Support Per Se Patents (Class 502/87)
  • Patent number: 11911723
    Abstract: A honeycomb structure body, which includes a honeycomb body and a skin layer, the honeycomb body including axially extending channels defined by a porous wall, wherein a radial path of a radial section of the honeycomb body from a central axis to the skin layer consists of a porous wall inner section and a porous wall outer section in sequence, an average wall thickness of inner porous walls provided in the porous wall inner section is smaller than an average wall thickness of outer porous walls provided in the porous wall outer section, and a length of the porous wall inner section in the radial path accounts for 71%-95%. The specific structure of the honeycomb structure body not only increases the strength of the honeycomb structure body, but also ensures good thermal shock resistance and small back pressure.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: February 27, 2024
    Assignee: SHANDONG SINOCERA FUNCTIONAL MATERIAL CO., LTD
    Inventors: Xibin Song, Bing Zhang, Xi Zhang
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20150093540
    Abstract: There is disclosed a porous material. The porous material contains aggregates, and a bonding material which bonds the aggregates to one another in a state where pores are formed among the aggregates, the bonding material contains crystalline cordierite, the bonding material further contains a rare earth element or a zirconium element, and a ratio of a mass of the bonding material to a total mass of the aggregates and the bonding material is from 12 to 45 mass %. The bonding material preferably contains, in the whole bonding material, 8.0 to 15.0 mass % of MgO, 30.0 to 60.0 mass % of Al2O3, 30.0 to 55.0 mass % of SiO2, and 1.5 to 10.0 mass % of a rare earth oxide or zirconium oxide.
    Type: Application
    Filed: September 5, 2014
    Publication date: April 2, 2015
    Inventors: Shuichi ICHIKAWA, Atsushi MIZUNO
  • Publication number: 20150087499
    Abstract: A honeycomb structure includes a honeycomb unit. The honeycomb unit has a plurality of through holes defined by partition walls along a longitudinal direction of the honeycomb unit. The partition walls have a thickness of approximately 0.1 mm to approximately 0.4 mm. The honeycomb unit is manufactured by molding raw material paste by extrusion molding and thereafter by firing the molded raw material paste. The raw material paste contains zeolite and an inorganic binder. A specific surface area of the zeolite is more than or equal to approximately 500 m2/g and less than or equal to approximately 800 m2/g. An external surface area of the zeolite is more than or equal to approximately 40 m2/g and less than or equal to approximately 80 m2/g.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Applicant: IBIDEN CO., LTD.
    Inventors: Masafumi KUNIEDA, Yosuke MATSUKAWA
  • Patent number: 8986637
    Abstract: An emission control catalyst composition comprising a supported bimetallic catalyst consisting of gold and a metal selected from the group consisting of platinum, rhodium, ruthenium, copper and nickel is disclosed. Also disclosed is a catalytic convertor comprising a substrate monolith coated with the emission control catalyst composition and a lean burn internal combustion engine exhaust gas emission treatment system comprising the catalytic convertor. A variety of processes for preparing the catalyst composition are claimed.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: March 24, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Patent number: 8980209
    Abstract: Described are catalyst compositions, catalytic articles, methods of manufacturing catalytic articles and exhaust gas treatment systems and methods that utilize the catalytic articles. The catalyst composition comprises an oxidation catalyst comprising a washcoat layer including a platinum group metal supported on a refractory metal oxide support and porous molecular sieve particles having internal pores, the molecular sieve particles protected by a protecting material selected from an organic wax encapsulating the molecular sieve particles, a polymer encapsulating the molecular sieve particles, an inorganic oxide deposited on the surface of the molecular sieve particles, or an organic compound filling the internal pores of the molecular sieve particles, wherein the protecting material prevents interaction of the molecular sieve particles with the platinum group metal.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: March 17, 2015
    Assignee: BASF Corporation
    Inventors: Jeffrey B. Hoke, Oleg Ilinich, Michael Breen
  • Publication number: 20150065338
    Abstract: The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality gasoline components, aromatic compounds, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel molybdenum-zeolite catalyst in high pressure hydrogen for conversion, as well as a novel rhenium-zeolite catalyst in place of the molybdenum-zeolite catalyst, and provides for use of the novel catalysts in the process and system of the invention.
