Significant Cryogenic Refrigeration System Having Superconductor Component As Part Of The System Or Having Superconductor Device Or Material To Be Cooled Present Therewith (e.g., Peltier Effect Device, Etc.) Patents (Class 505/163)
  • Publication number: 20100041976
    Abstract: A cryostat has a cryogen vessel retained within an outer vacuum container, a thermally insulating jacket surrounding the outer vacuum container and insulating it from ambient temperature.
    Type: Application
    Filed: October 31, 2008
    Publication date: February 18, 2010
    Inventors: Russell Peter Gore, Edgar Charles Malcolm Rayner, Stephen Paul Trowell
  • Publication number: 20100022395
    Abstract: A cryostat has a tank for accommodation of a coolant and at least one superconducting magnet coil to generate a magnetic field. The tank has on a top side at least one tower pipe for filling the coolant and/or for venting vaporized coolant. In order to immediately indicate if and when sealing of filling pipes and discharging pipes with (for example) ice has occurred, a pressure sensor is connected via a pressure sensor pipe with the inside of the tank.
    Type: Application
    Filed: July 16, 2009
    Publication date: January 28, 2010
    Inventor: Gerhard Bittner
  • Publication number: 20090315655
    Abstract: A coil comprises a set of windings with a generally annular shape and formed by a plurality of series-connected partial windings made of a superconductor with a high critical temperature, in which these partial windings are arranged next to each other in stratified form, and at least one cooling sheet which is made of thermally conductive material and arranged in contact with this set of windings and which is designed to be connected in a thermally conductive manner to a cryogenic cooling system.
    Type: Application
    Filed: December 23, 2008
    Publication date: December 24, 2009
    Applicant: ASG SUPERCONDUCTORS S.p.A.
    Inventors: DANIELE DAMIANI, Adamo Laurenti, Roberto Marabotto, Mauro Perrella Segre
  • Publication number: 20090291850
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field Bo in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the LTS section (5, 6) is located in a first helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that the HTS section (4) is disposed radially within the LTS section (5, 6) in a separate helium tank (19) of the cryostat (1) having normal liquid helium and is separated from the LTS section (5, 6) by means of at least one wall disposed between the two helium tanks.
    Type: Application
    Filed: March 7, 2007
    Publication date: November 26, 2009
    Inventors: Theo Schneider, Gerhard Roth, Arne Kasten
  • Publication number: 20090280988
    Abstract: A coreless and brushless direct-current motor includes an armature coil wound without core and formed in the shape of a saddle; an outside rotor magnet formed by a permanent magnet, the outside rotor magnet being provided at an outside of the armature coil in the shape of a cylinder so as to face the armature coil, the outside rotor magnet being rotated by the magnetic field; an inside rotor magnet formed by a permanent magnet, the inside rotor magnet being provided in the shape of a cylinder at an inside of the armature coil so that the inside rotor magnet has a pole opposite to the outside rotor magnet and a rotational shaft is independently provided; an output shaft connected to the inside rotor magnet; and a sealing part of a barrier structure which sealing part partitions the armature coil and the outside rotor magnet to an outside of the inside rotor magnet and seals the armature coil and the outside rotor magnet.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 12, 2009
    Applicant: SUMITOMO HEAVY INDUSTRIES, LTD.
    Inventors: Tatsuo Koizumi, Tomohiro Koyama, Teruo Takahashi, Makoto Ishikawa
  • Publication number: 20090280990
    Abstract: A superconductive synchronous machine having superconductive magnetic bearings. A superconductor (6) on the stator side as a first bearing part is disposed opposite from a second bearing part (12) on the rotor side, the second being part being magnetically and mechanically connected via a flux feed section (11) to the pole core (9) of the rotor. A superconductive exciting coil (10) in the rotor pole core (9) excites both the pole core (9) and the second bearing part (12). In order to cool the superconductive exciting coil (10), coolant feeds (16, 16?, 24, 25) are provided, which are sealed in relation to the rotor shaft (8, 8?) by ferrofluid seals (26). The power for the exciting coil is fed via slip rings (21) or by being inductively connected (29) at the rotor shaft (8?).
