Other Rare Earth (i.e., Sc,y,ce,pr,nd,pm,sm,eu,gd,tb,dy,ho,er,tm,yb,lu) And Alkaline Earth (i.e., Ca,sr,ba,ra) Patents (Class 505/779)
  • Patent number: 8843126
    Abstract: A programmable device generates a test signal indicative of a RF signal and receives a processed test signal indicative of the test signal after processing thereof by one of a RF transmission system and a RF receiving system. The programmable device performs a comparison between the processed test signal and calibration data, and generates a report based on the comparison. A hardwire signal router provides the test signal to one of the RF transmission system and the RF receiving system, and provides the processed test signal to the programmable device. The router includes a first switching mechanism and a second switching mechanism operating in a coordinated fashion to define one of a first state for testing the RF transmission system and a second state for testing the RF receiving system.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: September 23, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Curtis Z. Richard
  • Patent number: 8716187
    Abstract: The films of this invention are high temperature superconducting (HTS) thin films specifically optimized for microwave and RF applications. In particular, this invention focuses on compositions with a significant deviation from the 1:2:3 stoichiometry in order to create the films optimized for microwave/RF applications. The RF/microwave HTS applications require the HTS thin films to have superior microwave properties, specifically low surface resistance, Rs, and highly linear surface reactance, Xs, i.e. high JIMD. As such, the invention is characterized in terms of its physical composition, surface morphology, superconducting properties, and performance characteristics of microwave circuits made from these films.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 6, 2014
    Assignee: Superconductor Technologies, Inc.
    Inventors: Brian Moeckly, Viktor Gliantsev, Shing-jen (Luke) Peng, Balam Willemsen
  • Patent number: 7867950
    Abstract: The films of this invention are high temperature superconducting (HTS) thin films specifically optimized for microwave and RF applications. In particular, this invention focuses on compositions with a significant deviation from the 1:2:3 stoichiometry in order to create the films optimized for microwave/RF applications. The RF/microwave HTS applications require the HTS thin films to have superior microwave properties, specifically low surface resistance, Rs, and highly linear surface reactance, Xs, i.e. high JIMD. As such, the invention is characterized in terms of its physical composition, surface morphology, superconducting properties, and performance characteristics of microwave circuits made from these films.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 11, 2011
    Assignee: Superconductor Technologies, Inc.
    Inventors: Brian Moeckly, Viktor Gliantsev, Shing-jen (Luke) Peng, Balam Willemsen
  • Publication number: 20100149707
    Abstract: A method of controlling fault currents within a utility power grid is provided. The method may include coupling a superconducting electrical path between a first and a second node within the utility power grid and coupling a non-superconducting electrical path between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path may be electrically connected in parallel. The superconducting electrical path may have a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path may have a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
    Type: Application
    Filed: January 25, 2010
    Publication date: June 17, 2010
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 7667562
    Abstract: A new class of fundamental devices and methods for their manufacture and use. The bulk magnetic field replicators of the present invention require no precision machining or alignment to accurately reproduce magnetic fields of any complexity, nor extreme positional stability to maintain superconductivity. Such bulk devices may be formed of either low or high critical temperature superconductive materials, but are particularly adapted to formation from high critical temperature materials.
    Type: Grant
    Filed: February 20, 1990
    Date of Patent: February 23, 2010
    Inventor: Roy Weinstein
  • Patent number: 7547661
    Abstract: An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10×10?4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa2Cu3Oy composition under identical testing conditions.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: June 16, 2009
    Assignee: Los Alamos National Security, LLC
    Inventors: Judith L. Driscoll, Stephen R. Foltyn
  • Patent number: 7112556
    Abstract: Superconducting ceramics having relatively high critical temperatures are composed of rare earth metals, alkaline earth metals and copper. They have few defects and a limited polycrystalline interfacial area.
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: September 26, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 6740623
    Abstract: An Hg- or Nd-based oxide superconductor comprises Ba as a constituent element and has a content of carbon as an impurity at a level of not greater than 2.0 atomic % whereby the oxide superconductor stably shows high superconducting characteristics without causing degradation with time. For its production, BaO, which has a reduced content of carbon impurity of 0.5% or below, is provided as a feed stock for Ba, and the starting materials are mixed and processed in a dry atmosphere wherein an amount of a carbon-containing gas is suppressed to a certain level, thereby obtaining the oxide superconductor.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: May 25, 2004
    Assignee: International Superconductivity Technology Center
    Inventors: Ayako Yamamoto, Wei-Zhi Hu, Setsuko Tajima
  • Patent number: 6624122
    Abstract: Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: September 23, 2003
    Assignee: The Regents of the University of California
    Inventors: Terry G. Holesinger, Quanxi Jia, Stephen R. Foltyn
  • Patent number: 6592782
    Abstract: Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: AxA′x′A″2-(x+x′)ByFey′B″2-(y+y′)O5+z where: x and x′ are greater than 0; y and y′ are greater than 0; x+x′ is equal to 2; y+y′ is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A′ is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A″ is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B″ is Co or Mg, with the exception that when B″ is Mg, A′ and A″ are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: July 15, 2003
    Assignee: Eltron Research, Inc.
