Significant Cryogenic Refrigeration System Having Superconductor Component As Part Of The System Or Having Superconductor Device Or Material To Be Cooled Present Therewith (e.g., Peltier Effect Device, Etc.) Patents (Class 505/163)
  • Publication number: 20130225414
    Abstract: Techniques for improving reliability of a superconducting fault current limiting system (SCFCL) are provided. In one particular exemplary embodiment, the techniques may be realized with a superconducting fault current limiting system (SCFCL) comprising: an input current lead and an output current lead, each current lead coupled to a power distribution/transmission network; a container; a superconductor contained in the container; a shunt disposed outside the container and in parallel with the superconductor; a cryogenic system configured to provide coolant into the container; and at least one sensor disposed near and configured to monitor at least one operating condition of at least one of the input current lead and the output current lead, the superconductor, and the shunt.
    Type: Application
    Filed: June 11, 2012
    Publication date: August 29, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Mark R. Amato, Paul J. Murphy, Kasegn D. Tekletsadik
  • Publication number: 20130203603
    Abstract: A cryocooler system and a superconducting magnet apparatus having the cryocooler system include a cryocooler having a cool stage that cools a heat shielding unit and a thermal inertia that thermally contacts the cool stage of the cryocooler and has a high heat capacity. The cryocooler system reduces a temperature-increasing rate in a current lead by using the thermal inertia member when the temperature in the current lead is increased due to heat generated when an electrical current applied to a superconducting coil is ramped-up or ramped-down.
    Type: Application
    Filed: January 28, 2013
    Publication date: August 8, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130190183
    Abstract: An arrangement with a superconductive electrical direct current cable system is specified which includes at least one direct current transmission element (4) composed of two phase conductors which are insulated relative to each other, and a cryostat suitable for conducting a cooling agent, in which the direct current cable system is arranged. The cryostat is composed of at least one metal pipe which is surrounded by a circumferentially closed layer with thermally insulating properties. Each of the two phase conductors (5, 6) is composed of several superconductive elements (9) which are combined into a unit. Between the two phase conductors (5, 6) is mounted a separating layer (7) of insulating material, and the two phase conductors (5, 6), including the separating layer (7) are surrounded by a sheath (8) of insulating material for forming a direct current transmission element (4).
    Type: Application
    Filed: July 26, 2012
    Publication date: July 25, 2013
    Inventors: Mark Stemmle, Erik Marzahn
  • Publication number: 20130190184
    Abstract: A superconducting machine for supporting a coolant feed line for superconducting machines includes a hollow shaft that can be connected to the superconducting machine in a first region, the coolant feed line being disposed in the interior thereof for feeding the coolant from the refrigeration unit to the superconducting machine. A magnetic support is disposed in the first region of the hollow shaft so that a radial and thus motion-damping, centering force is exerted on the coolant feed line. The magnetic support has a first and a second magnetic cylinder, wherein the first magnetic cylinder is disposed on the outer jacket of the coolant feed line and the second magnetic cylinder is disposed on the inner face of the hollow shaft. The first magnetic cylinder is a cylinder made of highly electrically conductive material having ohmic resistance.
    Type: Application
    Filed: September 20, 2011
    Publication date: July 25, 2013
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Michael Frank, Jörn Grundmann, Peter Van Hasselt
  • Publication number: 20130184159
    Abstract: An apparatus 2 comprising a cryogenic chamber 4 and a galvanic input interface 6 to the cryogenic chamber 4 configured to receive a lower amplitude electric current 8. A converter 10 is located within the cryogenic chamber 4 and configured to convert the lower amplitude electric current 8, provided by the galvanic input interface 6, to a higher amplitude electric current 12 for supply to a load 14 within the cryogenic chamber 4. A controller 16 is configured to control the converter 10 and to detect the onset of quench by comparing the duration of the charge/discharge cycle of the convertor with a stored value. The controller 16 may also compare an instantaneous value of load current with a stored value of load current.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 18, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventor: ROLLS-ROYCE PLC
  • Publication number: 20130165325
    Abstract: An apparatus and a method for cooling a super conducting machine are disclosed, in which at least two condenser areas each make thermal contact with a cold head, and in which the at least two condenser areas each have a connecting line, via which the at least two condenser areas are connected fluidically to an evaporator area. A liquid cooling fluid can be moved or pumped from at least one condenser area into the evaporator area by way of a temperature difference, and a pressure difference associated therewith, in the at least two condenser areas.