    Type: Application
    Filed: November 5, 2014
    Publication date: March 5, 2015
    Inventors: Mark G. White, Shetian Liu
  • Patent number: 8969233
    Abstract: The present invention describes a hydrocracking and/or hydrotreatment process using a catalyst comprising an active phase containing at least one hydrogenating/dehydrogenating component selected from the group VIB elements and the non-precious elements of group VIII of the periodic table, used alone or in a mixture, and a support comprising at least one dealuminated zeolite Y having an overall initial atomic ratio of silicon to aluminum between 2.5 and 20, an initial weight fraction of extra-lattice aluminum atoms greater than 10%, relative to the total weight of aluminum present in the zeolite, an initial mesopore volume measured by nitrogen porosimetry greater than 0.07 ml·g?1 and an initial crystal lattice parameter a0 between 24.38 ? and 24.30 ?, said zeolite being modified by a) a stage of basic treatment comprising mixing said dealuminated zeolite Y with a basic aqueous solution, and at least one stage c) of thermal treatment.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: March 3, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Laurent Simon, Emmanuelle Guillon
  • Patent number: 8956993
    Abstract: Oxychlorination catalyst compositions which include a catalytically effective amount of an oxychlorination catalyst and a diluent having certain chemical composition and/or physical properties are disclosed. Processes using such oxychlorination catalyst compositions are also described. Some oxychlorination catalyst compositions and processes disclosed herein can increase the optimal operating temperature, and thereby increase the production capacity of an existing reactor, such as a fluid-bed reactor, compared to other oxychlorination catalyst compositions.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 17, 2015
    Assignee: Oxy Vinyls LP
    Inventors: Keith S. Kramer, Joseph A. Cowfer
  • Publication number: 20150038751
    Abstract: The present disclosure discloses bimetal catalysts.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 5, 2015
    Applicant: Wayne State University
    Inventors: K.Y. Simon Ng, Steve O. Salley, Huali Wang
  • Patent number: 8937203
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The multifunctional catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst is effective for providing an acetic acid conversion greater than 20% and an ethyl acetate conversion greater than 0%. The catalyst comprises a precious metal and one or more active metals on a modified support. The modified support includes a metal selected from the group consisting of tungsten, vanadium, and tantalum, provided that the modified support does not contain phosphorous.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Celanese International Corporation
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Publication number: 20150010455
    Abstract: Provided is a microwave catalyst. The microwave catalyst comprises: i) an active catalyst component comprising a metal and/or a metal oxide; ii) a microwave-absorbing component comprising at least one of CuO, ferrite spinel, and active carbon; and iii) a support. The microwave catalyst can be used for denitration by microwave catalysis, and has advantages such as high denitration efficiency, low energy consumption, environmental friendliness, and low costs. Also provided is a process for preparing the microwave catalyst and the use thereof.
    Type: Application
    Filed: December 24, 2012
    Publication date: January 8, 2015
    Inventors: Jicheng Zhou, Zhe Wang, Hongli Wang, Meng Wang, Guiyue Mao, Zunfang Jiang, Lingfei Gao
  • Publication number: 20150005153
    Abstract: A honeycomb structural body has plural cell density sections having a cell density which is changed stepwise in a radial direction. A partition wall is formed between adjacent cell density sections. The cell density sections have a high cell density section having a maximum cell density, excepting an outermost cell density section formed at an outermost side, and a low cell density section having a minimum cell density, excepting an innermost cell density section formed at an innermost side. A relationship of V?Va?Vb+Vs is satisfied, where V indicates a volume of the honeycomb structural body if the overall honeycomb structural body is composed of the high cell density section, Va indicates a volume of the high cell density section, Vb indicates a volume of the cell density section, and Vs indicates a volume of the boundary wall which separates the low cell density section from the cell density section formed immediately inside of the low cell density section.
