Containing Transition Metal Oxide With Rare Earth Or Alkaline Earth Patents (Class 505/776)
  • Patent number: 8716187
    Abstract: The films of this invention are high temperature superconducting (HTS) thin films specifically optimized for microwave and RF applications. In particular, this invention focuses on compositions with a significant deviation from the 1:2:3 stoichiometry in order to create the films optimized for microwave/RF applications. The RF/microwave HTS applications require the HTS thin films to have superior microwave properties, specifically low surface resistance, Rs, and highly linear surface reactance, Xs, i.e. high JIMD. As such, the invention is characterized in terms of its physical composition, surface morphology, superconducting properties, and performance characteristics of microwave circuits made from these films.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 6, 2014
    Assignee: Superconductor Technologies, Inc.
    Inventors: Brian Moeckly, Viktor Gliantsev, Shing-jen (Luke) Peng, Balam Willemsen
  • Patent number: 7867950
    Abstract: The films of this invention are high temperature superconducting (HTS) thin films specifically optimized for microwave and RF applications. In particular, this invention focuses on compositions with a significant deviation from the 1:2:3 stoichiometry in order to create the films optimized for microwave/RF applications. The RF/microwave HTS applications require the HTS thin films to have superior microwave properties, specifically low surface resistance, Rs, and highly linear surface reactance, Xs, i.e. high JIMD. As such, the invention is characterized in terms of its physical composition, surface morphology, superconducting properties, and performance characteristics of microwave circuits made from these films.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 11, 2011
    Assignee: Superconductor Technologies, Inc.
    Inventors: Brian Moeckly, Viktor Gliantsev, Shing-jen (Luke) Peng, Balam Willemsen
  • Patent number: 7830047
    Abstract: An electrically powered launcher is disclosed that can accelerate small payloads to orbital velocities. The invention uses a novel geometry to overcome limitations of other design, and allows full exploitation of existing superconducting materials.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: November 9, 2010
    Assignee: The University of Houston System
    Inventors: Phil Putman, Kamel Salama
  • Patent number: 7667562
    Abstract: A new class of fundamental devices and methods for their manufacture and use. The bulk magnetic field replicators of the present invention require no precision machining or alignment to accurately reproduce magnetic fields of any complexity, nor extreme positional stability to maintain superconductivity. Such bulk devices may be formed of either low or high critical temperature superconductive materials, but are particularly adapted to formation from high critical temperature materials.
    Type: Grant
    Filed: February 20, 1990
    Date of Patent: February 23, 2010
    Inventor: Roy Weinstein
  • Patent number: 7541313
    Abstract: A alloy (Mg—X) of metal (X) and Mg in a liquid phase is made to react with B in a solid phase at a low temperature to manufacture a superconductor, which contains a large amount of MgB2 potential for MRI, linear motorcar, superconducting cavity, electric power transmission cable, high-magnetic field magnet for medical units, electric power storage (SMES), and the like and is formed in the shape of bulk, wire, and foil, by heat treatment performed at a low temperature for a short time and at low cost.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: June 2, 2009
    Assignee: National Institute for Materials Science
    Inventors: Akihiro Kikuchi, Kiyoshi Inoue, Yasuo Iijima, Yuji Yoshida
  • Patent number: 6740623
    Abstract: An Hg- or Nd-based oxide superconductor comprises Ba as a constituent element and has a content of carbon as an impurity at a level of not greater than 2.0 atomic % whereby the oxide superconductor stably shows high superconducting characteristics without causing degradation with time. For its production, BaO, which has a reduced content of carbon impurity of 0.5% or below, is provided as a feed stock for Ba, and the starting materials are mixed and processed in a dry atmosphere wherein an amount of a carbon-containing gas is suppressed to a certain level, thereby obtaining the oxide superconductor.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: May 25, 2004
    Assignee: International Superconductivity Technology Center
    Inventors: Ayako Yamamoto, Wei-Zhi Hu, Setsuko Tajima
  • Publication number: 20030199395
    Abstract: High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods for making such high-Tc superconducting products. Completely sealed high-Tc superconducting ceramic oxide provides are made by a macroscopic process including the steps of pressing a superconducting ceramic oxide powder into a hollow body of a material inert to oxygen; heat treating the superconducting ceramic oxide powder packed body under conditions sufficient to sinter the ceramic oxide powder; and then sealing any openings of the body. Optionally, a waveform or multiple pulses of alternate magnetic filed can be applied during the heat treatment.