    Inventors: Richard MacKay, Michael Schwartz, Anthony F. Sammells
  • Patent number: 6559103
    Abstract: A process is provided for preparing solid superconducting mixed-metal oxides whereby the superconductor can be formed into any predetermined shape by way of viscous sol precursors. The superconductors are also formed by this process into homogeneous phases.
    Type: Grant
    Filed: March 17, 1989
    Date of Patent: May 6, 2003
    Assignee: The Boeing Company
    Inventors: Brad Lee Kirkwood, Thomas S. Luhman, Ronald Roy Stephenson, Michael Strasik
  • Patent number: 6451450
    Abstract: A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO2, YSZ, LaAlO3, SrTiO3, Y2O3, RE2O3, SrRuO3, LaNiO3 and La2ZrO3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: September 17, 2002
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Donald M. Kroeger, Mariappan Paranthaman, Dominic F. Lee, Roeland Feenstra, David P. Norton
  • Patent number: 6441394
    Abstract: Using an oxide superconductor that does not require cryogenic temperatures, a superconducting tunnel junction device is provided which can accurately control the magnitudes of critical current and step voltage necessary for electronics applications and which has good characteristics as designed. The intrinsic Josephson superconducting tunnel junction device includes an oxide superconductor defined by a general expression (I): Bi2−zPbzSr2Can(1−x)RnxCun+1O2n+6 (n≧1, 0<x≦0.2, 0≦z≦1.0, R: rare-earth element).
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: August 27, 2002
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yuji Kasai, Shigeki Sakai
  • Patent number: 6281171
    Abstract: A Mg-doped high-temperature superconductor having low superconducting anisotropy includes a two-dimensional layered structure constituted by a charge reservoir layer and a superconducting layer, wherein some or all atoms constituting the charge reservoir layer are Cu and O atoms, metallizing or rendering the charge reservoir layer superconducting, a portion of the Ca of the CunCan−1O2n constituting the superconducting layer is replaced by Mg, increasing superconductive coupling between CuO2 layers, a thickness of the superconducting layer is increased, and therefore coherence length in a thickness direction is increased based on the uncertainty principle, lowering superconducting anisotropy.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: August 28, 2001
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Hideo Ihara, Shyam Kishore Agarwal
  • Patent number: 5958840
    Abstract: An oxide superconductor which has high mechanical strength and exhibits favorable magnetic properties and high resistance to environment. Further, a method of manufacturing this oxide superconductor, namely, a method of manufacturing a RE--Ba--Cu--O oxide superconductor (RE is one or more kinds of rare earth elements including Y) by performing a treatment, which includes at least a burning process to be performed in a range of temperatures that are higher than the melting point of a raw material mixture containing a RE-compound raw material, a Ba-compound raw material and a Cu-compound raw material, on the aforesaid raw material mixture. This method further comprises the addition step of adding 1 to 30 in percent by weight (wt %) of Ag to the raw material mixture, and the crystallization step of melting the raw material mixture, to which Ag is added, at a temperature that is not lower than a temperature at which the raw material mixture is decomposed and fused into the RE.sub.2 BaCuO.sub.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: September 28, 1999
    Assignees: Dowa Mining Co., Ltd., Chubu Electric Power Company, Incorporated
    Inventors: Shuichi Kohayashi, Shuetsu Haseyama, Shuji Yoshizawa, Shigeo Nagaya
  • Patent number: 5952268
    Abstract: The present invention relates to method of preparing a superconductor material consisting in preparing a precursor constituted by a powder of Ba.sub.2 Ca.sub.n-1 Cu.sub.n+1 O.sub.x or Ba.sub.2 Ca.sub.n-1 Cu.sub.n+1 O.sub.x where n is an integer greater than 1 and x is greater than 2n+2; in mixing said powder with silver oxide power, optionally in the presence of excess copper oxide, in a proportion of one mole of precursor for one to three moles of silver oxide; and in heating to high temperature and high pressure.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: September 14, 1999
    Assignee: Alcatel
    Inventors: Miguel Angel Alario-Franco, Catherine Chaillout, Jean-Jacques Capponi, Jean-Louis Tholence, Benedicte Souletie
  • Patent number: 5906964
    Abstract: Highly oriented HgBa.sub.2 Ca.sub.2 Cu.sub.3 O.sub.8+.delta. on Ni-tapes with a buffer layer of Cr/Ag or Cr/(Ag--Pd) have been described with a high transition temperature are described along with, one and two step methods of manufacture.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: May 25, 1999
    Assignee: University of Houston
    Inventors: Ching-Wu Chu, Ruling L. Meng, Yu-Yi Xue
  • Patent number: 5849667
    Abstract: A high critical temperature and high critical current density superconductor is disclosed which contains a metal oxide expressed by the following formula (I):(R.sup.1.sub.1-x, Ba.sub.x)Ba.sub.2 Cu.sub.3 O.sub.d (I)wherein R.sup.1 stands for at least one element selected from the group consisting of La, Nd, Sm, Eu and Gd, x is a number greater than 0 but not greater than 0.5 and d is a number between 6.2 and 7.2. Fine phases of RE211, RE422 and/or a metal oxide expressed by the formula (R.sup.2.sub.1-z, Ba.sub.z) (Ba.sub.1-y, R.sup.2.sub.y).sub.2 Cu.sub.3 O.sub.p (R.sup.2 =La, Nd, Sm, Eu or Gd) may be dispersed in a matrix of the matrix phase of the formula (I). The above superconductor may be obtained by cooling a melt having a temperature of 1,000.degree.-1,300.degree. C. and containing R.sup.1, Ba, Cu and O at a cooling rate of 5.degree. C./hour or less under a partial pressure of oxygen of between 0.00001 and 0.05 atm, followed by annealing at 250.degree.-600.degree. C. in an oxygen atmosphere.