    Type: Application
    Filed: September 19, 2011
    Publication date: June 27, 2013
    Inventors: Michael Frank, Peter Van Hasselt
  • Publication number: 20130165324
    Abstract: A superconducting cable is provided. The superconducting cable includes a core part including a former disposed at the center of the core part, one or more superconducting conductive layers with each electric phase disposed at the outside of the former in a radial directions, a insulating layer disposed at the outside of each the conductive layer in a radial direction and a shielding layer disposed at the outermost of the insulating layer; and a cryostat disposed at the outside of the core part in a radial direction with first space being interposed therebetween, having a vacuum part disposed therein and electrically wired to neutral pole (N pole).
    Type: Application
    Filed: October 23, 2012
    Publication date: June 27, 2013
    Inventors: Hyun Man Jang, Su Kil Lee, Young Woong Kim, Cheol Hwi Ryu
  • Publication number: 20130150246
    Abstract: The invention relates to a superconductive multi-phase, fluid-cooled cable system comprising a) a cable comprising at least three electrical conductors constituting at least two electrical phases and a zero- or neutral conductor, said electrical conductors being mutually electrically insulated from each other, and b) a thermal insulation defining a central longitudinal axis and having an inner surface and surrounding the cable, said inner surface of said thermal insulation forming the radial limitation of a cooling chamber for holding a cooling fluid for cooling said electrical conductors. The invention further relates to a method of manufacturing a cable system and to its use. The object of the present invention is to provide a simplified manufacturing and installation scheme for a fluid cooled cable system.
    Type: Application
    Filed: November 1, 2012
    Publication date: June 13, 2013
    Applicant: NKT CABLES ULTERA A/S
    Inventor: NKT Cables Ultera A/S
  • Publication number: 20130123109
    Abstract: A demountable current lead unit and a superconducting magnet apparatus employing the same include an inserting module that is demountably inserted into a superconducting magnet apparatus and electrode leads electrically connected to a superconducting coil and cooling pipes disposed in the respective electrode leads; a service module including a power supply source for supplying a current to the electrode leads, a refrigerant storage tank for supplying a refrigerant to the cooling pipe, and a controller for controlling a flow of the refrigerant to the cooling pipe; and a transmission pipe line for connecting the inserting module and the service module.
    Type: Application
    Filed: July 11, 2012
    Publication date: May 16, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Stephen M. HARRISON
  • Patent number: 8437819
    Abstract: Superconductor cable having a plurality of flat, tape-shaped ribbon superconductor wires assembled to form a stack having a rectangular cross section, the stack having a twist about a longitudinal axis of the stack. Multiple superconductor cables including twisted stacked-cables of the flat-tape-shaped superconductor wires, and power cable comprising the twisted flat-tape stacked cables are disclosed. Superconducting power cable disposed within and separated from an electrical insulator with a space passing cryo-coolant between the superconducting cable and insulator is also disclosed.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 7, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Makoto Takayasu, Joseph V. Minervini, Leslie Bromberg
  • Publication number: 20130109574
    Abstract: A persistent current switch is presented. One embodiment of the persistent current switch includes a vacuum chamber. The persistent current switch also includes a cooling unit disposed within the vacuum chamber and configured to circulate a coolant between a first layer and a second layer of the cooling unit. Further, the persistent current switch includes a winding unit disposed on at least one of the first layer and the second layer of the cooling unit and configured to switch the persistent current switch from the first mode to the second mode when a temperature associated with the winding unit is below a threshold temperature. In addition, the persistent current switch includes a heating unit thermally coupled to the winding unit and configured to enhance the temperature of the winding unit above the threshold temperature to transition the persistent current switch from the second mode to the first mode.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Ernst Wolfgang Stautner
  • Patent number: 8433380
    Abstract: A Mössbauer spectroscopy system for applying an external magnetic field at cryogenic temperature using a refrigerator is provided. A Mössbauer spectrum can be obtained by applying the external magnetic field while changing the temperature of a superconducting magnet and a sample from a cryogenic temperature using the refrigerator, the external magnetic field can be applied while cooling the superconducting magnet using the refrigerator without the need for use of a liquid helium, thereby saving the operation cost according to consumption of the liquid helium, the mounting of a sample which it is desired to measure is easy, thereby minimizing a possibility that a worker will be exposed to gamma rays, and a convenience in use of a user can be improved.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 30, 2013
    Assignee: Kookmin University Industry Academic Cooperation Foundation
    Inventors: Chul-Sung Kim, Bong-Yeon Won
  • Publication number: 20130096007
    Abstract: A magnetic resonance imaging apparatus has a plurality of cooling pipes disposed while being spaced apart from each other along a longitudinal length of the coil assembly, a first manifold connected to a lower end of the plurality of cooling pipes to distribute and supply a coolant to the plurality of cooling pipes, and a second manifold connected to an upper end of the plurality of cooling pipes to be supplied with the coolant from the plurality of cooling pipes, thereby able to evenly cool off the coil assembly in a longitudinal direction thereof.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 18, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Samsung Electronics Co., Ltd.