    Type: Application
    Filed: June 27, 2007
    Publication date: November 12, 2009
    Applicant: Seimens Aktiengesellschaft
    Inventor: Peter Kummeth
  • Publication number: 20090280989
    Abstract: A method for controlling egress of gas from a cryogen vessel (12) housing a superconducting magnet (10). A controller (30) receives data indicative of gas pressure within the cryogen vessel; a controlled valve (40) controls the egress of cryogen gas from the cryogen vessel (12); and data is made available to the controller, indicating a state of the magnet. Egress of cryogen gas from the cryogen vessel is controlled by operation of the controlled valve (40) by the controller (30) in response to the available data indicating a state of the magnet.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 12, 2009
    Applicant: Siemens Magnet Technology Ltd.
    Inventors: Eugene Astra, Trevor B. Husband, Nicholas Mann, Philip Alan Charles Walton
  • Publication number: 20090275476
    Abstract: A cryostat assembly includes a first thermal shield positioned outside a working volume and a second thermal shield positioned outside the first thermal shield. A first cryocooler has at least two cooling stages operating with He4, a first stage of the cryocooler being thermally coupled to the second thermal shield, and a second stage of the first cryocooler being thermally coupled to the first thermal shield. A second cryocooler operates with He3 and has at least one cooling stage, a part of the second cryocooler, warmer than the cooling stage of the second cryocooler, being thermally coupled to the second stage of the first cryocooler.
    Type: Application
    Filed: February 23, 2006
    Publication date: November 5, 2009
    Inventor: Milind Diwakar Atrey
  • Publication number: 20090275477
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the magnet coil system is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that heating means are provided which always keep the HTS at an increased temperature TH>TL and TH>2.2 K. The cryostat in accordance with the invention can maintain the HTS section over a long period of time in a reliable manner.
    Type: Application
    Filed: March 7, 2007
    Publication date: November 5, 2009
    Inventors: Gerhard Roth, Axel Lausch
  • Publication number: 20090275478
    Abstract: A superconductor system cooling apparatus, the apparatus comprising a casing, a solid coolant and a cooling circuit; wherein the cooling circuit comprises a heat exchanger, and a connector to couple the heat exchanger to a pre-cool loop of the superconductor system; wherein the cooling circuit further comprises a heat exchange medium to transfer heat between the solid coolant and the superconducting system.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 5, 2009
    Inventors: ANDREW FARQUHAR ATKINS, MARCEL JAN MARIE KRUIP, STEPHEN PAUL TROWELL
  • Publication number: 20090239751
    Abstract: The invention relates to a high voltage electrical connection structure for a superconductive element cooled by a cryogenic fluid in a cryostat and connected to an electrical bushing that passes through at least one enclosure at ambient temperature, said bushing comprising a central conductor having its top end connected by means of a connection arrangement to a connection part extending to outside the enclosure at ambient temperature and passing through a top wall of said enclosure, said central conductor being surrounded over the major fraction of the length by an electrically insulating sheath fastened rigidly to the bottom wall of said enclosure at ambient temperature.
    Type: Application
    Filed: February 18, 2009
    Publication date: September 24, 2009
    Inventors: Nicolas Lallouet, Sebastien Delplace
  • Publication number: 20090233797
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the magnet coil system is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL. The apparatus is characterized in that a chamber (11) is provided within which the HTS sections (4) are held having an internal portion with a sufficiently low pressure such that helium located therein at a temperature of TL is gaseous. The cryostat in accordance with the invention can be utilized to maintain HTS coil sections over a long period of time in a reliable fashion.