    Type: Grant
    Filed: July 19, 1996
    Date of Patent: December 15, 1998
    Assignees: International Superconductivity Technology Center, Railway Technical Research Institute, Shikoku Denryoku Kabushikigaisha, Tosoh Corporation
    Inventors: Masato Murakami, Sang-Im Yoo, Naomichi Sakai, Hiroshi Takaichi, Takamitsu Higuchi, Shoji Tanaka
  • Patent number: 5776861
    Abstract: Hg,Tl-based superconductors are produced by HIPping. A new superconducting phase, having a double (Hg,Tl)-layer and the nominal composition:(Hg.sub.1-x Tl.sub.x).sub.2 (Ba.sub.1-a Sr.sub.a).sub.2 (Ca.sub.1-b Y.sub.b).sub.2 Cu.sub.3 O.sub.zwhere 0.ltoreq.x.ltoreq.0.95, 0.ltoreq.a.ltoreq.1, 0.ltoreq.b.ltoreq.1, and z is sufficient to provide said phase with a resistive and magnetic superconducting transition of 100K or above, can be produced. Either precursor oxides, or partially or fully reacted mixed oxides, can be used in the HIPping mixture.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: July 7, 1998
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Louis E. Toth, William Lechter, Earl F. Skelton, Michael Osofsky
  • Patent number: 5716907
    Abstract: The present invention is an oxide superconductor containing alkaline earth metal M (where M is at least one element of Ba, Sr, and Ca) and having a crystalline structure in which a portion based on two rock-salt structures including the alkaline earth metal M, oxygen, and chlorine, and a 2n-1 piece of infinite layer structure portion are alternately layered on each other, said 2n-1 piece of infinite layer structure portion having an atom layer including copper atoms and oxygen atoms in a ratio of 1 to 2 and of an atom layer including only M atoms layered on each other (where n is an integer of 1 or more and where copper atoms and oxygen atom are contained in a ratio of 1 to 2 if n is 1).
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: February 10, 1998
    Assignees: International Superconductivity Technology Center, The Furukawa Electric Co., Ltd., Tohoku Electric Power
    Inventors: Tadashi Tatsuki, Seiji Adachi, Makoto Itoh, Toshiyuki Tamura, Changqin Jin, Xiao-Jing Wu, Hisao Yamauchi
  • Patent number: 5620945
    Abstract: Processes are provided for forming a superconductive composite, comprising a superconductive metal oxide and a ceramic. The composite may be formed in any desired shape. Liquid nitrogen can be held around the superconductor longer and delivered in a more controlled fashion and the composite has improved resistance to shatter and thermal shock. The ceramic also provides protection from atmospheric deterioration of the superconductive oxide.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: April 15, 1997
    Assignee: The Boeing Company
    Inventors: Anna L. Baker, Michael Strasik
  • Patent number: 5614471
    Abstract: A superconductive material is in composition expressed as Y.sub.0.33 Ba.sub.0.67).sub.a Cu.sub.b (OF).sub.c. The usual a, b and c are so selected as to satisfy a relation expression ax (mix valence of A)+bx (mix valence of B)=cx (mix valence of C).