    Type: Application
    Filed: June 9, 2003
    Publication date: October 23, 2003
    Inventor: Dawei Zhou
  • Patent number: 6537949
    Abstract: An Hg- or Nd-based oxide superconductor comprises Ba as a constituent element and has a content of carbon as an impurity at a level of not greater than 2.0 atomic % whereby the oxide superconductor stably shows high superconducting characteristics without causing degradation with time. For its production, BaO, which has a reduced content of carbon impurity of 0.5% or below, is provided as a feed stock for Ba, and the starting materials are mixed and processed in a dry atmosphere wherein an amount of a carbon-containing gas is suppressed to a certain level, thereby obtaining the oxide superconductor.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: March 25, 2003
    Assignee: International Superconductivity Technology Center
    Inventors: Ayako Yamamoto, Wei-Zhi Hu, Setsuko Tajima
  • Patent number: 6310297
    Abstract: A strongly-linked polycrystalline oxide superconductor article includes an oxide superconductor selected from the group consisting 124-type and 247-type oxide superconductors having fine, highly aligned oxide superconductor grains less than &mgr;m long a longest dimension. The oxide superconductor article has at least a 25% retention of critical current density in a 0.1 Tesla field.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 30, 2001
    Assignee: American Superconductor Corp.
    Inventors: Lawrence J. Masur, Eric R. Podtburg
  • Patent number: 6281171
    Abstract: A Mg-doped high-temperature superconductor having low superconducting anisotropy includes a two-dimensional layered structure constituted by a charge reservoir layer and a superconducting layer, wherein some or all atoms constituting the charge reservoir layer are Cu and O atoms, metallizing or rendering the charge reservoir layer superconducting, a portion of the Ca of the CunCan−1O2n constituting the superconducting layer is replaced by Mg, increasing superconductive coupling between CuO2 layers, a thickness of the superconducting layer is increased, and therefore coherence length in a thickness direction is increased based on the uncertainty principle, lowering superconducting anisotropy.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: August 28, 2001
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Hideo Ihara, Shyam Kishore Agarwal
  • Publication number: 20010011066
    Abstract: The fabrication of superconducting wires and rods having desired and consistent electrical and mechanical properties, in particular those based on Yttrium Barium Copper Oxide (YBCO) and Bismuth Strontium Calcium Copper Oxide (BSCCO), is disclosed. The first fabrication step is to form an extrudable paste by mixing YBCO or BSCCO superconducting powder with a set of organic additives, which include binder, plasticizers lubricant, dispersant, and a solvent. The following additional steps are performed on both YBCO and BSCCO based wires or rods: (i) using a piston extruder to extrude the superconducting wire or rod; (ii) drying the wire or rod to remove the solvent; and (iii) subjecting the wire or rod to a binder burn-out treatment to remove the remaining organic additives. In addition, YBCO wires and rods also require a sintering step, while BSCCO wires and rods also require cold isostatic pressing and heat treatment steps.
    Type: Application
    Filed: January 19, 2001
    Publication date: August 2, 2001
    Applicant: UNIVERSITY OF HOUSTON
    Inventors: Krishnaswamy Ravi-Chandar, Devamanohar Ponnusamy, Kamel Salama
  • Patent number: 5919735
    Abstract: A high temperature superconductor which has a layered crystal structure, which has a superconducting transition temperature, Tc, of 110 K or more, and which has a composition expressed by:Cu.sub.1-z M'.sub.z Ae.sub.2 Ca.sub.x-1 Cu.sub.x O.sub.y,where M' is at least one element selected from the group consisting of (a) trivalent ions of Tl, and (b) polyvalent ions of Mo, W, and Re,where Ae is at least one of Ba and Sr,where x ranges from 1 to 10,where y ranges from 2x+1 to 2x+4, andwhere z ranges from 0<z.ltoreq.0.5.
    Type: Grant
    Filed: October 27, 1995
    Date of Patent: July 6, 1999
    Assignee: Agency of Industrial Science and Technology
    Inventors: Hideo Ihara, Akira Iyo
  • Patent number: 5920246
    Abstract: A composite material having a plurality of sections integrated into a unitary structure and each including a bulk of a superconductive metal oxide of RE--Ba--Cu--O wherein RE represents a rare earth element, the bulk of each of the sections having pinning centers and capable of trapping a magnetic field. A first one of the sections has a superconductive current density different from that of a second one of the sections. The composite material may be produced by assembling preformed respective sections into a unitary structure or by immersing one of the sections in a solution to grow crystal of Y--Ba--Cu--O superconductive on that section, followed by trimming.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: July 6, 1999
    Assignees: International Superconductivity Technolgy Center, Railway Technical Research Institute
    Inventors: Ken Nagashima, Naomichi Sakai, Sang-Im Yoo, Hiroyuki Fujimoto, Masato Murakami
  • Patent number: 5843870
    Abstract: Alkaline-doped superconductors of the formulaX M.sub.2 Ca.sub.2 Cu.sub.3 O.sub.8+.alpha.are provided where X is selected from the group consisting of TI, Pb, Mo, Hg and mixtures thereof, M is selected from the group consisting of Ba, Sr and mixtures thereof, and a ranges from zero to about 0.2, and being doped with a dopant selected from the group consisting of Na and Li up to a level of up to about 12% molar ratio, based upon the amount of the element X taken as 100%. The superconductors of the invention exhibit extremely high T.sub.c onset and T.sub.cO values and have high J.sub.c properties as well. The superconductors can be fabricated at relatively low annealing temperatures (750.degree.-820.degree. C.) making them suitable for use as thin films with a variety of conventional substrates.
