Bismuth(bi)-(e.g., Bicasrcu0) Patents (Class 505/782)
  • Patent number: 7981840
    Abstract: A well-crystallized a-axis (or b-axis) oriented Bi-based oxide superconductor thin film is manufactured in order to obtain a high performance layered Josephson junction using a Bi-based oxide superconductor. In manufacturing a well-crystallized a-axis oriented Bi-based oxide superconductor thin film, a (110) plane of a single crystal substrate of LaSrAlO4 or a vicinal cut substrate of a single crystal of LaSrAlO4 is used, on which an a-axis oriented Bi-2223 or Bi-2201 thin film is heteroepitaxially grown at a low film forming temperature T1, then homoepitaxially grown on the grown film at a high film forming temperature T2 (double temperature growth method). Although it is difficult to grow an a-axis oriented film directly on a substrate at a high temperature T2, an a-axis oriented Bi-2223 or Bi-2201 thin film is formed on the base by previously forming the base film at low deposition temperature.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: July 19, 2011
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Kazuhiro Endo
  • Patent number: 7795181
    Abstract: An oxide high temperature superconductor and method of making which includes a first buffer layer composed of CeO3 formed on a sapphire R (1, ?1, 0, 2) face substrate for reducing lattice mismatch between the sapphire R (1, ?1, 0, 2) face substrate and the oxide high temperature superconductor thin film, and a second buffer layer composed of such an oxide high temperature superconductor but in which Ba is substituted with Sr formed on the first buffer layer. The first buffer layer reduces the lattice mismatch between the sapphire R (1, ?1, 0, 2) face substrate and the oxide high temperature superconductor thin, the second buffer layer prevents an interfacial reaction with Ba, thereby permitting the epitaxial growth of an oxide high temperature superconductor thin film that excels in both crystallographic integrity and crystallographic orientation.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: September 14, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Sundaresan Athinarayanan, Hideo Ihara, Yoshiko Ihara, legal representative, Hideyo Ihara, legal representative, Hidetaka Ihara, legal representative, Gen-ei Ihara, legal representative, Chiaki Ihara, legal representative
  • Publication number: 20100149707
    Abstract: A method of controlling fault currents within a utility power grid is provided. The method may include coupling a superconducting electrical path between a first and a second node within the utility power grid and coupling a non-superconducting electrical path between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path may be electrically connected in parallel. The superconducting electrical path may have a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path may have a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
    Type: Application
    Filed: January 25, 2010
    Publication date: June 17, 2010
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 7683009
    Abstract: The present invention provides a Bi2223 based thick film that does not peel off when a thermal or a mechanical shock is applied to a base or an oxide superconductor thick film or the like in the middle of a manufacturing process and a method of manufacturing the same. An oxide superconductor paste 1 having a mixing ratio of Bi2212 composition is applied to a base 3, dried, burned, and thereafter burned at a temperature approximate to its melting point to obtain a partially molten layer 4. Next, an oxide superconductor paste 2 having a mixing ratio of Bi2223 composition is applied to the partially molten layer 4, dried, burned, compressed by a CIP, and thereafter repeatedly burned and compressed for a predetermined number of times to obtain the base 3 having a desired superconductor thick film 5 formed thereon.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: March 23, 2010
    Assignees: Central Research Institute of Electric Power Industry, DOWA Electronics Materials Co., Ltd.
    Inventors: Masahiro Kojima, Masakazu Kawahara, Michiharu Ichikawa, Hiroyuki Kado, Masatoyo Shibuya
  • Patent number: 7572754
    Abstract: A high temperature superconductor material of BSCCO-family is provided wherein parts of Sr of the superconducting phases is substituted by Ba.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: August 11, 2009
    Assignee: Nexans
    Inventor: Andre Wolf
  • Patent number: 7541313
    Abstract: A alloy (Mg—X) of metal (X) and Mg in a liquid phase is made to react with B in a solid phase at a low temperature to manufacture a superconductor, which contains a large amount of MgB2 potential for MRI, linear motorcar, superconducting cavity, electric power transmission cable, high-magnetic field magnet for medical units, electric power storage (SMES), and the like and is formed in the shape of bulk, wire, and foil, by heat treatment performed at a low temperature for a short time and at low cost.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: June 2, 2009
    Assignee: National Institute for Materials Science
    Inventors: Akihiro Kikuchi, Kiyoshi Inoue, Yasuo Iijima, Yuji Yoshida
  • Patent number: 7132388
    Abstract: The present invention provides a high-temperature oxide superconductors, which comprises an oxide expressed as (Bi1-xAx)—B—C—Cu oxide (where, A is Sb and/or AS; B and C are elements different from each other, each being one or more elements selected from the group consisting of Be, Mg, Ca, Sr and Ba; and x is characterized by 0?x?1). According to the present invention, it is possible to manufacture a high-temperature oxide superconductor having a transition temperature of over 100 K and not containg a rare-earth element at all, and to manufacture an excellent superconductor in reliability and stability easilier than doing conventional superconductors such as Y—Ba type ones.