    Type: Application
    Filed: January 23, 2013
    Publication date: January 1, 2015
    Applicants: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naohiro Hayashi, Masakazu Murata, Hiroyuki Matsubara, Oji Kuno, Hiromasa Suzuki
  • Patent number: 8920759
    Abstract: One embodiment includes an oxidation catalyst assembly formed by applying a washcoat of platinum and a NOx storage material to a portion of a substrate material.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 30, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Jong H. Lee, David B. Brown, Michael J. Paratore, Jr., Yongsheng He
  • Publication number: 20140360921
    Abstract: The catalytic system comprising a nucleus containing a supported hydrotreatment, hydrogenation and/or cracking catalyst or a carrier selected from an amorphous silico-aluminate, a crystalline silico-aluminate and/or an alumina characterized in that the surface of said nucleus is partially or totally covered by a layer of molybdenite. The relative preparation process can be carried out starting from the nucleus containing the supported catalyst or carrier, depositing, on the surface of said nucleus, a molybdenite either preformed or generated in situ following the addition of an oil-soluble precursor of molybdenum so as to partially or totally cover it with a layer of molybdenite.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 11, 2014
    Inventors: Giuseppe Bellussi, Roberto Millini, Daniele Molinari, Daniele Giulio Moscotti
  • Publication number: 20140357474
    Abstract: Disclosed herein are formed ceramic substrates comprising an oxide ceramic material, wherein the formed ceramic substrate comprises a low elemental alkali metal content, such as less than about 1000 ppm. Also disclosed are composite bodies comprising at least one catalyst and a formed ceramic substrate comprising an oxide ceramic material, wherein the composite body has a low elemental alkali metal content, such as less than about 1000 ppm, and methods for preparing the same.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 4, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Thorsten Rolf Boger, Gregory Albert Merkel, Zhen Song
  • Publication number: 20140357475
    Abstract: Disclosed here are variations of carrier material oxide formulations to create Cu—Mn spinel, where the formulations may include Ti1-xNbxO2, TiO2, SiO2, Doped alumina, Nb2O5—ZrO2, Nb2O5—ZrO2—CeO2, Doped ZrO2 and combinations thereof. The formation of type of Cu—Mn oxide phase depends on type of carrier material oxide. The crystallite size of Cu—Mn spinel, NO and CO conversion rate of Cu—Mn Spinel may vary according to the carrier material oxide and condition treatment used to form the spinel during co-precipitation method.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Publication number: 20140309467
    Abstract: An optimized catalyst system is disclosed for the pyrolysis of solid biomass material. The catalyst system is also suitable in upgrading reactions for biocrude. The system includes a carbonate species on a substantially inert support. The carbonate species can be an inorganic carbonate and/or an inorganic hydrogencarbonate.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventor: Paul O'CONNOR
  • Patent number: 8859454
    Abstract: The invention relates to a method for producing a catalyst, wherein the catalyst has a high activity and selectivity with regard to the oxidation of CO and NO. The invention also relates to the catalyst produced using the method according to the invention, the use of the catalyst as oxidation catalyst as well as a catalyst component which contains the catalyst according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst component containing the catalyst according to the invention.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: October 14, 2014
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Patent number: 8841497
    Abstract: The present invention relates to a process of formulating and preparing supported multi-metal catalysts based on metal oxides and inorganic salts of metals. The impregnation technique is employed by two methods: the slurry method and the modified-pH variation method, which are used in two steps for obtaining the catalyst. The present invention also relates to a process called Glycerol to Propene (GTP) process, corresponding to the transformation of glycerol or glycerin to propene. The reaction involved in the process of the present invention is the selective hydrogenation of glycerin, which takes place by contact of the charge of glycerin carried by hydrogen in a continuous stream system on the catalytic bed containing multi-metal catalysts, specifically prepared for this purpose.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: September 23, 2014
    Assignees: Quattor Petroquimica S.A., Universidade Federal do Rio de Janeiro—UFRJ