    Type: Grant
    Filed: January 3, 1997
    Date of Patent: December 1, 1998
    Assignee: The University of Kansas
    Inventors: Judy Z. Wu, Sehwan Yoo
  • Patent number: 5814585
    Abstract: The invention relates to a spray pyrolytic process for the preparation of multi-element metal oxide powders useful as precursors of high temperature superconductor ceramics. Aerosols of aqueous solutions containing corresponding metal salts admixed in the required stoichiometric proportion are sprayed through an independently operated hydrogen/oxygen flame in such a way that a flame temperature of 800.degree.-1100.degree. C. is maintained to form said powders. Any contact of the aerosols and powders generated during the process with carbon or carbon-containing compounds or materials is strictly avoided.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: September 29, 1998
    Assignee: Merck Patent Gesellschaft mit Beschrankter Haftung
    Inventors: Rodney Riddle, Matthias Kuntz, Bernd Muller, Dietmar Raulin, Gunther Feldmann-Schlobohm
  • Patent number: 5716907
    Abstract: The present invention is an oxide superconductor containing alkaline earth metal M (where M is at least one element of Ba, Sr, and Ca) and having a crystalline structure in which a portion based on two rock-salt structures including the alkaline earth metal M, oxygen, and chlorine, and a 2n-1 piece of infinite layer structure portion are alternately layered on each other, said 2n-1 piece of infinite layer structure portion having an atom layer including copper atoms and oxygen atoms in a ratio of 1 to 2 and of an atom layer including only M atoms layered on each other (where n is an integer of 1 or more and where copper atoms and oxygen atom are contained in a ratio of 1 to 2 if n is 1).
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: February 10, 1998
    Assignees: International Superconductivity Technology Center, The Furukawa Electric Co., Ltd., Tohoku Electric Power
    Inventors: Tadashi Tatsuki, Seiji Adachi, Makoto Itoh, Toshiyuki Tamura, Changqin Jin, Xiao-Jing Wu, Hisao Yamauchi
  • Patent number: 5705457
    Abstract: The present invention provides an oxide superconductor which is expressed in the composition formula(Pb.sub.1-x-y M.sub.x (A1).sub.y)(A2).sub.2 (A3).sub.n-1 (Cu).sub.n (O).sub.2n+3+z(wherein 0.ltoreq.0.6, 0.ltoreq.y.ltoreq.0.6, x+y.ltoreq.0.6, n denotes integers of 1 or more, -0.6.ltoreq.z.ltoreq.0.5, M denotes Cu or Cd, and A1, A2 and A3 denote at least one element of Ba, Sr, and Ca, respectively) and which has a crystal structure stacking rock salt structure based portions and infinite layer structure portions, wherein the rock salt structure based portion has a structure that an atoms layer having 0.5-1.5 oxygen atoms, in case the total atoms number of Pb, M and A1 is one, and an atoms layer having one or less oxygen atoms per one A2 atom, are stacked and the infinite layer structure portion has a structure that an atoms layer having 2 oxygen atoms per one Cu atom and an atoms layer of A3 atoms only, are stacked.
    Type: Grant
    Filed: September 8, 1995
    Date of Patent: January 6, 1998
    Assignees: The Furukawa Electric Co., Ltd., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center
    Inventors: Toshiyuki Tamura, Seiji Adachi, Xiao-Jing Wu, Hisao Yamauchi
  • Patent number: 5674815
    Abstract: An oxide superconductor composed of Cu, O and M (M is Ba, Sr and/or Ca) and including alternately arranged at least one rock-salt structure section and at least one infinite layer structure section, wherein the rock-salt structure section consists of two atomic layers each consisting of O and M and each having an atomic ratio O/M of 1 or less, and the infinite layer structure section consists of alternately arranged, first and second atomic layers. Each of the first atomic layers consists of O and Cu and has an atomic ratio O/Cu of 2, while each of the second atomic layers consists of the element M. The infinite layer structure section may consist of only one first atomic layer.
    Type: Grant
    Filed: March 6, 1996
    Date of Patent: October 7, 1997
    Assignees: International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiji Adachi, Hisao Yamauchi, Shoji Tanaka, Nobuo Mouri
  • Patent number: 5670458
    Abstract: An oxide superconductor having a composition of the formula: A.sub.n+1 Cu.sub.n O.sub.2n+1+.delta. in which A is at least one alkaline earth metal element selected from the group consisting of calcium, strontium and barium, n is an integer of at least one, and .delta. is a number larger than 0 and not larger than 1, a laminate structure in which a layer having a partial composition of A.sub.2 O.sub.1+.delta. and a layer having a partial composition of A.sub.n-1 Cu.sub.n O.sub.2n are alternately laminated, and a superconductive critical temperature equal to or higher than the liquid nitrogen temperature.
