tetrachloride, the contacting of the catalyst with (A) and (B) prior to, during, or after use of the catalyst in a cracking process being effective in precluding or reducing adverse effects of metals such as nickel, vanadium, and iron.
    Type: Grant
    Filed: March 2, 1984
    Date of Patent: August 13, 1985
    Assignee: Philips Petroleum Company
    Inventors: Harold W. Mark, Brent J. Bertus, John S. Roberts, Dwight L. McKay, Lyle E. Fenska
  • Patent number: 4522704
    Abstract: A method for passivating the adverse catalytic effects of metal contaminants, such as nickel, vanadium and iron, which become deposited on cracking catalyst is disclosed. A passivation promoter selected from the group consisting of cadmium, germanium, indium, tellurium and zinc is deposited on the catalyst and the catalyst is passed through a passivation zone having a reducing atmosphere maintained at an elevated temperature to decrease the adverse catalytic effects of the metal contaminants. The present method is of particular utility where the residence time of the cracking catalyst in the passivation zone is relatively short.
    Type: Grant
    Filed: December 9, 1983
    Date of Patent: June 11, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventor: Carl F. Bertsch
  • Patent number: 4520120
    Abstract: Hydrocarbons containing vanadium are converted to lower boiling fractions employing a zeolitic cracking catalyst containing a significant concentration of a calcium-containing additive as a vanadium passivating agent.
    Type: Grant
    Filed: March 19, 1984
    Date of Patent: May 28, 1985
    Assignee: Gulf Research & Development Company
    Inventors: Bruce R. Mitchell, Roger F. Vogel
  • Patent number: 4515900
    Abstract: A solid sorbent particulate, its method of preparation and use is disclosed for the treatment of a residual hydrocarbon oil feed, etc. comprising metal contaminants and high carbon forming constituents with a high pore volume solid sorbent material of at least 0.4 cc/g in a visbreaking zone in which operation the effectiveness of the high pore volume sorbent material is further improved by a metal additive to immobilize low melting point vanadium compounds. The sorbent pore volume, sorbent to oil ratio and operating conditions are such that the volume of sorbent pores filled with oil feed is limited to the range of 1/4 to 2/3 and along with carbonaceous material and metal contaminants are encouraged to deposit within the pores rather than on the exterior surface of the solid sorbent in a hydrothermal visbreaking operation in the absence of added molecular hydrogen.
    Type: Grant
    Filed: June 30, 1983
    Date of Patent: May 7, 1985
    Assignee: Ashland Oil, Inc.
    Inventors: William P. Hettinger, Jr., Hubert W. Beck
  • Patent number: 4515903
    Abstract: A cracking catalyst having good resistance to metal poisoning has at least two particle fractions of different particle sizes, the cracking catalyzing zeolite material being concentrated to the coarser particle size fractions, and the finer particle size fractions being formed from material having relatively lower or no or insignificant cracking catalyzing activity. The particles of the finer particle size fractions have a matrix of kaolin and amorphous alumina-silica and may contain for example, an SO.sub.x eliminating additive such as Al.sub.2 O.sub.3, CaO and/or MgO. The coarser particle size fractions having cracking catalyzing effect have a mean particle size of from 80 to 125 .mu.m and the finer particle size fractions a mean particle size of from 30 to 75 .mu.m.
    Type: Grant
    Filed: February 17, 1984
    Date of Patent: May 7, 1985
    Assignee: Katalistiks B.V.
    Inventors: Jan-Erik A. Otterstedt, Sven G. Jaras, Roland Pudas, Lawrence L. Upson
  • Patent number: 4513093
    Abstract: A process is disclosed for the treatment of a hydrocarbon oil feed having a significant content of vanadium to provide a higher grade of oil products by contacting the feed under treatment conditions in a treatment zone with sorbent material containing a metal additive to immobilize vanadium compounds. Treatment conditions are such that coke and vanadium are deposited on the sorbent in the treatment zone. Coked sorbent is regenerated in the presence of an oxygen containing gas at a temperature sufficient to remove the coke, and regenerated sorbent is recycled to the treatment zone for contact with fresh feed. The metal additive is present on the sorbent in an amount sufficient to immobilize the vanadium compounds in the presence of oxygen containing gas at the sorbent regeneration temperature. A sorbent composition disclosed comprises a kaolin clay containing the metal additive, which may be introduced into the clay during the treatment process or during sorbent manufacture.
    Type: Grant
    Filed: March 30, 1981
    Date of Patent: April 23, 1985
    Assignee: Ashland Oil, Inc.
    Inventors: H. Wayne Beck, James D. Carruthers, Edward B. Cornelius, William P. Hettinger, Jr., Stephen M. Kovach, James L. Palmer, Oliver J. Zandona
  • Patent number: 4504381
    Abstract: A method for passivating the adverse catalytic effects of metal contaminants, such as nickel, vanadium and iron, which become deposited on cracking catalyst is disclosed. A passivation promoter comprising elemental tin and/or a tin compound in combination with elemental cadmium and/or a cadmium compound is deposited on the catalyst and the catalyst is passed through a passivation zone having a reducing atmosphere maintained at an elevated temperature to decrease the adverse catalytic effects of the metal contaminants The present method is of particular utility where the residence time of the cracking catalyst in the passivation zone is relatively short.
    Type: Grant
    Filed: December 9, 1983
    Date of Patent: March 12, 1985
    Assignee: Exxon Research and Engineering Co.
    Inventor: Carl F. Bertsch
  • Patent number: 4504379
    Abstract: A method for passivating metal contaminants present in a hydrocarbon feedstock which become deposited on cracking catalyst is described. The method is directed at passing the cracking catalyst through a passivation zone having a reducing atmosphere maintained at an elevated temperature. The reducing atmosphere comprises a process reducing gas stream which has been passed through a guard bed adapted to selectively remove an unsaturated hydrocarbon prior to the process reducing gas being added to the passivation zone.
    Type: Grant
    Filed: August 23, 1983
    Date of Patent: March 12, 1985
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gordon F. Stuntz, Robert C. Schucker
  • Patent number: 4504380
    Abstract: A method for passivating metal contaminants present in a hydrocarbon feedstock which become deposited on cracking catalyst is described. The method is directed at passing the cracking catalyst through a passivation zone having a reducing atmosphere maintained at an elevated temperature by the introduction of a process reducing gas. The unsaturated hydrocarbon content of the reducing gas is decreased prior to the introduction of the process reducing gas into the passivation zone to thereby lower the rate of coke formation. In a preferred embodiment process reducing gas is passed through a hydrogenation zone adapted to hydrogenate an unsaturated hydrocarbon present in the process reducing gas prior to the process reducing gas being added to the passivation zone.
    Type: Grant
    Filed: August 23, 1983
    Date of Patent: March 12, 1985
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gordon F. Stuntz, Terry A. Reid