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: March 25, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kengo Ohkura, Hajime Hitotsuyanagi, Hiromi Takei
  • Patent number: 5599775
    Abstract: Provided is an Hg--Ba--Ca--Cu--O oxide superconductor having a high superconductivity transition temperature Tc and a method which can prepare the same in excellent reproducibility. This oxide superconductor consists essentially of Hg, Ba, Ca, Cu and O, and is expressed in a chemical formula (Hg.sub.1-X Cu.sub.X)Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub.y, wherein X=0.05 to 0.7 and Y=8 to 8.75. A method of preparing the oxide superconductor comprises a step of mixing raw materials of Hg, Ba, Ca and Cu with each other so that (Hg+Ba):Ca:Cu =b:1:C and Hg:Ba=(1-a):a, wherein 0.625.ltoreq.a.ltoreq.0.714, 1.ltoreq.b.ltoreq.3 and 1.667.ltoreq.c.ltoreq.3.444, in mole ratio, and compression-molding the mixture, and a step of heat treating a compact obtained by the compression molding. This oxide superconductor has a superconductivity transition temperature Tc of 134 K, which is the highest at present.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: February 4, 1997
    Assignees: Sumitomo Electric Industries, Ltd., Tohoku Electric Power Co., Inc., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center
    Inventors: Makoto Itoh, Ayako Yamamoto, Kazuyuki Isawa, Seiji Adachi, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 5589441
    Abstract: Processes are provided for forming a superconductive composite, comprising a superconductive metal oxide and a ceramic. The composite may be formed in any desired shape. Liquid nitrogen can be held around the superconductor longer and delivered in a more controlled fashion and the composite has improved resistance to shatter and thermal shock. The ceramic also provides protection from atmospheric deterioration of the superconductive oxide.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: December 31, 1996
    Assignee: The Boeing Company
    Inventors: Anna L. Baker, Michael Strasik
  • Patent number: 5583093
    Abstract: Provided is a metal oxide material represented by the composition formula of Ln.sub.a Sr.sub.b Cu.sub.3-x M.sub.x O.sub.c, where 2.7.ltoreq.a+b.ltoreq.3.3; 0.8 .ltoreq.a.ltoreq.1.2; 6.ltoreq.c.ltoreq.9; and 0.05 .ltoreq.x.ltoreq.0.7, Ln is at least one element selected from the group of elements of Y and lanthanoids or an atomic group consisting of said elements, and M is at least one element selected from the group of elements of Ti, V, Ga, Ge, Mo, W and Re or an atomic group consisting of said elements.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 10, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Den, Tamaki Kobayashi
  • Patent number: 5578554
    Abstract: A metal oxide material comprises components, the composition of which is expressed by the following composition formula (I):Ln.sub.a Ca.sub.b Sr.sub.c Ba.sub.d Cu.sub.2+e-h M.sub.h O.sub.6+f C.sub.g(I)wherea+b+c+d=3, 0.2.ltoreq.a.ltoreq.0.8,0.2.ltoreq.b.ltoreq.1.0, 0.3.ltoreq.c.ltoreq.2.2,0.ltoreq.d.ltoreq.1.7, 0.ltoreq.e.ltoreq.0.8,0.ltoreq.h.ltoreq.0.2, 0<f<2.0,0.2.ltoreq.g.ltoreq.1.0,Ln is one or more elements or atomic groups selected from a group consisting of Y and lanthanoid elements and M is one or more elements or atomic groups selected from a group consisting of Al, Si, Ti, V, Cr, Fe, Co, Ga, Ge and Pd.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: November 26, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jun Akimitsu, Norio Kaneko, Tohru Den, Tamaki Kobayashi
  • Patent number: 5559084
    Abstract: Disclosed are a composition and a method of preparing a composition of the formula R.sub.2 Q.sub.4 Cu.sub.7 O.sub.x, wherein R is a rare-earth ion or a mixture of rare earth ions, and Q is Ba, or Ba combined with either Sr or Ca or both Sr and Ca. Such compositions have a unique crystalline structure and are superconducting oxides.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: September 24, 1996
    Assignee: Massachusetts Institute of Technology
    Inventors: John B. Vandersande, Gregory J. Yurek, Toshihiro Kogure
  • Patent number: 5556831
    Abstract: A method of treating a part made of a superconductive ceramic of the (Ln).sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-.delta. type, where Ln is chosen from the rare earth elements other than cerium and terbium, the method being designed to reduce the value of .delta., in which method said part is heat treated in an oxidizing atmosphere, said method being wherein, during said treatment, an electric current with a density lying in the range 0.1 A/cm.sup.2 to 2 A/cm.sup.2 is caused to flow through said part, said treatment atmosphere having a partial pressure of oxygen lying in the range 0.1 atmospheres to 1 atmosphere, the treatment temperature lying in the range 200.degree. C. to 500.degree. C., and the duration of said treatment lying in the range 1 hour to 200 hours.