    Type: Grant
    Filed: February 7, 1996
    Date of Patent: September 23, 1997
    Assignees: Seisan Kaihatsu Kagaku Kenkyusho, NEC Corporation
    Inventors: Mikio Takano, Zenji Hiroi, Yasuo Takeda, Toshio Takada, deceased, by Komichi Takada, administrator, by Jun Takada, administrator, by Kei Takada, administrator
  • Patent number: 5670457
    Abstract: An oxide superconductor composed of Cu, O and at least one of Ba, Sr and Ca and including alternately arranged at least one oxygen-deficient perovskite structure section and at least one infinite layer structure section, wherein the perovskite structure section consists of two first atomic layers and a second atomic layer sandwiched between the first layers, and wherein the infinite layer structure section consists of alternately arranged, third and fourth atomic layers. Each of the first layers consists of O and an element M.sup.1 selected from Ba, Sr and Ca and has an atomic ratio O/M.sup.1 of 1 or less, while the second layer consists of O and Cu and has an atomic ratio O/Cu of 2 or less. Each of the third layers consists of O and Cu and has an atomic ratio O/Cu of 2, while each of the fourth layers consists of an element M.sup.2 selected from Ba, Sr and Ca. A superconductor having a superconducting critical temperature of over 100 K. may be produced by heat treatment at 800.degree.-1,200.degree.C.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: September 23, 1997
    Assignees: International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiji Adachi, Changqin Jin, Xiao-Jing Wu, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 5620945
    Abstract: Processes are provided for forming a superconductive composite, comprising a superconductive metal oxide and a ceramic. The composite may be formed in any desired shape. Liquid nitrogen can be held around the superconductor longer and delivered in a more controlled fashion and the composite has improved resistance to shatter and thermal shock. The ceramic also provides protection from atmospheric deterioration of the superconductive oxide.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: April 15, 1997
    Assignee: The Boeing Company
    Inventors: Anna L. Baker, Michael Strasik
  • Patent number: 5614472
    Abstract: The invention relates to a spray pyrolyric process for the preparation of multi-element metal oxide powders useful as precursors of high temperature superconductor ceramics. Aerosols of aqueous solutions containing corresponding metal salts admixed in the required stoichiometric proportion are sprayed through an independently operated hydrogen/oxygen flame in such a way that a flame temperature of 800.degree.-1100.degree. C. is maintained to form said powders. Any contact of the aerosols and powders generated during the process with carbon or carbon-containing compounds or materials is strictly avoided.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: March 25, 1997
    Assignee: Merck Patent Gesellschaft Mit Beschrankter Haftung
    Inventors: Rodney Riddle, Matthias Kuntz, Bernd M uller, Dietmar Raulin, G unther Feldmann-Schlobohm
  • Patent number: 5589441
    Abstract: Processes are provided for forming a superconductive composite, comprising a superconductive metal oxide and a ceramic. The composite may be formed in any desired shape. Liquid nitrogen can be held around the superconductor longer and delivered in a more controlled fashion and the composite has improved resistance to shatter and thermal shock. The ceramic also provides protection from atmospheric deterioration of the superconductive oxide.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: December 31, 1996
    Assignee: The Boeing Company
    Inventors: Anna L. Baker, Michael Strasik
  • Patent number: 5578551
    Abstract: The present invention is a controlled vapor/solid reaction process for the synthesis of samples of bulk compositions with a structure defined by the homologous series HgBa.sub.2 Ca.sub.n-1 Cu.sub.n O.sub.2n+2+.delta. [Hg-12(n-1)n] with n=2, 3, . . . with up to 75 to 90% Hg-1212 and 65 to 75% Hg-1223 by volume, which display sharp superconducting transitions up to 135 K.
    Type: Grant
    Filed: July 28, 1993
    Date of Patent: November 26, 1996
    Assignee: University of Houston
    Inventors: Ching-Wu Chu, Ruling Meng, Y. Q. Wang
  • Patent number: 5559084
    Abstract: Disclosed are a composition and a method of preparing a composition of the formula R.sub.2 Q.sub.4 Cu.sub.7 O.sub.x, wherein R is a rare-earth ion or a mixture of rare earth ions, and Q is Ba, or Ba combined with either Sr or Ca or both Sr and Ca. Such compositions have a unique crystalline structure and are superconducting oxides.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: September 24, 1996
    Assignee: Massachusetts Institute of Technology
    Inventors: John B. Vandersande, Gregory J. Yurek, Toshihiro Kogure
  • Patent number: 5523284
    Abstract: In accordance this invention, there is provided a process for making a bulk superconductive material. In the first step of this process, a diffusion couple is formed from superconductor oxide and impurity oxide. Thereafter, the diffusion couple is heated to a temperature in excess of 800 degrees Centigrade, cooled at a controlled rate, and annealed.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 4, 1996
    Assignee: Alfred University
    Inventors: James G. Fagan, Jr., Vasantha R. W. Amarakoon
  • Patent number: 5508256
    Abstract: A method of producing a high-temperature oxide superconducting material, which comprises the steps of (a) preparing a material corresponding to an oxide superconductor of the perovskite type structure consisting essentially of a first member selected from the group consisting yttrium, lanthanoids, thallium and bismuth; at least one alkaline earth metal; copper; and oxygen and (b) heating the material in the presence of an alkali metal selected from the group consisting of potassium, sodium, rubidium and cesium to a temperature around the melting point of the alkali metal or to a higher temperature for a time sufficient to effect grain growth in the superconductor material, thereby to produce the superconductor containing the alkali metal in an amount not larger than 4 mole % based on the first member.