    Inventors: José´ Carlos Sousa Fadigas, Rossano Gambetta, Cláudio José´ de Araújo Mota, Valter Luiz da Conceição Gonçalves
  • Patent number: 8835341
    Abstract: A method for removing tightly bound sodium from a zeolitic support comprising contacting the support with a sodium specific removal agent to produce a treated support. A method comprising providing an aromatization catalyst comprising a treated support, and contacting the aromatization catalyst with a hydrocarbon feed in a reaction zone under conditions suitable for the production of an aromatic product. A catalyst support comprising an L-zeolite having less than 0.35 wt. % sodium.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 16, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Gyanesh P. Khare
  • Publication number: 20140256534
    Abstract: A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 11, 2014
    Applicant: University of Connecticut
    Inventors: Pu-Xian Gao, Yanbing Guo, Zhonghua Zhang, Zheng Ren
  • Patent number: 8828544
    Abstract: A process for depositing nanostructured material onto a particulate substrate material comprising the steps of: a) preparing a precursor material; b) forming an atomized dispersion containing nanophased material when subjecting said precursor material to elevated temperature; and c) contacting the atomized dispersion with the substrate material to deposit the nanophased material on the substrate material. The substrate material is in mobile and particulate form for contacting step (c). An apparatus for carrying out the process is also disclosed.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: September 9, 2014
    Assignee: Commonwealth Scientific And Industrial Research Organisation
    Inventors: Kok Seng Lim, Jonian Ivanov Nikolav
  • Publication number: 20140243187
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Application
    Filed: January 27, 2014
    Publication date: August 28, 2014
    Inventors: Qinghua YIN, Xiwang QI, Maximilian A. BIBERGER, Jayashir SARKAR
  • Patent number: 8771624
    Abstract: An Object of the patent is to remove highly reducing hydrocarbon exhausted during acceleration period, and to remove efficiently hydrocarbon even after contacting with highly reducing hydrocarbon. By using a catalyst having a higher proportion of palladium having surface charge of 2-valence or 4-valence supported than that of 0-valence by supporting palladium together with magnesium oxide, hydrocarbon exhausted from an internal combustion engine especially during acceleration period can be efficiently removed.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: July 8, 2014
    Assignees: Umicore Shokubai Japan Co., Ltd, Umicore Shokubai USA Inc.
    Inventors: Masanori Ikeda, Hideki Goto, Kosuke Mikita
  • Patent number: 8747652
    Abstract: The present invention concerns a catalyst comprising at least one crystalline material comprising silicon with a hierarchical and organized porosity and at least one hydrodehydrogenating element selected from the group formed by elements from group VIB and/or group VIII of the periodic table of the elements. Said crystalline material comprising silicon with a hierarchical and organized porosity is constituted by at least two spherical elementary particles, each of said particles comprising a matrix based on oxide of silicon, which is mesostructured, with a mesopore diameter in the range 1.5 to 30 nm and having microporous and crystalline walls with a thickness in the range 1.5 to 60 nm, said elementary spherical particles having a maximum diameter of 200 microns. The invention also concerns hydrocracking/hydroconversion and hydrotreatment processes employing said catalyst.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 10, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Audrey Bonduelle, Alexandra Chaumonnot
  • Patent number: 8735311
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 27, 2014
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Publication number: 20140142329
    Abstract: An amorphous catalyst support comprising at least a first oxide selected from the group consisting of: silica, germanium oxide, titanium oxide, zirconium oxide or mixtures thereof, preferably silica gel beads or diatomaceous earth; a group 3 metal oxide; and anions in an amount not greater than 10% by weight of the catalyst support; wherein the group 3 metal oxide is incorporated in the first oxide structure at the molecular level. The catalyst support is prepared by (a) mixing the first oxide, with an anhydrous source of the group 3 metal oxide, and water, at a pH above 11, thus forming a suspension, (b) washing the catalyst support with water, (c) separating the catalyst support from the water, and (d) optionally drying and/or calcining the catalyst support. A catalyst based on such a support has improved catalytic properties.