  • Patent number: 8423103
    Abstract: An energy efficient data center incorporating superconducting power transmission cables coupled with cryogenically cooled semiconductor inverters and converters, used to supply power to cryogenically operated or room-temperature computers and servers. Other options and features include a lighting system whose performance is enhanced by the cold temperatures, fiber optic connections operated at cryogenic temperatures, integrated renewable energy power sources, advanced energy storage technologies, cryogenically operated computers, and a number of other cryogenic hardware. The operating temperature of the cryogenic components can be anywhere in the range between 0 K and 200 K, with other components operating above 200 K.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: April 16, 2013
    Inventors: Michael J. Hennessy, Eduard K. Mueller, Otward M. Mueller
  • Publication number: 20130090241
    Abstract: A superconductive electromagnet apparatus and a magnetic resonance imaging apparatus including the superconductive electromagnet apparatus are provided. The superconductive electromagnet apparatus includes a thermal anchor, a cryogenic cooling device which cools the thermal anchor, and at least one connecting ring into which the thermal anchor is inserted and a plurality of wires which are connected to the connecting ring.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 11, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130090242
    Abstract: Techniques for sub-cooling in a superconducting (SC) system is disclosed. The techniques may be realized as a method and superconducting (SC) system comprising at least one insulated enclosure configured to enclose at least a first fluid or gas and a second fluid or gas, and at least one superconducting circuit within the at least one insulated enclosure. The superconducting (SC) system may be sub-cooled using at least the first fluid or gas.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 11, 2013
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: James D. Strassner, Gregory Citver, Frank Sinclair
  • Publication number: 20130090243
    Abstract: This invention relates to a superconducting fault current limiter, including: an input segment of an input transformer core and an output segment of an output transformer, each segment having a first end and a second end; a length of superconductor which forms a winding around the input segment and a winding around output segment, wherein the windings are connected in series to form a closed loop; a cryostat in which the superconductor is housed; wherein each end of the input and output segments are exposed to the exterior of the cryostat.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 11, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventors: Huw L. EDWARDS, Christopher G. BRIGHT, Stephen M. HUSBAND
  • Patent number: 8406833
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radically nested solenoid-shaped coil sections (4, 5, 6) and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the magnet coil system is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that heating means are provided which always keep the HTS at an increased temperature TH>TL and TH>2.2 K. The cryostat in accordance with the invention can maintain the HTS section over a long period of time in a reliable manner.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: March 26, 2013
    Assignee: Bruker Biospin GmbH
    Inventors: Gerhard Roth, Axel Lausch
  • Publication number: 20130065766
    Abstract: A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 14, 2013
    Applicant: AMERICAN SUPERCONDUCTOR CORPORATION
    Inventors: Jie Yuan, James Maguire
  • Publication number: 20130045870
    Abstract: An International Organization for Standardization (ISO) shipping container 10 includes a cryogenic refrigeration system 14 for cryogenically cooling superconducting magnet(s) 12A, 12B during transit. The cryogenic refrigeration system 14 monitors the temperature and/or pressure of the superconducting magnet(s) and circulates a refrigerant to the superconducting magnet(s) to maintain cryogenic temperatures in superconducting coils. A power supply 16, provided by a transportation vehicle, connects to the cryogenic refrigeration system via a power inlet 20 which is accessible from the exterior of the shipping container. The superconducting magnet(s) are suspended within the shipping container which is then loaded onto the transportation vehicle. The external power supply is connected to the cryogenic refrigeration system such that refrigerant is circulated to a cold head 22A, 22B of each superconducting magnet.