    Type: Grant
    Filed: June 23, 1994
    Date of Patent: April 16, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Teruo Kumagai, Tsuneyuki Kanai, Atsuko Soeta, Takaaki Suzuki, Kazutoshi Higashiyama, Tomoichi Kamo, Shinpei Matsuda, Kunihiro Maeda, Akira Okayama, Hideyo Kodama, Akira Yoshinari, Yoshimi Yanai
  • Patent number: 5506196
    Abstract: A super conducting material is disclosed which exhibits super conducting properties at higher temperatures than known so far. The super conducting by the invented materials is exhibited at temperatures of over 110.degree. K. Various combinations of the components exhibits superconductivities even at temperatures of around 273.degree. K. or even around 300.degree. K. Contrary to known art superconducting materials, which require super cooled conditions and are suited only to sophisticated applications, and thereby have limited applications, the materials of this inventions do not always require super cooled conditions are suited for limitless applications and can work even at room temperature conditions. While a large range of choice of materials are suggested a few important combinations are made of oxides of Bismuth, Barium and Copper. Replacement of Barium by Thallium gives additional advantages.
    Type: Grant
    Filed: August 16, 1993
    Date of Patent: April 9, 1996
    Assignee: Magnetic Power, Inc.
    Inventor: Mihir Sen
  • Patent number: 5445766
    Abstract: The disclosed substance has a composition of a general chemical formula ofBi.sub.2 -(Sr.sub.2 Ca.sub.1).sub.1-x (La.sub.2 Y.sub.1).sub.x -Cu.sub.y -O.sub.z,where 0.4.ltoreq.x.ltoreq.1, y=2 and z=9-10.5, wherein said substance is an insulator or a semiconductor in the dark, and has a photoconductivity Q(.lambda.,T) in conjugate with superconductivity of a superconductor of an adjacent component of the Bi-SrCa-LaY-Cu-O system at and below a critical temperature (T) of less than 105-115K and below 65-85K at photoexcitation in an optical wavelength range (.lambda.) of 420-670 nm. The present invention relates to a method for producing the same and a superconductive optoelectronic device by using the same. The present invention also relates to an organized integration of the element or device into an apparatus to further develop a new field of "Superconductive Optoelectronics.
    Type: Grant
    Filed: July 15, 1992
    Date of Patent: August 29, 1995
    Assignee: The University of Tokyo
    Inventor: Taizo Masumi
  • Patent number: 5444039
    Abstract: The oxide superconductor according to the present invention is represented by (Hg.sub.1-x Pb.sub.x)Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub..delta. (0.08.ltoreq.x.ltoreq.0.41, 7.625.ltoreq..delta..ltoreq.9.15), and has a crystal structure in which a lamination unit of (Hg, Pb)O.sub.z -BaO-CuO.sub.2 -Ca-CuO.sub.2 -Ca-CuO.sub.2 -BaO is laminated in a c-axial direction of the crystal structure (0.625.ltoreq.z.ltoreq.2.15). Further, the method of manufacturing an oxide superconductor, according to the present invention, includes the steps of: mixing material powders of HgO, PbO, BaO, CaO and CuO at a mole ratio of (Hg.sub.1-x Pb.sub.x):Ba:Ca:Cu=a:2:b:c (1.ltoreq.a.ltoreq.2.5, 2.ltoreq.b.ltoreq.3, 2.5.ltoreq.c.ltoreq.4) and compression-molding the mixture powder into a compact; and subjecting the compact to a thermal treatment at 600.degree.-750.degree. C.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: August 22, 1995
    Assignees: Tohoku Electric Power Copany, Incorporated, Sumitomo Electric Industries, Ltd., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center
    Inventors: Kazuyuki Isawa, Ayako Yamamoto, Makoto Itoh, Seiji Adachi, Hisao Yamauchi
  • Patent number: 5430008
    Abstract: Superconducting materials and methods of forming superconducting materials are disclosed. Highly oxidized superconductors are heated at a relatively high temperature so as to release oxygen, which migrates out of the material, and form a non-superconducting phase which does not diffuse out of grains of the material. The material is then reoxidized at a lower temperature, leaving the non-superconducting inclusions inside a superconducting phase. The non-superconducting inclusions act as pinning centers in the superconductor, increasing the critical current thereof.
    Type: Grant
    Filed: October 28, 1991
    Date of Patent: July 4, 1995
    Assignee: The Regents of the University of California
    Inventor: Donald E. Morris
  • Patent number: 5389603
    Abstract: A new class of high temperature superconductive oxides is disclosed. An exemplary member of the class has nominal composition Pb.sub.2 Sr.sub.2 Y.sub.0.5 Ca.sub.0.5 Cu.sub.3 O.sub.8 and has a transition temperature T.sub.c (onset) of about 79K.