    Type: Grant
    Filed: January 4, 1989
    Date of Patent: November 7, 2006
    Assignee: National Research Institute for Metals
    Inventors: Hiroshi Maeda, Yoshiaki Tanaka, Masao Fukutomi, Toshihisa Asano
  • Patent number: 6855670
    Abstract: Compositions having the nominal formula BiaSrbCacCu3Ox wherein a is from about 1 to 3, b is from about ? to 4, c is from about {fraction (3/16)} to 2, x=(1.5 a+b+c+y) where y is from about 2 to 5, with the proviso that “b+c” is from about {fraction (3/2)} to 5, containing a metal oxide phase of the formula Bi2Sr3?zCazCu2O8+w wherein z is from about 0.1 to 0.9 w is greater than zero but less than 1, are superconducting. Processes for manufacturing such compositions and for using them are disclosed.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: February 15, 2005
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Jagannatha Gopalakrishnan, Arthur William Sleight, Munirpallam Appadorai Subramanian
  • Patent number: 6809042
    Abstract: The present invention provides an oxide superconductor thick film which is formed on a substrate or a board and has a high Jc and Ic and a method for manufacturing the same. Predetermined amounts of materials containing elements of Bi, Pb, Sr, Ca and Cu are weighed, mixed and subjected to steps of calcining, milling, and drying, and thereafter an organic binder and an organic vehicle are added thereto to prepare a (Bi, Pb)2+aSr2Ca2Cu3Oz, superconductive paste, which is applied to the surface of a substrate or a board in a thickness of 260 &mgr;m or more and dried. Thereafter, the paste is first subjected to burning at temperatures of 835° C. to 840° C. for 100 hours, then pressurization, and further burning at temperatures of 835° C. to 840° C. for 100 hours, thereby preparing an oxide superconductor thick film having a film thickness of 130 &mgr;m or more having a high Jc and Ic.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: October 26, 2004
    Assignees: Dowa Mining Co., Ltd., Central Research Institute of Electric Power Industry
    Inventors: Masahiro Kojima, Masakazu Kawahara, Michiharu Ichikawa, Hiroyuki Kado, Masatoyo Shibuya
  • Patent number: 6794337
    Abstract: The present invention relates to a superconducting colloid prepared by an exfoliating multi-layered superconductor, represented by the formula Bi2Sr2Cam−1CumO2m+4+&dgr; (wherein, m is 1, 2 or 3 and &dgr; is a positive number greater than 0 and less than 1) in which a mercuric halide-organic complex is intercalated, a process thereof, a superconducting thin layer prepared using the above superconducting colloid, and a process thereof.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: September 21, 2004
    Inventors: Jin Ho Choy, Soon Jae Kwon, Eui Soon Chang
  • Patent number: 6677278
    Abstract: An Oxide Precursor Powder from the Pb—Bi—Sr—Ca—Cu—O 2223 System can be produced by heat treating powder, produced using the Spray Pyrolysis Process as described in: GB2210605 or EP0681989 between 700° C. and 850° C. in an atmosphere containing between 0.1% and 21% O2. Heat Treatment of the pyrolysis powder under controlled conditions produces a powder with a particular phase composition, that is highly homogeneous and has a small particle size distribution, that is inherently more reactive than powders heat treated in the same way but produced using other processes.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: January 13, 2004
    Assignee: Merck Patent GmbH
    Inventors: Lee Woodall, Ru-Shi Liu, Ya-Wei Hsueh, Wolfgang Wilhelm Schmahl, Sebastian Raeth
  • Patent number: 6653259
    Abstract: A method of fabricating large bulk high temperature superconducting articles which comprises the steps of selecting predetermined sizes of crystalline superconducting materials and mixing these specific sizes of particles into a homogeneous mixture which is then poured into a die. The die is placed in a press and pressurized to predetermined pressure for a predetermined time and is heat treated in the furnace at predetermined temperatures for a predetermined time. The article is left in the furnace to soak at predetermined temperatures for a predetermined period of time and is oxygenated by an oxygen source during the soaking period.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: November 25, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Ronald J. Koczor, Robert A. Hiser
  • Patent number: 6602622
    Abstract: A dielectric ceramic oxide substrate in combination with superconducting film containing Ba can be used to form a dielectric resonator which has a high no-load Q factor at a high frequency and satisfactory superconducting characteristics.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: August 5, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yuji Kintaka
  • Patent number: 6481091
    Abstract: The present invention provides a method to prepare a (Bi,Pb)SrCaCuO-2223 superconducting wire with improved critical current density at reduced cost. In general, the basic method according to the present invention comprises the steps of: (a) preparing a starting precursor powder with the oxygen content adjusted to the value of the final 2223 phase; (b) filling the starting powder into a metal sheath; (c) performing deformation processing on the metal sheath to form a composite wire and develop texture in the 2212 superconducting phases; (d) sealing said metal sheath so that a fixed oxygen content is maintained; (e) performing sintering to obtain the (Bi,Pb)SrCaCuO-2223 phase. The method uses metals other than a silver-based material in the sheath material, thus significantly reducing the materials cost of the (Bi,Pb)SrCaCuO-2223 superconducting wire.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 19, 2002
    Inventor: Hengning Wu
  • Patent number: 6482775
    Abstract: An oxide superconductor consisting of an oxide which comprises, as constituent metal elements, bismuth, lead, strontium, calcium and copper having a molar ratio of lead to bismuth of at least 0.2:1, and having an internal structure in which domains having a relatively high concentration of lead and no long-period structure are contained in domains having a relatively low concentration of lead and a long-period structure. This oxide superconductor has a storing pinning function and a high critical current density Jc even at a high temperature and a high magnetic field, can be produced by industrial methods, and is easily processed to form wires.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: November 19, 2002
    Assignees: Sumitomo Electric Industries, Ltd.