    Type: Application
    Filed: March 7, 2007
    Publication date: September 17, 2009
    Inventors: Klaus Schlenga, Marion Klaeser, Thomas Arndt
  • Patent number: 7581403
    Abstract: Energy is stored in the compression of a metastable degenerate Fermi electron gas contained in a compressed metallic base material subjected to a magnetic field in a high pressure cell. Heat energy is introduced to increase the energy of the compressed metastable degenerate Fermi electron gas. The increase in energy causes the magnetic field to increase so that the metastable degenerate Fermi electron gas is further compressed. Absorption of heat results in a decrease in the temperature. Energy can be withdrawn from The system by allowing the metastable degenerate Fermi electron gas to expand against the compressing magnetic field. To prevent development of fissures, the metallic base material is precompressed to provide an allowance for the volume of a metastable Fermi electron gas bubble to be created later.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: September 1, 2009
    Inventor: Daniel H. Deeks
  • Publication number: 20090197769
    Abstract: An electric power feed structure for a superconducting apparatus, which is used to input or output electric power between the cryogenic-temperature side and the room-temperature side, comprises a coolant vessel containing a superconducting section provided in the superconducting apparatus, a vacuum thermal insulation vessel arranged to surround the outer periphery of the coolant vessel, and a feed conductor part having one end arranged in the room temperature side and having the other end connected to the superconducting section. The feed conductor part is divided into a cryogenic-temperature side conductor connected to the superconducting section and a room-temperature side conductor arranged in the room temperature side such that the cryogenic-temperature side conductor and the room-temperature side conductor can be detachably attached to each other.
    Type: Application
    Filed: November 4, 2005
    Publication date: August 6, 2009
    Inventor: Masayuki Hirose
  • Publication number: 20090170706
    Abstract: A superconducting cable line includes a heat insulation pipe for a fluid for transporting a fluid having a temperature lower than an ordinary temperature and a superconducting cable housed in the heat insulation pipe for a fluid. The superconducting cable including a cable core in a heat insulation pipe for a cable is housed in the heat insulation pipe for a fluid to make a temperature difference between the inside and outside of the heat insulation pipe smaller than that in a situation of laying in an atmosphere. In addition, the superconducting cable has a double heat insulation structure formed with the heat insulation pipe for a cable and the heat insulation pipe for a fluids. Therefore, the superconducting cable line can effectively reduce heat intrusion from the outside into the cable.
    Type: Application
    Filed: July 12, 2005
    Publication date: July 2, 2009
    Inventors: Masayuki Hirose, Yuichi Yamada
  • Patent number: 7509815
    Abstract: A superconducting device has a cryosystem to whose cryogenic medium a superconducting appliance and a superconducting switching path (which is electrically connected to it and can be activated thermally by means of a heater) of a superconducting switch are thermally coupled. A pipeline, to whose end the superconducting switching path is thermally coupled, is connected to a coolant area of at least one superconducting appliance. To ensure reliable heating of the switching path when the heater is activated, the pipeline has a cross-sectional constriction which impedes the heat exchange with the coolant area.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: March 31, 2009
    Assignee: Siemens Aktiengesellschaft
    Inventor: Peter van Hasselt
  • Patent number: 7463914
    Abstract: An acyclic homopolar electromechanical power converter that uses superconducting series connected rotor elements for series summation of magnetomotive and electromotive force. The novel rotor assembly comprises a plurality of conductor elements connected in series by superconducting series connections. The behavior of the superconducting series connections provides a form of flux isolation and series summation of forces that has heretofore been impossible in electromechanical power converters. The superconducting series connections further modify the rotor impedance of an acyclic homopolar electromechanical power converter to provide long needed improvements to acyclic homopolar electromechanical power converter designs.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: December 9, 2008
    Assignee: Dynamo Capital, Inc.
    Inventor: Dieter Wolfgang Blum
  • Publication number: 20080278270
    Abstract: Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
    Type: Application
    Filed: May 7, 2007
    Publication date: November 13, 2008
    Applicant: The Boeing Company
    Inventor: John R. Hull
  • Patent number: 7448511
    Abstract: A double-wall tank for storing and shipping cryogenic media, which consists of an inner tank that contains the medium, an outer casing spaced some distance from the inner tank, and an evacuated space located between the inner tank and the outer casing, such that at least one permanent magnet is installed in the evacuated space and is arranged opposite a high-temperature superconductor, so that the inner tank is supported in the casing without contact, has the following features: the high-temperature superconductor (8) is located in the evacuated space (5), both the inner tank (1) and the casing (2) have a neck (3, 4), and the necks (3, 4) are arranged concentrically to each other, the neck (3) of the inner tank (1) is a spirally corrugated metal tube (3), whose outer end is attached to the neck (4) of the casing (2).