    Type: Grant
    Filed: February 9, 1990
    Date of Patent: February 14, 1995
    Assignee: AT&T Corp.
    Inventors: Bertram J. Batlogg, Robert J. Cava
  • Patent number: 5372990
    Abstract: Provided is an oxide superconductor in which superconducting layer is sandwiched between two blocking layers having different compositions. Available superconducting layers include a one-layer system having one Cu-O.sub.2 sheet, a two-layer system having a mediating layer sandwiched between two Cu-O.sub.2 sheets, and a three-layer system having mediating layers sandwiched individually between three Cu-O.sub.2 sheets.Since the blocking layers are of different compositions, seventy-seven kinds of oxide superconductors can be obtained.
    Type: Grant
    Filed: May 20, 1992
    Date of Patent: December 13, 1994
    Assignee: Toray Industries, Ltd.
    Inventors: Hitoshi Nobumasa, Kazuharu Shimizu
  • Patent number: 5360786
    Abstract: The disclosed superconductive material has a characteristic in accordance with which electrical resistance disappears at a temperature of at least more than the boiling point of 20.3.degree. K. (-252.7.degree. C.) of liquid hydrogen and relates to La-Ba-Cu-O series superconductive material.Said superconductive material consists essentially of a composition having the formula(La.sub.1-x M.sub.x).sub.2 CuO.sub.4-x/2wherein, M=Ba or Ba(Sr, Ca) and x=0.04.about.0.20 as a main body, wherein the material has a K.sub.2 NiF.sub.4 crystal structure.
    Type: Grant
    Filed: August 2, 1993
    Date of Patent: November 1, 1994
    Assignee: University of Tokyo
    Inventors: Shoji Tanaka, Koichi Kitazawa, Shin-ichi Uchida, Hidenoir Takagi
  • Patent number: 5354733
    Abstract: An oxide superconductor contains carbonate radicals and compositions represented by the general formula (Ba.sub.1-x Sr.sub.x).sub.2 Cu.sub.1+y C.sub.w O.sub.3+Z, wherein x, y, w and z satisfy the following relations: 0.25.ltoreq.x.ltoreq.0.64, -0.11.ltoreq.y.ltoreq.0.77, 0.89.ltoreq.w.ltoreq.1.77 and 1.67.ltoreq.z.ltoreq.4.33. The superconductor has a transition temperature of 20 K. or higher and a coherence length of 30 .ANG..
    Type: Grant
    Filed: March 22, 1993
    Date of Patent: October 11, 1994
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kyoichi Kinoshita, Tomoaki Yamada
  • Patent number: 5340797
    Abstract: A method of preparing a superconductor. The method includes preparing a mixture of superconductor material constituents, disposing the constituents on a silver containing substrate, heating the mixture of constituents on a silver containing substrate, heating the mixture in a first atmosphere having a partial pressure of CO.sub.2 to control decomposition of at least one of the superconductor material constituents and changing the first atmosphere to a second atmosphere consisting essentially of an oxidizing gas capable of allowing decomposition of at least one of the superconductor material constituents.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: August 23, 1994
    Assignee: Illinois Superconductor Corporation
    Inventors: James D. Hodge, Lori J. Klemptner
  • Patent number: 5318949
    Abstract: A superconducting ceramic composition which is free of thallium, the composition having a unit cell containing two perovskite structure copper-oxygen planes and a rocksalt structure layer having a single plane containing cadmium.
    Type: Grant
    Filed: October 20, 1992
    Date of Patent: June 7, 1994
    Assignees: GEC-Marconi Limited, BICC Public Limited Company
    Inventors: Martin R. Harrison, Simon R. Hall, Timothy P. Beales
  • Patent number: 5278139
    Abstract: A superconducting material and a process for producing a superconducting material comprising a compound oxide represented by the general formula:(Ba, .gamma.).sub.x (.alpha.,.beta.).sub.1 -.sub.x .epsilon..sub.y Cu.sub.1-y O.sub.3 -zin which".gamma." represents an element of the IIa group of the periodic table except Ba, an atomic ratio of .gamma. to Ba, being selected in a range between 1% and 90%,".alpha.represents Y or La,".beta." represents an element of the IIIa group of the periodic table but is different from .alpha., an atomic ratio of .beta. to .alpha. being selected in a range between 1 and 90%,".epsilon." represents a metal element of the IIIb group of the periodic table,x, y and z are numbers each satisfies ranges of O.ltoreq.x.ltoreq.1, O.ltoreq.y.ltoreq.1, and O.ltoreq.z.ltoreq.1 respectively, andthe expression of (Ba, .gamma.) and (.alpha., .beta.) mean that the respective elements occupy predetermined sites in a crystal in a predetermined proportion.