    Inventors: Mikio Takano, Zenji Hiroi, Yoshichika Bando, Takahito Terashima, Kohji Kishio, Junichi Shimoyama, Koichi Kitazawa, Jun Takada, Iksu Chong
  • Patent number: 6441394
    Abstract: Using an oxide superconductor that does not require cryogenic temperatures, a superconducting tunnel junction device is provided which can accurately control the magnitudes of critical current and step voltage necessary for electronics applications and which has good characteristics as designed. The intrinsic Josephson superconducting tunnel junction device includes an oxide superconductor defined by a general expression (I): Bi2−zPbzSr2Can(1−x)RnxCun+1O2n+6 (n≧1, 0<x≦0.2, 0≦z≦1.0, R: rare-earth element).
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: August 27, 2002
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yuji Kasai, Shigeki Sakai
  • Patent number: 6276048
    Abstract: A method of producing a Bi—Pb—Sr—Ca—Cu oxide superconductor by thermally treating raw material comprises steps of performing first plastic deformation on the raw material, performing first heat treatment on the material being subjected to the first plastic deformation, performing second plastic deformation on the material being subjected to the first heat treatment, and performing second heat treatment on the material being subjected to the second plastic deformation.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: August 21, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Hikata, Ken-ichi Sato, Hidehito Mukai, Nobuhiro Shibuta, Kazuya Ohmatsu, Masayuki Nagata, Satoshi Takano, Yoshikado Hosoda, Hajime Hitotsuyanagi, Maumi Kawashima
  • Patent number: 6216333
    Abstract: An oxide superconductor current lead provided with a rod-like or pipe-like oxide superconductor, at each of end parts of which a metallic electrode is formed. In this oxide superconductor current lead, the oxide superconductor is a Bi2Sr2Ca2Cu3OX superconductor. Further, the metallic-electrode-portion contact resistivity thereof is not more than 0.05 &mgr;&OHgr;·cm2. Moreover, the critical current density is not less than 2,000 A/cm2. Furthermore, there is provided a method of manufacturing such an oxide superconductor current lead. To perform this method, optimum conditions for conducting a heat treatment when forming electrodes at both ends of an oxide superconductor current lead are detected. Thereby, the contact resistivity during a superconducting coil becomes extremely small. Further, the critical current density is considerably enhanced. In the case of this method, an oxide superconductor (8) obtained by finishing a final sintering process is first worked into or shaped like a rod or a pipe.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: April 17, 2001
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Masahiro Kojima, Shuetsu Haseyama, Shuji Yoshizawa, Mamoru Sato
  • Patent number: 6043198
    Abstract: The present invention relates to a process for preparing a high-T.sub.c superconductor as a precursor material for the oxide-powder-in-tube method, which involves mixing the oxides of the elements Bi, Sr, Ca and Cu and completely melting them at temperatures of .gtoreq.1000.degree. C., then casting the melt onto a substrate which is kept at room temperature, and disintegrating the cooled melt block and grinding it into a powder.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: March 28, 2000
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Marc Neubacher, Joachim Bock, Christoph Lang, Eberhard Preisler, Helga Weis
  • Patent number: 5994275
    Abstract: An oxide superconductor article comprises silver and an oxide superconductor having the formula Bi.sub.2-y Pb.sub.y Sr.sub.2 Ca.sub.2 O.sub.10+x, where 0.ltoreq.x.ltoreq.1.5, and 0.3.ltoreq.y.ltoreq.0.4, the oxide superconductor characterized by a critical current transition temperature of greater than 111.0 K as defined by zero resistance by a four point linear probe method with zero resistance corresponding to a resistivity of less that 10.sup.-8 .OMEGA.-cm.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: November 30, 1999
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Gilbert N. Riley, Jr., William L. Carter
  • Patent number: 5958842
    Abstract: Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.