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: November 11, 2008
    Assignee: Nexans
    Inventor: Klaus Schippl
  • Publication number: 20080274897
    Abstract: The invention relates to a primary part of a linear motor having a receptacle for a secondary part which can move along an axis in the receptacle, having a plurality of annular coils which are arranged coaxially with respect to the receptacle, and having a yoke, with teeth which are composed of a soft-magnetic material being arranged or formed between the end faces of adjacent coils. In order to provide a primary part or a linear motor which has a high power density in a compact form and allows good cooling with coolant, cooling gaps in which spacers are arranged are formed between the end faces of the coils and the teeth.
    Type: Application
    Filed: November 14, 2006
    Publication date: November 6, 2008
    Inventors: Jan Wiezoreck, Carsten Buhrer
  • Publication number: 20080227647
    Abstract: A cryostat assembly (1) for a superconducting magnet assembly, with a helium tank (2) for liquid helium, whereby the superconducting magnet assembly (6) is located in the helium tank (2), with a nitrogen tank (3) for liquid nitrogen, whereby the nitrogen tank (3) encloses the helium tank (2), and with at least one access tube (4) in which the current lead is mounted through which current can be lead from the room-temperature warm area of the cryostat (1) into the superconducting magnet assembly (6), whereby the current lead assembly comprises at least one current lead with a normal conductor part (13) and a superconductor part (14) made of HTS material, characterized in that a terminal (12) of the at least one current lead, through which the normal conductor part (13) is electrically connected with the superconductor part (14) is thermally coupled with a wall of the nitrogen tank (3).
    Type: Application
    Filed: March 13, 2008
    Publication date: September 18, 2008
    Inventors: Concetta Beneduce, Andreas Kraus, Michael Bauernschmitt
  • Publication number: 20080180202
    Abstract: High-current, compact, flexible conductors containing high temperature superconducting (HTS) tapes and methods for making the same are described. The HTS tapes are arranged into a stack, a plurality of stacks are arranged to form a superstructure, and the superstructure is twisted about the cable axis to obtain a HTS cable. The HTS cables of the invention can be utilized in numerous applications such as cables employed to generate magnetic fields for degaussing and high current electric power transmission or distribution applications.
    Type: Application
    Filed: July 23, 2007
    Publication date: July 31, 2008
    Applicant: American Superconductor Company
    Inventors: Alexander Otto, Ralph P. Mason, James F. Maguire, Jie Yuan
  • Patent number: 7383688
    Abstract: The superconducting device has a cryogenic system to whose first refrigerant there is thermally coupled a superconducting unit and a superconducting switching path, which is electrically connected to said unit and is to be activated thermally by a heater, of a superconducting switch. A first pipeline to whose end the superconducting switching path is thermally coupled is to be connected to a refrigerant space of the superconducting unit. In order to ensure reliable heating of the switching path upon activation of the heater, the first pipeline is to have a cross sectional constriction impeding the exchange of heat with the refrigerant space. Moreover, the switching path is to be thermally coupled to a comparatively higher temperature level via a further, closed pipeline with a second refrigerant.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: June 10, 2008
    Assignee: Siemens Atkiengesellschaft
    Inventor: Peter van Hasselt
  • Patent number: 7370481
    Abstract: Liquid nitrogen is filled in a low temperature vessel; an ejector that sucks liquid nitrogen by blowing a cooling agent (liquid or gas) such as low temperature helium gas or liquid helium of pressure higher than in the space within the vessel is disposed in the vessel; the liquid nitrogen blown with the cooling agent is cooled by the cooling agent to become fine particles of solid nitrogen which fall down; and gas in a space of the vessel is discharged out of the vessel so as to maintain the pressure of the space higher than the atmospheric pressure. A gaseous phase of liquid nitrogen in an adiabatic vessel is depressurized to vaporize nitrogen in a liquid phase so that the temperature of the nitrogen reaches the triple point of nitrogen by lowering the temperature to thereby produce solid nitrogen by keeping the temperature at the triple point, and that the produced solid nitrogen is transformed into slush by stirring the content of the adiabatic vessel.