    Type: Grant
    Filed: February 25, 1992
    Date of Patent: January 11, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideo Itozaki, Saburo Tanaka, Nobuhiko Fujita, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5262393
    Abstract: The present invention provides a layered copper oxide as an insulator for superconductor or as a superconductor, which has a chemical composition represented by the formula of (R,Ce).sub.3 Sr.sub.2 Cu.sub.2 (M,Cu)O.sub.11, wherein R is a rare earth element other than Ce and M is one or both of Pb and T1, and has a crystal structure comprising a (M,Cu)Sr.sub.2 (R,Ce)Cu.sub.2 O.sub.7 ; unit of a TlBa.sub.2 CaCu.sub.2 O.sub.7 (1-2-1-2)-type structure and a [(R,Ce)O.sub.2 ].sub.2 unit of a fluorite-type structure alternately put on each other, or a chemical composition represented by the formula of (R,Ce).sub.3 Sr.sub.2 Cu.sub.2 (M,Cu)O.sub.10+z, wherein R is a rare earth element other than Ce, M is one or both of Pb or Tl, and has a crystal structure comprising a (R,Ce)Sr.sub.2 Cu.sub.2 (Cu,M)O.sub.6+z unit of a YBa.sub.2 Cu.sub.3 O.sub.3 O.sub.6+.delta. -type structure and a [(R,Ce)O.sub.2 ].sub.2 unit of a fluorite-type structure alternately put on each other, wherein z is in the range of 0.ltoreq.z.ltoreq.
    Type: Grant
    Filed: October 25, 1991
    Date of Patent: November 16, 1993
    Assignees: Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center, Central Research Institute of Electric Power Industry, Ube Industries, Ltd.
    Inventors: Takahiro Wada, Ataru Ichinose, Kazuyuki Hamada, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 5250510
    Abstract: A now superconducting material comprising a compound oxide represented by the general formula:(Ba, Ca).sub.x (.alpha., Dy).sub.1-x Tl.sub.y Cu.sub.1-y O.sub.3-zwherein".alpha." represents Y or La;the atomic ratio of Ca to Ba is between 1% and 90%;the atomic ratio of Dy to .alpha. is between 1% and 90%;x, y and z are within the ranges of 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, and 0.ltoreq.z<1 respectively; andthe expression of (Ba, Ca) and (.alpha., Dy) mean that the respective elements occupy predetermined sites in a crystal in a predetermined proportion.
    Type: Grant
    Filed: June 15, 1992
    Date of Patent: October 5, 1993
    Assignee: Sumitomo Electric Industries Ltd.
    Inventors: Hideo Itozaki, Saburo Tanaka, Nobuhiko Fujita, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5217949
    Abstract: Superconducting materials of the (T1,In)-Sr-Ca-Cu-O system-type are modified to raise their critical tempertures by substituting an element M for part of the Tl/In and optionally substituting Y or a rare earth element for some of the Ca.M is a transition metal with valency electrons in d orbitals in its normal state and having accessible tri-and/or tetra-valent states, that is V, Ti, Cr, Zr, Nb, Hf or Ta (which are preferred) Mn, Fe, Co, Ni, Mo, Rh, W, Os, Ir, Re or Ru.
    Type: Grant
    Filed: April 16, 1991
    Date of Patent: June 8, 1993
    Assignee: Lynxvale Limited
    Inventors: Ru-Shi Liu, Robert Janes, Wuzong Zhou, Peter P. Edwards
  • Patent number: 5200387
    Abstract: A compact superconductor of the empirical composition YBa.sub.2 Cu.sub.3 O.sub.7-x .times.zCuO, in which z is a number from 0.08 to 0.84, consists of elongated crystals grown together irregularly. It has a density of at least 5.9 g/cm.sup.3, in particular at least 6.02 g/cm.sup.3. It is prepared by mixing a fine-grained superconductor powder of the composition YBa.sub.2 Cu.sub.3 O.sub.7-x with 1 to 10% by weight of CuO, compressing the mixture under a pressure of at least 1 MPa to give a compact, and heating this compact at 940.degree.-985.degree. C. for at least 5 hours.
    Type: Grant
    Filed: July 17, 1990
    Date of Patent: April 6, 1993
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Martin Schwarz, Iris Kullmer
  • Patent number: 5198413
    Abstract: An oxide-superconducting device comprises first and second electrodes of oxide-superconductor which are connected through a tunnel barrier layer. The oxide-superconductor is formed on a substrate having a recess, and it includes grain boundaries along the recess. The tunnel barrier layer is formed along the grain boundaries, and it is made of any material of an element F, Cl, Br, I, C, O, S, P or N, a mixture consisting of such elements, and a compound containing such an element, the material being introduced into the grain boundaries and/or lattice interstices near the grain boundaries.