    Type: Grant
    Filed: June 21, 1994
    Date of Patent: September 17, 1996
    Assignee: Alactel Alsthom Compagnie Generale d'Electricite
    Inventors: Alain Wicker, Jean-Pierre Bonnet, Mariano Sanz, Patrice Dordor, Christophe Magro
  • Patent number: 5550105
    Abstract: Superconducting compositions characterized by the formula (Pb.sub.a A.sub.1-a)(Sr.sub.b Ba.sub.1-b).sub.2 (Ca.sub.c B.sub.1-c)Cu.sub.2 O.sub.7 wherein at least half the A atoms are Hg and the remainder, if any, are selected from one or more of Cd, Tl and Cu, B is selected from Y and the rare earths, a is from 0.3 to 0.7, b is from 0 to 1 and c is from 0.2 to 0.5 are disclosed. The superconductive compositions display zero-resistance temperatures up to about 80K.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: August 27, 1996
    Assignee: BICC Public Limited Comapany
    Inventors: Peter P. Edwards, Shu-Fen Hu, Ru-Shi Liu, David A. Jefferson
  • Patent number: 5536705
    Abstract: A family of mercury-containing Sr-(Ca.cndot.Y)-Cu-O superconducting materials having a zero-resistance temperature, T.sub.c(zero), greater than 90 K so that they can be cooled to and maintain the desired superconducting characteristics using relatively less expensive liquid nitrogen, are disclosed. The high-temperature superconductor is represented by the formula of: (Pb.sub.0.5 Hg.sub.0.5)(Sr.sub.2-x Ba.sub.x)(Ca.sub.0.7 Y.sub.0.3)Cu.sub.2 O.sub.7-.delta. ; wherein the value of x ranges between about 0.1 and about 0.6, preferably between about 0.2 and about 0.3. These superconducting materials are prepared by first grinding and mixing in open air constituent oxide powders of PbO, HgO, SrO.sub.2, BaO.sub.2, CaO, Y.sub.2 O.sub.3, and CuO. After mixing, the powder mixture is pressed under a pressure of about 5 ton/cm.sup.2 to form a pellet having a diameter of 8 mm and a thickness of 3 mm. Thereafter, the pressed pellet is wrapped with a gold foil (with a thickness of 0.
    Type: Grant
    Filed: July 31, 1995
    Date of Patent: July 16, 1996
    Assignee: Industrial Technology Research Institute
    Inventors: Ru-shi Liu, Der-Shiuh Shy, Chung-Ho Tai, Hui-Wen Lee
  • Patent number: 5534490
    Abstract: Provided is an Hg-Ba-Ca-Cu-O oxide superconductor having a high superconductivity transition temperature Tc and a method which can prepare the same in excellent reproducibility. This oxide superconductor consists essentially of Hg, Ba, Ca, Cu and O, and is expressed in a chemical formula (Hg.sub.1-X Cu.sub.X)Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub.Y, wherein X=0.05 to 0.7 and Y=8 to 8.75. A method of preparing the oxide superconductor comprises a step of mixing raw materials of Hg, Ba, Ca and Cu with each other so that (Hg+Ba):Ca:Cu=b:1:C and Hg:Ba=(1-a):a, wherein 0.625.ltoreq.a.ltoreq.0.714, 1.ltoreq.b.ltoreq.3 and 1.667.ltoreq.c.ltoreq.3.444, in mole ratio, and compression-molding the mixture, and a step of heat treating a compact obtained by the compression molding. This oxide superconductor has a superconductivity transition temperature Tc of 134 K., which is the highest at present.