    Type: Application
    Filed: April 28, 2011
    Publication date: February 21, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: John R. Rogers, Edwardus Maria Bek
  • Patent number: 8374663
    Abstract: A cooling system and method for cooling superconducting magnet coils are provided. One magnet system for a superconducting magnet device includes a cooling system having at least one coil support shell, a plurality of superconducting magnet coils supported by the at least one coil support shell and a plurality of cooling tubes thermally coupled to the at least one coil support shell. The magnet system also includes a cryorefrigerator system fluidly coupled with the plurality of cooling tubes forming a closed circulation cooling system.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: February 12, 2013
    Assignee: General Electric Company
    Inventors: Evangelos Trifon Laskaris, James Pellegrino Alexander, Paul St. Mark Shadforth Thompson, Tao Zhang, William Chen, Longzhi Jiang
  • Patent number: 8374664
    Abstract: The invention offers a container for a superconducting apparatus and a superconducting apparatus. The container mounts in it a superconducting coil as a member including a superconductor. The container is provided with a vacuum insulated container 20 as a housing case made of resin and provided with an opening, a lead electrode 50 as a metal member positioned such that it passes through the opening, and a combination of connecting members 63 and 65 that covers the opening, that connects the lead electrode 50 to the vacuum insulated container 20, and that is provided with a curved portion as a thermal-stress-alleviating portion. Having the foregoing structure, the container can suppress the development of separation and cracks at the portion where the metal member passes though and is fixed to the wall of the container that mounts in it a superconductor such as a superconducting coil.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: February 12, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi Oyama, Tsuyoshi Shinzato
  • Publication number: 20130023418
    Abstract: When cooling a superconducting magnet for use in a magnetic resonance imaging (MRI) device, a two-stage cryocooler (42) employs a first stage cooler (52) to cool a working gas (e.g., Helium, Hydrogen, etc.) to approximately 25 K. The working gas moves through a tubing system by convection until the magnet (20) is at approximately 25K. Once the magnet (20) reaches 25 K, gas flow stops, and a second stage cooler (54) cools the magnet (20) further, to about 4 K.
    Type: Application
    Filed: December 7, 2010
    Publication date: January 24, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Robert A. Ackermann, Philippe A. Menteur
  • Publication number: 20130012393
    Abstract: The present invention is an apparatus to confine a plurality of charged particles that include a plurality of coil heads that includes a plurality of superconducting coils, a bobbin and a plurality of insulation material and a plurality of support legs that include 2 support legs that are in conductive contact with each coil head and 2 support legs that are in physical contact with each coil head. The apparatus includes a base with a cryocooler inlet and a vacuum flange and a conductive cold element that is in the interior of the base, the conductive cold element is attached to the conductive rods of the 2 support legs that are in conductive contact with each coil head and the superconducting coils.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 10, 2013
    Inventors: Daniel Bateman, Shahin Pourrahimi
  • Patent number: 8352002
    Abstract: A superconductor cooling system has: a first superconductor; a first cooling conductor used for cooling the first superconductor; a first cooling unit configured to cool the first cooling conductor to a first temperature; and a current lead configured to supply a current to the first superconductor. Here, a part of a path of the current is formed of a second superconductor. The superconductor cooling system further has: a second cooling conductor used for cooling the second superconductor; a second cooling unit configured to cool the second cooling conductor to a second temperature; and a first thermal conduction switch connected between the first cooling conductor and the second cooling conductor to ON and OFF heat transfer between the first cooling conductor and the second cooling conductor.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: January 8, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Hiroshi Kawashima
  • Publication number: 20120322664
    Abstract: A transformer including: a transformer housing having an interior, a superconducting wire winding disposed within the housing interior, a dry dielectric medium in contact with a superconducting wire winding, and a temperature control device in heat exchange communication with the dry dielectric medium, adapted to utilize a gaseous medium for controlling the temperature of the superconducting wire winding.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: Electric Power Research Institute, Inc.