    Type: Grant
    Filed: November 13, 1991
    Date of Patent: March 30, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Yoshinobu Tarutani, Ushio Kawabe
  • Patent number: 5194421
    Abstract: The present invention provides an oxide superconductor which is mainly composed of bismuth, lead, strontium, calcium, magnesium, and copper and has the composition represented by the formula:Bi.sub.1-A Pb.sub.A Sr.sub.1-B Mg.sub.B Ca.sub.1 Cu.sub.1.7.+-.0.3 Oxwherein A=0.15-0.35 and B=0.05-0.3 in which numerals represent atomic ratio and an oxide superconductor which is mainly composed of bismuth, lead, strontium, calcium, magnesium, barium and copper and has the composition represented by the formula:Bi.sub.1-A Pb.sub.A Sr.sub.1-(B+C) (Mg.sub.B Ba.sub.C)Ca.sub.1 Cu.sub.1.7.+-.0.3 Oxwherein A=0.15-0.35, B=0.05-0.3 and C=0.02-0.2 in which numerals represent atomic ratio. Methods for producing these superconductors are also provided.
    Type: Grant
    Filed: November 20, 1991
    Date of Patent: March 16, 1993
    Assignee: Hitachi Chemical Company
    Inventors: Shuichiro Shimoda, Toranosuke Ashizawa, Keiji Sumiya, Hideji Kuwajima, Minoru Ishihara, Shozo Yamana
  • Patent number: 5151409
    Abstract: A superconducting oxide composition comprising Ln-Th-Cu-O wherein Ln indicates at least one element selected from a group consisting of Pr, Nd, Pm, Sm, Eu, Gd and Er. A superconducting structure is formed in such a manner that at least an insulating layer is sandwiched between two superconductor layers but the superconductor layers are electrically coupled with each other, and a superconducting device including the superconducting structure is constructed so as to perform a switching operation for an electric signal, to detect a light signal, and to detect the intensity of a magnetic field. Another superconducting device is formed so that two superconductor layers are put in direct contact with each other, and a tunnel current between the superconductor layers can be controlled.
    Type: Grant
    Filed: January 24, 1990
    Date of Patent: September 29, 1992
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Hiratani, Shin'ichiro Saitoh, Katsuki Miyauchi, Tsuyoshi Seko
  • Patent number: 5149684
    Abstract: A process for preparing a superconductor-coated substrate including calcining a mixture of powdered yttrium or rare earth oxide (R), barium carbonate and copper oxide in a controlled atmosphere and in accordance with a predetermined temperature profile to form a superconductor powder having a stoichiometric ratio of R-Ba-Cu of approximately 1-2-3. The melting transition width of the resulting powder is relatively narrow, such that the melting onset temperature is above the high temperatures advantageously used to sinter the powder on the substrate.
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: September 22, 1992
    Assignee: General Atomics
    Inventors: Lawrence D. Woolf, Frederick H. Elsner, Clyde H. Shearer
  • Patent number: 5140000
    Abstract: The present invention comprises novel oxide materials exhibiting bulk superconductivity up to and exceeding 85K and processes for their synthesis. The oxides are within the formula R.sub.a Ba.sub.b Cu.sub.c O.sub.d wherein 1.9<a<2.1, 3.9<b<4.1, 6.8<c<7.2, 14.4<d<15.2 and wherein R is Y or any of the lanthanide rare earth elements. Certain substitutions such as Ca and La on the R and Ba sites are included.
    Type: Grant
    Filed: July 31, 1990
    Date of Patent: August 18, 1992
    Assignee: Her Majesty The Queen in right of New Zealand
    Inventors: Jeffrey L. Tallon, Robert G. Buckley, Donald M. Pooke
  • Patent number: 5098868
    Abstract: Vanadium-containing superconducting oxides are disclosed having critical temperature (T.sub.c) values of above about 100.degree. K. and preferably about 110.degree.-150.degree. K., together with predicted current density (J.sub.c) values on the order of 10.sup.4 -10.sup.5 amperes/cm.sup.2. The oxides hereof are moreover relatively ductile and easily bulk sintered to give end products having desirable superconductivity characteristics. Certain preferred oxides of the invention are defined by the general formula:(V.sub.1-x M.sub.x).sub.i (A.sub.1-y M.sub.y).sub.j Q.sub.k Cu.sub.m O.sub.r.+-.t I.
    Type: Grant
    Filed: October 1, 1990
    Date of Patent: March 24, 1992
    Assignee: University of Kansas
    Inventors: Kai W. Wong, Wai-Yim Ching, Peter C. W. Fung, Fui T. Chan, Zhengzhi Sheng
  • Patent number: 4886776
    Abstract: Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40.degree. K. and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.
    Type: Grant
    Filed: May 29, 1987
    Date of Patent: December 12, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: James T. Early, R. Steven Hargrove
  • Patent number: RE35376
    Abstract: The present invention comprises novel oxide materials exhibiting bulk superconductivity up to and exceeding 85K and processes for their synthesis. The oxides are within the formula R.sub.a Ba.sub.b Cu.sub.c O.sub.d wherein 1.9<a<2.1, 3.9<b<4.1, 6.8<c<7.2, 14.4<d<15.2 and wherein R is Y or any of the lanthanide rare earth elements. Certain substitutions such as Ca and La on the R and Ba sites are included.
    Type: Grant
    Filed: December 28, 1994
    Date of Patent: November 5, 1996
    Assignee: Industrial Research Limited
    Inventors: Jeffrey L. Tallon, Robert G. Buckley, Donald M. Pooke