    Type: Grant
    Filed: June 23, 1994
    Date of Patent: July 9, 1996
    Assignees: Sumitomo Electric Industries, Ltd., Tohoku Electric Power Co., Inc., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center
    Inventors: Makoto Itoh, Ayako Yamamoto, Kazuyuki Isawa, Seiji Adachi, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 5529981
    Abstract: The present invention discloses a process and apparatus for forming textures in materials. It uses so called "normal aligners" having an anisotropy in the paramagnetic susceptibility within a magnetic field having compositions REBa.sub.2 Cu.sub.3 O.sub.x or Bi(Tl).sub.2 Sr.sub.2 Ca.sub.1-y RE.sub.y Cu.sub.2 O.sub.x, where RE=Eu, Er, Tm, and Yb. One version of the process for preparing bulk and elongated objects comprises two steps. In the first step the material is uniaxially aligned. In the second step uniaxially aligned material is heated to a temperature approaching its melting point while a magnetic field of at least 10.sup.4 Oe, with a direction perpendicular to the axis of uniaxial alignment is simultaneously applied. The process results in biaxially, highly textured bulk and elongated materials.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: June 25, 1996
    Inventor: Alex Holloway
  • Patent number: 5523284
    Abstract: In accordance this invention, there is provided a process for making a bulk superconductive material. In the first step of this process, a diffusion couple is formed from superconductor oxide and impurity oxide. Thereafter, the diffusion couple is heated to a temperature in excess of 800 degrees Centigrade, cooled at a controlled rate, and annealed.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 4, 1996
    Assignee: Alfred University
    Inventors: James G. Fagan, Jr., Vasantha R. W. Amarakoon
  • Patent number: 5512542
    Abstract: A novel metallic oxide of a Ln-Ca-Sr-Ba-Cu-B-O type and a process for manufacturing such a metallic oxide. The above metallic oxide has a composition expressed by the following formula (I):(Ln.sub.1-a Ca.sub.a)(Sr.sub.2-b Ba.sub.b)(Cu.sub.3-c B.sub.c)O.sub.d(I)wherein Ln is one or more kinds of elements selected from the group consisting of Y and lanthanoid elements except for Ce and Tb and wherein the following conditions are met: 0.1.ltoreq.a.ltoreq.0.5, 0.7.ltoreq.b.ltoreq.1.7, 0.1.ltoreq.c.ltoreq.0.5, and 6.5.ltoreq.d.ltoreq.7.5. A process for manufacturing the metallic oxide has the following steps. A mixture of materials including H.sub.3 BO.sub.3 used as a starting material of B is prepared. The resultant mixture is heated at a rate of 5.degree. C. or lower per minute up to 900.degree. C. or lower. Then, it is heated in an oxygen atmosphere at a range from 900.degree.-1050.degree. C.
    Type: Grant
    Filed: August 30, 1994
    Date of Patent: April 30, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Den, Norio Kaneko, Tamaki Kobayashi
  • Patent number: 5512538
    Abstract: Provided is a metal oxide material represented by the composition formula of Ln.sub.a Sr.sub.b Cu.sub.3-x M.sub.x O.sub.c, where 2.7.ltoreq.a+b.ltoreq.3.3; 0.8.ltoreq.a.ltoreq.1.2; 6.ltoreq.c.ltoreq.9; and 0.05 .ltoreq.x.ltoreq.0.7, Ln is at least one element selected from the group of elements of Y and lanthanoids or an atomic group consisting of said elements, and M is at least one element selected from the group of elements of Ti, V, Ga, Ge, Mo, W and Re or an atomic group consisting of said elements.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: April 30, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tohru Den, Tamaki Kobayashi
  • Patent number: 5508253
    Abstract: The present invention is characterized in that oxides of Y, Ba and Cu having a superconductive substance-forming composition are melted, the melt is rapidly cooled and solidified, the obtained sheet is heated at a temperature of 1000.degree. to 1350.degree. C. to produce a partially melted state thereof, and the sheet is gradually cooled at a rate lower than 200.degree. C./hr, whereby a micro-structure in which precipitates of the RE.sub.2 BaCuO.sub.5 phase having a diameter smaller than 20 .mu.m are dispersed in the REBa.sub.2 Cu.sub.3 O.sub.7-y crystal is obtained.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: April 16, 1996
    Assignee: Nippon Steel Corporation
    Inventors: Mitsuru Morita, Katsuyoshi Miyamoto, Masato Murakami, Shoichi Matsuda
  • Patent number: 5498594
    Abstract: A high temperature superconducting system comprising M--R--Tl--Sr--Cu--O wherein: M is at least one compound selected from the group consisting of Hg, Pb, K, and Al; and R represents rare earth metals. In one embodiment, a composition forms a 93K superconducting phase having the composition: M--R--Tl--Sr--Cu--O wherein: M is selected from the group consisting of Hg and Al; and R is a rare earth metal. In another embodiment, the composition comprises M--R--Tl--Sr--Cu--O wherein: M is selected from the group of Pb and/or K; and R is a rare earth metal.