    Type: Application
    Filed: October 10, 2013
    Publication date: May 22, 2014
    Applicant: Solvay (Societe Anonyme)
    Inventors: Jean-Pierre Ganhy, Armin T. Liebens
  • Publication number: 20140140909
    Abstract: The present disclosure relates to a substrate comprising nanomaterials for treatment of gases, washcoats for use in preparing such a substrate, and methods of preparation of the nanomaterials and the substrate comprising the nanomaterials. More specifically, the present disclosure relates to a substrate comprising nanomaterial for three-way catalytic converters for treatment of exhaust gases.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 22, 2014
    Applicant: SDCMATERIALS, INC.
    Inventor: SDCmaterials, Inc.
  • Patent number: 8716162
    Abstract: The zeolite structure is a porous zeolite structure constituted of a formed article obtained by extruding a zeolite raw material containing zeolite particles and an inorganic binding material including at least basic aluminum chloride, a ratio P1 (P1=V2/V1×100) of a volume V2 of the inorganic binding material in the zeolite structure with respect to a volume V1 of the zeolite structure is from 10 to 50 vol %, and a relation of equation (1) is satisfied: P2/P1?1.0??(1), in which P1 is the ratio of the volume V2 of the inorganic binding material in the zeolite structure with respect to the volume V1 of the zeolite structure and P2 (P2=Vb/Va×100) is a ratio of volumes Vb of pores having pore diameters of 0.003 to 0.03 ?m with respect to the whole pore volume Va of the zeolite structure.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: May 6, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshio Kikuchi, Haruo Otsuka
  • Publication number: 20140121433
    Abstract: Catalytic forms and formulations are provided. The catalytic forms and formulations are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: May 23, 2013
    Publication date: May 1, 2014
    Inventors: Joel M. Cizeron, Fabio R. Zurcher, Jarod McCormick, Joel Gamoras, Roger Vogel, Joel David Vincent, Greg Nyce, Wayne P. Schammel, Erik C. Scher, Daniel Rosenberg, Erik-Jan Ras, Erik Freer
  • Patent number: 8685876
    Abstract: A supported platinum catalyst comprising an open-pored support material and platinum of oxidation state 0, wherein an XRD spectrum of the catalyst is free of signals of elemental platinum.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: April 1, 2014
    Assignee: Sud-Chemie IP GmbH & Co. KG
    Inventors: Hans-Christoph Schwarzer, Arno Tissler, Markus Hutt
  • Publication number: 20140087937
    Abstract: A catalytic article for decomposition of a volatile organic compound includes a porous support body, a plurality of active centers formed on the support body and adapted for catalytic decomposition of the volatile organic compound, and a plurality of capture centers bound to the support body. Each of the active centers is composed of one of a noble metal, a transition metal oxide, and the combination thereof. Each of the capture centers includes at least one functional group that is adapted for attracting or binding the volatile organic compound. A method for preparing the catalytic article is also disclosed.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: National Yunlin University of Science & Technology
    Inventors: Bo-Tau Liu, Cheng-Hsien Hsieh, De-Hua Wang
  • Publication number: 20140073828
    Abstract: A catalyst for converting methane to aromatic hydrocarbons is described herein. The catalyst comprises an active metal or a compound thereof, zinc or a compound thereof and an inorganic oxide support wherein the active metal is added to the support as a metal oxalate. A method of making the catalyst and a method of using the catalyst are also described.
    Type: Application
    Filed: January 24, 2012
    Publication date: March 13, 2014
    Inventors: Armin Lange De Oliveira, Larry Lanier Marshall, Peter Tanev Tanev
  • Publication number: 20140065042
    Abstract: A three way catalyst includes an extruded solid body having by weight: 10-100% of at least one binder/matrix component; 5-90% of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% optionally stabilised ceria. The catalyst also includes at least one precious metal and optionally at least one non-precious metal, wherein: (i) the at least one precious metal is carried in one or more coating layer(s) on the body surface; (ii) at least one metal is present throughout the body and at least one precious metal is carried in one or more coating layer(s) on a body surface; or (iii) at least one metal is present throughout the body, is present in a higher concentration at a body surface, and at least one precious metal is carried in one or more coating layer(s) on the body surface.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 6, 2014
    Applicant: Johnson Matthey Public Limited Company
    Inventors: Paul Joseph Andersen, Ralf Dotzel, Kwangmo Koo, Rainer Leppelt, Jörg Werner Münch, Jeffery Scott Rieck, Hubert Schedel, Duncan John William Winterborn, Todd Howard Ballinger, Julian Peter Cox
  • Publication number: 20140042057
    Abstract: The invention relates to a process for ex-situ treatment of a catalyst that contains at least one hydrogenating phase, and at least one amorphous silica-alumina or a zeolite that contains acid sites, whereby said process comprises: A stage for introducing nitrogen by contact at a temperature that is less than 100° C., with at least one basic nitrogen-containing compound that is ammonia or a compound that can be decomposed into ammonia, with said compound being introduced at a rate of 0.5-10% by weight (expressed in terms of N), and A sulfurization/activation stage with a gas that contains hydrogen and hydrogen sulfide at a temperature of at least 250° C., with this stage being carried out before or after the stage for introducing said nitrogen-containing compound, and the catalyst that is obtained is optionally dried. This treatment allows a rapid, effective start-up on the hydrocracking unit.