    Inventors: David Timothy Lindsay, Steve Eckroad
  • Publication number: 20120316070
    Abstract: A superconducting fault current limiter (SCFCL) includes a cryogenic tank defining an interior volume, a superconductor disposed in the interior volume, and a voltage detector configured to detect a voltage drop across the superconductor and provide a voltage signal representative of the voltage drop. This voltage detector enables real time monitoring of a condition of the superconductor during steady state operation of the SCFCL. If the voltage drop exceeds an acceptable voltage drop, corrective action such as maintenance, repair, and/or replacement may be taken.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 13, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventor: Paul J. Murphy
  • Patent number: 8332004
    Abstract: A system for cooling superconducting materials used for magnetization of magnets disposed within a cylindrical structure, the system including a first tubing system for allowing a cooling gas to interact with a high-field strength superconducting material to thermosiphon-cool the high-field strength superconducting material, a second tubing system for allowing a cooling gas to interact with a low-field strength superconducting material to thermosiphon-cool the low-field strength superconducting material, and a cooling gas in liquefied form configured to flow through the first tubing system and/or the second tubing system. An outlet of the first tubing system and an outlet of the second tubing system are located at a same location on a surface of the cylindrical structure. A method for cool superconducting materials used for magnetization of magnets disposed within a cylindrical structure is also disclosed.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: December 11, 2012
    Assignee: General Electric Company
    Inventors: Ernst Wolfgang Stautner, Kiruba Sivasubramaniam Haran, James Rochford
  • Patent number: 8332005
    Abstract: A superconducting electrical cable is specified, which is surrounded by a cryostat (3), which comprises two concentric metallic tubes (4, 5) which enclose thermal insulation between them and is used to carry a cooling medium. The cable has at least one superconductor (1), which is composed of superconducting material, as well as a normal electrical conductor (7), which is composed of normally conductive material and is electrically conductively connected to the superconductor. The normal conductor (7) is arranged outside of but resting on the cryostat (3).
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 11, 2012
    Assignee: Nexans
    Inventors: Frank Schmidt, Rainer Solka
  • Publication number: 20120295792
    Abstract: An arrangement for electrically conductively connecting two electrical units by means of a bipolar high voltage direct current transmission, in which between the units are arranged at least two electrical direct current cables constructed as superconductive cables. The superconductive cables are mounted separately from each other in a cryostat (1,2) suitable for conducting a cooling agent which has at least one metal pipe provided with a thermal insulation. The cryostats (1,2) are connected with at least one of their ends to a cooling plant (7) supplying the cooling agent and a pipeline (3) is placed parallel to the two cryostats (1,2). The pipeline (3) is connected at both its ends to the two cryostats (1,2) through valves (15,16,17) which are closed during uninterrupted operation and, in the case of an interruption at one of the superconductive cables, the pipeline (3) serves with the then open valves for conducting the cooling agent intended for the cryostat of the impaired cable.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 22, 2012
    Inventors: Mark Stemmle, Erik Marzahn
  • Publication number: 20120289405
    Abstract: A contact element (4) provided with an electrical connection element (4A), and intended for a superconducting cable unit arranged in a refrigerant, has an electrically conductive plate intended to be borne mechanically by the unit and to be electrically connected to the cable. The plate has through slots (4E, 4E?, 4E?) intended to form thermal conduction chicanes.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 15, 2012
    Inventors: Nicolas Lallouet, Sébastien Delplace
  • Publication number: 20120289406
    Abstract: A superconducting magnet system for high power microwave source focusing and cyclotron electronic apparatus is provided, wherein, the superconducting magnet comprises an inner superconducting main coil, an outer superconducting main coil, two end compensation coils, a regulating coil and a central regulating coil. These coils are formed by coiling Nb3Sn/Cu superconducting wire. The superconducting magnet can operate off-line through solid nitrogen formed by a cryocooler and high-pressure nitrogen. The superconducting magnet and the superconducting switch constitute a closed loop, thereby achieving magnetic field stability, without outside electromagnetic interference. The superconducting magnet system can provide a magnetic field having special spatial distribution and high stability.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 15, 2012
    Applicant: INSTITUTE OF ELECTRICAL ENGINEERING CHINESE ACADEMY OF SCIENCES
    Inventors: Qiuliang Wang, Xinning Hu, Luguang Yan, Yinming Dai, Hui Wang
  • Publication number: 20120289407
    Abstract: Provided is a natural gas processing facility for the liquefaction or regasification of natural gas. The facility includes a primary processing unit, e.g., refrigeration unit, for warming natural gas or chilling natural gas to at least a temperature of liquefaction. The facility also has superconducting electrical components integrated into the facility. The superconducting electrical components incorporate superconducting material so as to improve electrical efficiency of the facility by at least one percent over what would be experienced through the use of conventional electrical components. The superconducting electrical components may be one or more motors, one or more generators, one or more transfonners, switch gears, one or more electrical transmission conductors, variable speed drives, or combinations thereof.