    Type: Grant
    Filed: February 17, 1994
    Date of Patent: March 12, 1996
    Assignee: University of Arkansas
    Inventors: Zhengzhi Sheng, John Meason, Ying Xin
  • Patent number: 5468724
    Abstract: Disclosed herein are high-temperature oxide superconductors of RBa.sub.2 Cu.sub.4 O.sub.8 type, with Ba partly replaced by Sr or Ca, or with R and Ba partly replaced by Ca and Sr, respectively, as represented by the chemical composition formula of R(Ba.sub.1-y Sr.sub.y).sub.2 Cu.sub.4 O.sub.8 or R(Ba.sub.1-z Ca.sub.z).sub.2 Cu.sub.4 O.sub.8 or (R.sub.1-x Ca.sub.x) (Ba.sub.1-y Sr.sub.y).sub.2 Cu.sub.4 O.sub.8. They exhibit superconductivity at high temperatures. Especially, the last one exhibits superconductivity at a higher temperature than the former two. All of them can be made with a less amount of Ba as a deleterious substance, and the first two have improved sinterability. The best results are obtained when they are produced by the process involving the hot hydrostatic pressure treatment of the mixture of raw materials at 850.degree.-1100.degree. C. in an atmosphere composed of an inert gas and oxygen. The process permits a wider selection of Ba raw materials.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: November 21, 1995
    Assignees: International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd., Kyocera Corporation, Mitsubishi Metal Corporation, The Tokyo Electric Power Company, Incorporated, Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Takahiro Wada, Shin-ichi Koriyama, Takeshi Sakurai, Nobuo Suzuki, Takayuki Miyatake, Hisao Yamauchi, Naoki Koshizuka, Shoji Tanaka
  • Patent number: 5462917
    Abstract: A superconductor material having a current density, J, of from about 30,000 to about 85,000 amps/cm.sup.2 at zero magnetic field and 77.degree. K is disclosed. The 123 superconductor, of the formula L.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. wherein L is preferably yttrium, is capable of entrapping sufficiently high magnetic fields and exhibits a low microwave surface resistance. The process of preparing the superconductor comprises compacting the bulk product, L.sub.1 Ba.sub.2 Cu.sub.3 O, and then sintering the reaction product at a temperature between about 40.degree. C. to about 90.degree. C. below its melting point, i.e., for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. at a temperature of approximately 940.degree. C. The composition is then heated in a preheated chamber maintained at approximately 1090.degree. C. to about 1,200.degree. C. (approximately 1,100.degree. C. for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: October 31, 1995
    Assignee: University of Houston-University Park
    Inventors: Kamel Salama, Venkatakrishnan Selvamanickam
  • Patent number: 5445766
    Abstract: The disclosed substance has a composition of a general chemical formula ofBi.sub.2 -(Sr.sub.2 Ca.sub.1).sub.1-x (La.sub.2 Y.sub.1).sub.x -Cu.sub.y -O.sub.z,where 0.4.ltoreq.x.ltoreq.1, y=2 and z=9-10.5, wherein said substance is an insulator or a semiconductor in the dark, and has a photoconductivity Q(.lambda.,T) in conjugate with superconductivity of a superconductor of an adjacent component of the Bi-SrCa-LaY-Cu-O system at and below a critical temperature (T) of less than 105-115K and below 65-85K at photoexcitation in an optical wavelength range (.lambda.) of 420-670 nm. The present invention relates to a method for producing the same and a superconductive optoelectronic device by using the same. The present invention also relates to an organized integration of the element or device into an apparatus to further develop a new field of "Superconductive Optoelectronics.
    Type: Grant
    Filed: July 15, 1992
    Date of Patent: August 29, 1995
    Assignee: The University of Tokyo
    Inventor: Taizo Masumi
  • Patent number: 5444425
    Abstract: A flux-trapped superconducting magnet which is formed of high transition temperature superconducting mixture doped with a magnetic material having a Curie temperature below the transition temperature of the superconducting mixture.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: August 22, 1995
    Assignee: The Regents of the University of Colorado
    Inventors: Allen M. Hermann, Gol A. Naziripour, Timir Datta
  • Patent number: 5432143
    Abstract: A method of producing a microcrystalline RBa.sub.2 Cu.sub.3 O.sub.y structure where R denotes a lanthanide chosen from Y, La, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb and Lu and where y has a value between 6.9 and 7 starts with a powder of composition [x(123) ; (1-x) (7BaO--18CuO] where (123) denotes the 123 phase of RBaB.sub.2 Cu.sub.3 O.sub.y and where the value of x is between 0.01 and 1. The powder is compressed and sintered at a temperature below 920.degree. C. (the BaCuO.sub.2 and CuO binary eutectic temperature) to form a sample. The sample is placed on an oxide of the lanthanide R. The sample and its support undergo heat treatment enabling chemical reaction between the liquid part of the sample and its support whereby substantially all of the liquid part is consumed and highly regular 123 monocrystals are obtained. Cooling is applied. At least one annealing is carried out in pure oxygen at a temperature between 350.degree. C. and 500.degree. C. to obtain the orthorhombic form characteristic of RBa.sub.2 Cu.
    Type: Grant
    Filed: January 11, 1994
    Date of Patent: July 11, 1995
    Assignee: Alcatel Alsthom Compagnie Generale D'Electricite
    Inventors: Nadia Pellerin, Philippe Odier
  • Patent number: 5430011
    Abstract: A superconducting thin film formed on a substrate, comprising at least one oxide superconductor layer formed on the principal surface of said substrate and at least one oxide layer formed of an oxide which compensates for crystalline incompleteness at the surface of said oxide superconductor layer, and which is arranged on or under the superconducting layer.
    Type: Grant
    Filed: September 17, 1992
    Date of Patent: July 4, 1995
    Assignee: Sumitomi Electric Industries, Ltd.