    Type: Application
    Filed: September 11, 2012
    Publication date: February 13, 2014
    Applicant: EURECAT S.A.
    Inventors: Pierre Dufresne, Mickael Bremaud, Pauline Galliou, Sharath Kirumakki
  • Publication number: 20140024523
    Abstract: In a process for producing a molecular sieve material, water, at least one source of an oxide of a tetravalent and/or a trivalent element and at least one structure directing agent is mixed in a reactor equipped with a mixer having a Froude number of at least 1, to produce a molecular sieve synthesis mixture having a solids content of at least about 20 wt %. The molecular sieve synthesis mixture is heated in the reactor while agitating the mixture with said mixer to form crystals of said molecular sieve material and the molecular sieve crystals are subsequently recovered from the reactor.
    Type: Application
    Filed: March 12, 2012
    Publication date: January 23, 2014
    Applicant: EXXONMOBILE CHEMICAL COMPANY-LAW TECHNOLOGY
    Inventors: Wenyih Frank Lai, Robert Ellis Kay, Stephen J. McCarthy
  • Patent number: 8614161
    Abstract: A CO2 reforming catalyst composition includes a hydroxyl group-containing porous oxide, and a composite porous catalyst supported by a porous supporter. The composite porous catalyst includes a catalyst metal.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: December 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Jae Lee, InHyuk Son, Chan Ho Pak, Hyun Chul Lee, Jeong Kuk Shon, Young Gil Jo
  • Publication number: 20130331257
    Abstract: The invention relates to a method for producing micro-nano combined active systems in which nanoparticles of a first component are bonded to microparticles of a second component, comprising the following steps: (a) producing a low-ligand colloidal suspension containing nanoparticles of the first component, (b) adding microparticles to the colloidal suspension containing the nanoparticles or adding the colloidal suspension containing the nanoparticles to a dispersion containing the microparticles and intensively mixing so that the nanoparticles adsorb onto the microparticles, (c) separating the microparticles and the nanoparticles bonded thereto from the liquid and drying the microparticles and the nanoparticles bonded thereto.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 12, 2013
    Applicant: LASER ZENTRUM HANNOVER E.V.
    Inventors: Stephan Barcikowski, Philipp Wagener, Andreas Schwenke
  • Patent number: 8603423
    Abstract: A three way catalyst includes an extruded solid body having: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve; and 0-80% by weight optionally stabilized ceria. The catalyst further includes at least one precious metal and optionally at least one non-precious metal. The at least one precious metal is carried in a coating layer on a surface of the extruded solid body; at least one metal is present throughout the extruded solid body and at least one precious metal is also carried in a coating layer on a surface of the extruded solid body; or at least one metal is present throughout the extruded solid body, is present in a higher concentration at a surface of the extruded solid body and at least one precious metal is also carried in a coating layer on the surface of the extruded solid body.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: December 10, 2013
    Assignee: Johnson Matthey Public Limited Co.