    Type: Grant
    Filed: September 16, 2006
    Date of Patent: May 13, 2008
    Assignee: Mayekawa Mfg. Co., Ltd.
    Inventors: Kuniaki Kawamura, Akito Machida, Masamitsu Ikeuchi, Kazuhiro Hattori, Kouichi Matsuo, Hideharu Yanagi
  • Patent number: 7193336
    Abstract: A method and apparatus for reducing conductive thermal losses in high-current cryogenic power electronics systems needing large cables to interface between warm and cold environments. Thermal losses increase with increasing cross-sectional area. The total current at the warm/cold interface is split into many smaller currents by splitting the power buss into a plurality of parallel leads. Respective physical switches in each smaller lead at the interface interrupt current flow, and at the same time open the path for thermal conduction along the lead. When little or no current is flowing through the system, selected smaller leads of the power buss are physically opened by the associated switches to stop the thermal and electrical flow along these leads. Current diverts to another parallel lead in the buss but the cross section for heat flow is reduced at the interface.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: March 20, 2007
    Inventors: Otward M. Mueller, Michael J. Hennessy
  • Patent number: 7058436
    Abstract: A superconducting filter apparatus having a refrigerator for cooling the superconducting filter to cryogenic temperatures, a pilot signal generator for generating a pilot signal that is outside the pass band and inputting the pilot signal to the superconducting filter together with an antenna receive signal, and a discriminating unit for discriminating abnormality in the refrigerator. If the refrigerator malfunctions and temperature of the superconducting filter rises, the pass band of the superconducting filter shifts to the low-frequency side and crosses the frequency of the pilot signal. The pilot signal passes through the superconducting filter at this time. The discriminating unit discriminates abnormality in the refrigerator based upon the pilot signal contained in the output of the superconducting filter.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: June 6, 2006
    Assignee: Fujitsu Limited
    Inventors: Manabu Kai, Toru Maniwa
  • Patent number: 6936771
    Abstract: Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 30, 2005
    Assignee: Southwire Company
    Inventors: Uday K. Sinha, Jerry Tolbert
  • Patent number: 6501970
    Abstract: Viable (HT) superconductor-based processing is disclosed comprising the controlled conversion of energy resulting from application of a (HT) superconductor to an electric, magnetic, electromagnetic and/or gravitational field, wherein the converted energy is released from a corresponding chill system in order to maintain a superconducting state of the (HT) superconductor under controlled extrinsic or boundary conditions. A closed vessel is instrumental to transform said energy once created into a mechanical work, a partial chill gas mass per operating time interval, i.e. &dgr;dmV/&dgr;t, and a partial conduction enthalpy. A corresponding chill system comprises optionally at least one aeropneumatic accumulator designed to operate at least one (HT) superconductor-based overpressure vessel or dewar accommodating at least one superconductor element immersed into a liquid chill agent such as liquid nitrogen of defined heat capacity per volume superconductor employed.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: December 31, 2002
    Assignee: Non-Equilibrium Materials and Processing (NEMP)
    Inventors: Joerg Heise, Wolf-Ruediger Canders, Wilfried Hedderich, Franz Hehmann
  • Patent number: 6191073
    Abstract: The invention relates to a series of layers containing at least one layer on the basis of REBa2CU3O7-Z or with a comparable crystallographic structure, wherein said layer is connected to a non-superconductive layer. The only material chosen for the non-superconductive layer is material containing atomic components which are chemically compatible with the superconductive material of the high temperature superconductive layer. Such a series of layers enables a multilayer system or also a cryogenic component, e.g. a Josephson contact, to be formed.