    Type: Application
    Filed: January 6, 2011
    Publication date: November 15, 2012
    Inventors: Eric D Nelson, Peter C Rasmussen, Stanley o Uptigrove
  • Patent number: 8295900
    Abstract: A terminal apparatus for a superconducting cable system connects an overhead transmission cable or power appliance such as a breaker in an ambient temperature state to a superconducting cable through which power is transmitted at a cryogenic temperature. The terminal apparatus has: a refrigerant tub which is connected to the end of a superconducting cable and is filled with a refrigerant; a vacuum heat insulating container that surrounds the exterior of the refrigerant tub; a current lead having one end connected to the end portion of the superconducting cable and the other end connected to the overhead transmission cable or power appliance through the refrigerant tub and the vacuum heat insulating container; and a superconducting fault current limiter installed at a center portion of the current lead in the interior of the refrigerant tub to limit fault current.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: October 23, 2012
    Assignee: LS Cable & System Ltd.
    Inventors: Hyun Man Jang, Su Kil Lee, Choon Dong Kim
  • Patent number: 8290554
    Abstract: A cryostat has a tank for accommodation of a coolant and at least one superconducting magnet coil to generate a magnetic field. The tank has on a top side at least one tower pipe for filling the coolant and/or for venting vaporized coolant. In order to immediately indicate if and when sealing of filling pipes and discharging pipes with (for example) ice has occurred, a pressure sensor is connected via a pressure sensor pipe with the inside of the tank.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: October 16, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Gerhard Bittner
  • Publication number: 20120252677
    Abstract: A superconductive electric cable is provided in which a cable core is arranged in a cryostat, where the cable core is composed of three phase conductors arranged concentrically around an inner cooling duct, with an electric insulation arranged between the phase conductors, and where the cryostat is surrounded by an electric insulation, which is surrounded by a neutral conductor of normally conductive materials. In this cable, a neutral conductor or a screening is arranged only outside of the cryostat, and is formed by normally conductive material which surrounds the cryostat as a common neutral conductor, where an insulating material is arranged between this neutral conductor and the cryostat.
    Type: Application
    Filed: March 5, 2012
    Publication date: October 4, 2012
    Inventors: Rainer Soika, Mark Stemmle
  • Publication number: 20120252678
    Abstract: A low-noise cooling apparatus is provided. The cooling apparatus includes an outer container and an inner container. A thermal insulation layer in a vacuum state is disposed between the outer container and the inner container. The inner container includes a Dewar containing a liquid refrigerant, a prepolarization coil arranged inside the inner container and immersed in the liquid refrigerant, a pick-up coil immersed in the liquid refrigerant, and a superconducting quantum interference device (SQUID) electrically connected to the pick-up coil and immersed in the liquid refrigerant. The prepolarization coil is made of a superconductor.