    Inventors: Paul Joseph Andersen, Ralf Dotzel, Kwangmo Koo, Rainer Leppelt, Jörg Werner Münch, Jeffery Scott Rieck, Hubert Schedel, Duncan John William Winterborn, Todd Howard Ballinger, Julian Peter Cox
  • Patent number: 8586780
    Abstract: A shell catalyst for producing vinyl acetate monomer (VAM), comprising an oxidic porous catalyst support, formed as a shaped body, with an outer shell in which metallic Pd and Au are contained. To provide a shell catalyst for producing VAM which has a relatively high activity and can be obtained at relatively low cost, the catalyst support is doped with at least one oxide of an element selected from the group consisting of Li, P, Ca, V, Cr, Mn, Fe, Sr, Nb, Ta, W, La and the rare-earth metals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 19, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Patent number: 8586496
    Abstract: A method is described for preparing a molecular sieve-containing catalyst for use in a catalytic process conducted in a stirred tank reactor. The method comprises providing a mixture comprising a molecular sieve crystal and forming the mixture into catalyst particles having an average cross-sectional dimension of between about 0.01 mm and about 3.0 mm. The mixture may include a binder and the catalyst particles are then calcined to remove water therefrom and, after calcination and prior to loading the catalyst particles into a reactor for conducting the catalytic process, the catalyst particles are coated with a paraffin inert to the conditions employed in the catalytic process.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: November 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Carolyn B. Duncan, Jon E. R. Stanat, Daria N. Lissy, Jane C. Cheng
  • Patent number: 8575058
    Abstract: An activated carbon catalyst is described which is sufficiently active in the presence of catalytic poisons in crude gas to convert nitrogen oxides to nitrogen in the presence of ammonia.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: November 5, 2013
    Assignee: CarboTech AC GmbH
    Inventors: Klaus-Dirk Henning, Wolfgang Bongartz
  • Patent number: 8568680
    Abstract: In one embodiment, a catalyst for ozone oxidation of pollutant components dispersed in a gas is provided. The ozone oxidation catalyst has a porous body formed from a metal body, a ceramic, or polymeric fibers coated with metal. A catalytic noble metal composition is deposited on the surface of the porous body. The catalytic noble metal composition is formed from particles of a noble metal supported by a mesoporous molecular sieve.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: October 29, 2013
    Assignee: City University of Hong Kong
    Inventors: Kwan San Hui, Kwok Leung Tsui, Man On Fu
  • Patent number: 8535632
    Abstract: The present invention relates to a catalyst-containing nanofiber composition, comprising a ceramic nanofiber having a plurality of metal catalysts wherein the metal catalysts exist as dispersed particles partially embedded in the nanofiber and cover from about 1% to about 90% of the surface area of the ceramic nanofiber.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 17, 2013
    Assignee: The University of Akron
    Inventors: George G. Chase, George R Newkome, Sphurti Bhargava, Soo-Jin Park, Sneha Swaminathan
  • Patent number: 8530368
    Abstract: The disclosed invention relates to a blended hydrous kaolin clay product comprising a platy coarse kaolin clay and a fine, hydrous kaolin clay. The blended kaolin clay product is suitable for use as a raw material component in the formation of cordierite products.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 10, 2013
    Assignee: BASF Corporation
    Inventors: Sharad Mathur, Michael B. Sigman
  • Patent number: 8513155
    Abstract: An exhaust aftertreatment system for a lean-burn engine may include a lean NOX trap that comprises a catalyst material. The catalyst material may remove NOX gases from the engine-out exhaust emitted from the lean-burn engine. The catalyst material may include a NOX oxidation catalyst that comprises a perovskite compound.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 20, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, Chang H Kim, Gongshin Qi
  • Patent number: 8507404
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Publication number: 20130136664
    Abstract: A catalyst which remediates hydrocarbon fuel combustion exhaust, including a non-PGM containing aerogel which catalyzes the oxidation of carbon monoxide and hydrocarbons and the reduction of nitrogen oxides present in the exhaust, a catalytic converter made therefrom, and a method for the production thereof is disclosed.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: Union College
    Inventors: Michael S. BONO, Nicholas J.H. Dunn, Lauren B. Brown, Stephen J. Juhl, Ann M. Anderson, Bradford A. Bruno, Mary K. Mahony