    Type: Grant
    Filed: February 27, 1999
    Date of Patent: February 20, 2001
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Ricardo Hojczyk, Ulrich Poppe, Chunlin Jia
  • Patent number: 5991647
    Abstract: A high temperature superconductor lead assembly for reducing the heat leak into a cryocooled system features a shroud configured for at least partial submersion in a cryogenic fluid contained within a bath chamber, and a high temperature superconductor lead element at least partially contained within the shroud. In use, a portion of the high temperature superconductor lead element contained within the shroud extends below a fluid level of the cryogenic fluid in the bath chamber. The portion of the high temperature superconductor lead element is thermally shielded by the shroud such that it is maintained at a temperature higher than the temperature of the cryogenic fluid. The shroud is a double-walled vacuum structure with a sealed end and an open end. In use, the open end is submerged in the cryogenic fluid.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: November 23, 1999
    Assignee: American Superconductor Corporation
    Inventors: William E. Brockenborough, Bruce Barton Gamble, Anthony J. Rodenbush, Ahmed Sidi-Yekhlef
  • Patent number: 5759960
    Abstract: A superconductive device (e.g., magnet) having a superconductive lead assembly and cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end thermally connected to the first stage and a second end thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in surrounding compressive contact with the first ceramic superconductive lead, and a rigid, nonporous support tube surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connected to the second stage.
    Type: Grant
    Filed: May 16, 1996
    Date of Patent: June 2, 1998
    Assignee: General Electric Company
    Inventors: Robert Adolph Ackermann, Kenneth Gordon Herd, Evangelos Trifon Laskaris, Richard Andrew Ranze
  • Patent number: 5747418
    Abstract: An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: May 5, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John D. Metzger, Mohamed S. El-Genk
  • Patent number: 5571606
    Abstract: A superconductive lead assembly for a superconductive device (e.g., magnet) cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end flexibly, dielectrically, and thermally connected to the first stage and a second end flexibly, dielectrically, and thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in general surrounding compressive contact with the first ceramic superconductive lead, and a rigid support tube generally surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connectable to the second stage.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: November 5, 1996
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, Kenneth G. Herd, Evangelos T. Laskaris, Richard A. Ranze
  • Patent number: 5552211
    Abstract: A superconductive lead assembly for a superconductive device (e.g., magnet) cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end flexibly, dielectrically, and thermally connected to the first stage and a second end flexibly, dielectrically, and thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in general surrounding compressive contact with the first ceramic superconductive lead, and a rigid support tube generally surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connectable to the second stage.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: September 3, 1996
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, Kenneth G. Herd, Evangelos T. Laskaris, Richard A. Ranze
  • Patent number: 5552372
    Abstract: A superconductive lead assembly for a superconductive device (e.g., magnet) cooled by a cryocooler coldhead having first and second stages. A first ceramic superconductive lead has a first end flexibly, dielectrically, and thermally connected to the first stage and a second end flexibly, dielectrically, and thermally connected to the second stage. A jacket of open cell material (e.g., polystyrene foam) is in general surrounding compressive contact with the first ceramic superconductive lead, and a rigid support tube generally surrounds the jacket. This protects the first ceramic superconductive lead against shock and vibration while in the device. The rigid support tube has a first end and a second end, with the second end thermally connectable to the second stage.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: September 3, 1996
    Assignee: General Electric Company
    Inventors: Robert A. Ackermann, Kenneth G. Herd, Evangelos T. Laskaris, Richard A. Ranze
  • Patent number: 5396206
    Abstract: A superconducting magnet lead assembly for a cryocooler-cooled superconducting magnet having a design current of between generally 50 and 250 amperes. A DBCO (Dysprosium Barium Copper Oxide), YBCO (Yttrium Barium Copper Oxide), or BSCCO (Bismuth Strontium Calcium Copper Oxide) superconducting lead has its ends flexibly, dielectrically, and thermally connected, one end to the generally 30 to 50 Kelvin first stage and the other end to the generally 8 to 30 Kelvin second stage of the cryocooler coldhead. The superconducting lead has a generally constant cross-sectional area along its length. The design current, the lead's length, and the lead's cross-sectional area are chosen such that the design current times the lead's length divided by the lead's cross-sectional area is between generally 720 and 880 amperes per centimeter for a DBCO or YBCO lead and is between generally 180 and 220 amperes per centimeter for a BSCCO lead. The superconducting lead will not itself precipitate a magnet quench (i.e.
    Type: Grant
    Filed: March 14, 1994
    Date of Patent: March 7, 1995
    Assignee: General Electric Company
    Inventors: Kenneth G. Herd, Evangelos T. Laskaris, Paul S. Thompson