    Type: Application
    Filed: June 8, 2012
    Publication date: October 4, 2012
    Inventors: Ki-woong KIM, Chan Seok KANG, Seong-min HWANG, Seong-Joo LEE, Yong-Ho LEE
  • Patent number: 8280467
    Abstract: A cooling system includes a first section of high temperature superconducting (HTS) cable configured to receive a first flow of coolant and to permit the first flow of coolant to flow therethrough. The system may further include a second section of high temperature superconducting (HTS) cable configured to receive a second flow of coolant and to permit the second flow of coolant to flow therethrough. The system may further include a cable joint configured to couple the first section of HTS cable and the second section of HTS cable. The cable joint may be in fluid communication with at least one refrigeration module and may include at least one conduit configured to permit a third flow of coolant between said cable joint and said at least one refrigeration module through a coolant line separate from said first and second sections of HTS cable. Other embodiments and implementations are also within the scope of the present disclosure.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: October 2, 2012
    Assignee: American Superconductor Corporation
    Inventors: Jie Yuan, James Maguire
  • Publication number: 20120238453
    Abstract: A supported superconducting magnet includes a superconducting magnet arranged within an outer vacuum container and a support structure bearing the weight of the superconducting magnet against a support surface. The support structure includes a tubular suspension element located between the magnet and the support surface, the tubular suspension element retaining the magnet in a fixed relative position with reference to the outer vacuum container by means of complementary interface surfaces arranged to transmit the weight of the superconducting magnet to the support structure. The tubular suspension element is arranged about a generally vertical axis, and supports a solenoidal magnet structure which is arranged about a generally horizontal axis.
    Type: Application
    Filed: May 30, 2012
    Publication date: September 20, 2012
    Applicant: Siemens PLC
    Inventors: Marcel KRUIP, Nicholas Mann
  • Patent number: 8271061
    Abstract: A connection arrangement for connecting together two superconductor cables, each having a central conductor comprising at least one superconductive part, a dielectric layer surrounding said central conductor, a shield surrounding said dielectric layer and a cryogenic enclosure surrounding said shield, the connection arrangement has an electrical splicing device for splicing together the central conductors and stripped dielectric layers of the corresponding shields. This connection arrangement has a covering made of semi-conductive material that is placed between the two shield ends and an electrical connection device for connecting together the two shield ends, the connection device surrounding the covering, being contained in the cryogenic enclosure, and comprising two junction elements each electrically and mechanically joined to a respective one of the shield ends, and an electrical splicing arrangement for splicing together the two junction elements.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: September 18, 2012
    Assignee: Nexans
    Inventor: Nicolas Lallouet
  • Patent number: 8255023
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the magnet coil system is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL. The apparatus is characterized in that a chamber (11) is provided within which the HTS sections (4) are held having an internal portion with a sufficiently low pressure such that helium located therein at a temperature of TL is gaseous. The cryostat in accordance with the invention can be utilized to maintain HTS coil sections over a long period of time in a reliable fashion.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: August 28, 2012
    Assignees: Bruker Biospin GmbH, Forschungszentrum Karlsruhe GmbH
    Inventors: Klaus Schlenga, Marion Klaeser, Thomas Arndt
  • Patent number: 8255022
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the LTS section (5, 6) is located in a first helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that the HTS section (4) is disposed radially within the LTS section (5, 6) in a separate helium tank (19) of the cryostat (1) having normal liquid helium and is separated from the LTS section (5, 6) by means of at least one wall disposed between the two helium tanks.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: August 28, 2012
    Assignees: Bruker Biospin GmbH, Forschungszentrum Karlsruhe GmbH
    Inventors: Theo Schneider, Gerhard Roth, Arne Kasten
  • Publication number: 20120214672
    Abstract: The arrangement method of superconducting wires of a superconducting cable, includes: in a case where a refrigerator is installed at one of terminal structures provided on both sides of a superconducting cable, and a cooling fluid is passed through the superconducting cable by a pump for cooling, setting the numbers of superconducting wires of sections of the superconducting cable installed between the terminal structures on both the sides to be different depending to temperatures of the sections, wherein the numbers of superconducting wires are increased from the section of the superconducting cable having the lowest temperature to the section thereof having the highest temperature while maintaining a current-carrying capability.
    Type: Application
    Filed: August 26, 2011
    Publication date: August 23, 2012
    Applicant: LS CABLE LTD.