    Inventors: So Tanaka, Michitomo Iiyama
  • Patent number: 5430008
    Abstract: Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof.
    Type: Grant
    Filed: October 28, 1991
    Date of Patent: July 4, 1995
    Assignee: The Regents of the University of California
    Inventor: Donald E. Morris
  • Patent number: 5422336
    Abstract: A superconducting transistor with superior withstand voltage having source region and a drain region formed of oxide superconductors 3, a PrBa.sub.2 Cu.sub.3 O.sub.7-x layer 2 or an ScBa.sub.2 Cu.sub.3 O.sub.7-x layer 2 forming an intermediate region sandwiched by the source and drain regions. The regions are disposed on a substrate 1. An insulation layer 4 is disposed on the intermediate region. A transistor uses the intermediate region as an insulator when the gate is turned off, and as a superconductor when the gate is turned on.
    Type: Grant
    Filed: September 22, 1993
    Date of Patent: June 6, 1995
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Koichi Tsuda, Toshiyuki Matsui, Takeshi Suzuki, Hiroshi Kimura, Takashi Ishii, Akihiko Ohi, Kazuo Mukae
  • Patent number: 5417073
    Abstract: A Cryogenic Cooling System generally comprises a portable Dewar and a charging station for the Dewar. In the preferred embodiment, a HTSC device, such as a MRI coil, is contained in the Dewar which uses liquid nitrogen as a cryogenic coolant. The Dewar includes a reservoir for holding cryogenic fluid, an optional wicking material, a transfer tube between the reservoir and the HTSC device (or wick), and a vacuum space. Preferably a vent channel is adjacent the reservoir and provides an escape path for evaporating gas from the wick and/or HTSC device. The vent channel preferably provides a feed-back system: as more cryogenic coolant is transferred via the transfer tube, more cool gas is vented through the channel which cools the reservoir and thereby reduces the transfer. A charging system may also be provided as a source of cryogenic coolant. In the preferred embodiment, the charging system comprises a relatively large reservoir for liquid nitrogen.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: May 23, 1995
    Assignee: Superconductor Technologies Inc.
    Inventors: Timothy W. James, Wallace Y. Kunimoto
  • Patent number: 5389603
    Abstract: A new class of high temperature superconductive oxides is disclosed. An exemplary member of the class has nominal composition Pb.sub.2 Sr.sub.2 Y.sub.0.5 Ca.sub.0.5 Cu.sub.3 O.sub.8 and has a transition temperature T.sub.c (onset) of about 79K.
    Type: Grant
    Filed: February 9, 1990
    Date of Patent: February 14, 1995
    Assignee: AT&T Corp.
    Inventors: Bertram J. Batlogg, Robert J. Cava
  • Patent number: 5378683
    Abstract: The disclosure relates to a Josephson junction formed by a non-superconducting barrier between two superconducting films of the (R) BaCuO (R=rare earth) group. In order to take advantage of the greater coherence length of superconductors along the CuO planes, i.e. perpendicularly to the long axis "c" of the crystal unit cell, the superconducting film is oriented so that the axis "c" is parallel to the plane of the junction. The device can be applied to Josephson junctions and to SQUIDs.
    Type: Grant
    Filed: April 21, 1992
    Date of Patent: January 3, 1995
    Assignee: Thomson-CSF
    Inventors: Regis Cabanel, Guy Garry, Alain Schuhl, Bruno Ghyselen
  • Patent number: 5372990
    Abstract: Provided is an oxide superconductor in which superconducting layer is sandwiched between two blocking layers having different compositions. Available superconducting layers include a one-layer system having one Cu-O.sub.2 sheet, a two-layer system having a mediating layer sandwiched between two Cu-O.sub.2 sheets, and a three-layer system having mediating layers sandwiched individually between three Cu-O.sub.2 sheets.Since the blocking layers are of different compositions, seventy-seven kinds of oxide superconductors can be obtained.
    Type: Grant
    Filed: May 20, 1992
    Date of Patent: December 13, 1994
    Assignee: Toray Industries, Ltd.
    Inventors: Hitoshi Nobumasa, Kazuharu Shimizu
  • Patent number: RE35376
    Abstract: The present invention comprises novel oxide materials exhibiting bulk superconductivity up to and exceeding 85K and processes for their synthesis. The oxides are within the formula R.sub.a Ba.sub.b Cu.sub.c O.sub.d wherein 1.9<a<2.1, 3.9<b<4.1, 6.8<c<7.2, 14.4<d<15.2 and wherein R is Y or any of the lanthanide rare earth elements. Certain substitutions such as Ca and La on the R and Ba sites are included.
    Type: Grant
    Filed: December 28, 1994
    Date of Patent: November 5, 1996
    Assignee: Industrial Research Limited
    Inventors: Jeffrey L. Tallon, Robert G. Buckley, Donald M. Pooke