    Inventors: Chang Youl CHOI, Su Kil LEE, Choon Dong KIM, Hyun Man JANG, Keun Tae LEE, Seok Hern JANG, Yang Hoon KIM
  • Publication number: 20120202697
    Abstract: In a cylindrical superconducting magnet system for magnetic resonance imaging, primary superconducting coils are positioned within an outer vacuum chamber. A thermal radiation shield surrounds the primary superconducting coils. A gradient coil assembly is axially aligned with the primary superconducting coils. A mechanical support assembly is radially positioned outside of the primary superconducting coils and is mechanically attached to the gradient coil assembly by mechanical attachments which pass through through-holes through the outer vacuum chamber and the thermal radiation shield.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 9, 2012
    Inventor: Simon James Calvert
  • Patent number: 8238988
    Abstract: A superconducting magnet assembly and method of cooling a superconducting magnet assembly.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: August 7, 2012
    Assignee: General Electric Company
    Inventor: Ernst Wolfgang Stautner
  • Patent number: 8238992
    Abstract: An arrangement is specified for current limiting having a superconducting cable (SK) which is arranged in a cryostat (KR) which has an outer wall which comprises two metallic tubes (1, 2) which are arranged concentrically with respect to one another and between which vacuum insulation (3) is incorporated. The cryostat (KR) surrounds a free space (FR) for a coolant to pass through, in which free space (FR) the superconducting cable (SK) is arranged. It also has an inner wall (IW) which surrounds a cylindrical cavity (HR) and likewise comprises two metallic tubes (4, 5) which are arranged concentrically with respect to one another, between which vacuum insulation (6) is incorporated, and which is located within the outer wall (AW) and is separated therefrom by the free space (FR). The superconducting cable (SK) which has a superconducting conductor, a dielectric surrounding the same and a superconducting screen which is arranged above the same, is wound in a helical shape around the inner wall (IW).
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: August 7, 2012
    Assignee: Nexans
    Inventors: Rainer Soika, Mark Stemmle
  • Publication number: 20120196753
    Abstract: A cooling system and method for cooling superconducting magnet coils are provided. One magnet system for a superconducting magnet device includes a cooling system having at least one coil support shell, a plurality of superconducting magnet coils supported by the at least one coil support shell and a plurality of cooling tubes thermally coupled to the at least one coil support shell. The magnet system also includes a cryorefrigerator system fluidly coupled with the plurality of cooling tubes forming a closed circulation cooling system.
    Type: Application
    Filed: January 31, 2011
    Publication date: August 2, 2012
    Inventors: Evangelos Trifon Laskaris, James Pellegrino Alexander, Paul St. Mark Shadforth Thompson, Tao Zhang, William Chen, Longzhi Jiang
  • Publication number: 20120190552
    Abstract: A precooling device for a thermal radiation shield of a superconducting magnet has a mechanical heat conductive member in contact with the thermal radiation shield of a superconducting magnet, for cooling the thermal radiation shield down to a second temperature before the second stage of precooling of the superconducting magnet, this second temperature being below the temperature of the thermal radiation shield after a first stage of precooling of the superconducting magnet. A superconducting magnet and magnetic resonance imaging equipment embody such a precooling device. The precooling device reduces the external radiation heat onto a cryogen vessel, thereby reducing the consumption of cryogen.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 26, 2012
    Inventors: Zhi Chun Fang, Lei Yang
  • Publication number: 20120190553
    Abstract: In a cold superconducting joint, a joint cup is provided. Lengths of superconducting filaments are placed in the joint cup. A superconducting material fills the joint cup in contact with the superconducting filaments and in thermal and mechanical contact with a pipe carrying a cryogen. The pipe extends into the joint cup and the superconducting material extends around the pipe within the joint cup.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 26, 2012
    Inventors: Mark James Le Feuvre, Michael Simpkins
  • Patent number: 8229527
    Abstract: An annular end piece for a cylindrical vacuum vessel, comprising a metal end piece (42); an outer decorative shell (44) spaced away from a surface of the metal end piece; and a layer of solid foam filling the space between the metal end piece and the outer decorative shell.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: July 24, 2012
    Assignee: Siemens Plc
    Inventors: Mark James Le Feuvre, Edgar Charles Malcolm Rayner