    Type: Grant
    Filed: February 28, 1996
    Date of Patent: September 28, 1999
    Assignee: The Regents of the Uniersity of California
    Inventor: Terry G. Holesinger
  • Patent number: 5877125
    Abstract: Disclosed herein is a method of preparing a bismuth superconductor including the steps of mixing raw materials for forming a bismuth superconductor with each other to obtain mixed powder, heat treating the mixed powder, pulverizing the mixed powder and then covering the mixed powder with a metal sheath. The mixed powder covered with the metal sheath is prepared to have a 2223 composition in a composition of Bi--Sr--Ca--Cu or (Bi,Pb)--Sr--Ca--Cu and to contain a superconducting phase which is mainly composed of a 2212 phase, and is pulverized into a mean particle diameter of not more than 1 .mu.m with no conversion of the 2212 phase to an amorphous state.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: March 2, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Sato, Munetsugu Ueyama
  • Patent number: 5874383
    Abstract: A high temperature superconductor system having the single phase composition TlBiBaCaCuO. The system exhibits a T.sub.c of at least 116 K.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: February 23, 1999
    Assignee: University Technology Corporation
    Inventors: Allen M. Hermann, Veeraraghavan Badri
  • Patent number: 5863867
    Abstract: In accordance with the invention a process is provided for achieving a phase-pure BSCCO or lead doped BSCCO powder or precursor of the 2201, 2212 or 2223 phase. In this process a cation solution is intimately mixed with an anion solution and precipitation is caused at a carefully controlled pH in the range from about 10 to about 12.5. The resulting product is filtered and dried or heat-treated at a temperature of from about 400.degree. to about 500.degree. C. for a period of from about 8 to about 12 hours. The heat-treated powder is then subjected to a second heat treatment at a reduced oxygen of from about 3 to about 10 torr and a temperature of from about 700.degree. to about 800.degree. to form a precursor powder. The precursor powder is heat-treated at ambient pressure in CO.sub.2 -free air from about 12 to about 31 hours or more at a temperature of from about 800.degree. to about 850.degree. C.
    Type: Grant
    Filed: October 28, 1996
    Date of Patent: January 26, 1999
    Assignee: Superconductive Components, Inc.
    Inventors: Suvankar Sengupta, Joey Michael Corpus, Jai Subramanium
  • Patent number: 5851954
    Abstract: A composite based on a superconducting oxide having a high critical temperature, characterized by the fact that it is constituted by glass and said oxide, the glass being such that its vitreous transition temperature is not greater than 750K, the volume fraction of the glass lying in the range 2% to 40%, said oxide existing in the glass in the form of crystallites having substantially the same orientation.
    Type: Grant
    Filed: January 3, 1992
    Date of Patent: December 22, 1998
    Assignee: Alcatel Alsthom Compagnie Generale D'Electricite
    Inventors: Michel Ribes, Christian Belouet
  • Patent number: 5849672
    Abstract: Novel superconducting oxide material containing compound oxide having a composition represented by the formula:?(Tl.sub.1-x Bi.sub.x).sub.1-p .alpha..sub.p !.sub.q Sr.sub.y Ca.sub.z Cu.sub.v O.sub.win which ".alpha." is at least one element selected from a group consisting of In, Sn, Sb, Pb, Y and lanthanide elements and "x", "y", "z", "p", "q", "v" and "w" are numbers each satisfying respective range of 0.ltoreq.x.ltoreq.1.0, 0.5.ltoreq.y.ltoreq.4.0, 0.5.ltoreq.z.ltoreq.4.5, 0.ltoreq.p.ltoreq.0.6, 0.5.ltoreq..ltoreq.3.0, and 1.0.ltoreq.v.ltoreq.5.5.
    Type: Grant
    Filed: November 30, 1995
    Date of Patent: December 15, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Kengo Ohkura, Toshihiro Kotani
  • Patent number: 5814585
    Abstract: The invention relates to a spray pyrolytic process for the preparation of multi-element metal oxide powders useful as precursors of high temperature superconductor ceramics. Aerosols of aqueous solutions containing corresponding metal salts admixed in the required stoichiometric proportion are sprayed through an independently operated hydrogen/oxygen flame in such a way that a flame temperature of 800.degree.-1100.degree. C. is maintained to form said powders. Any contact of the aerosols and powders generated during the process with carbon or carbon-containing compounds or materials is strictly avoided.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: September 29, 1998
    Assignee: Merck Patent Gesellschaft mit Beschrankter Haftung
    Inventors: Rodney Riddle, Matthias Kuntz, Bernd Muller, Dietmar Raulin, Gunther Feldmann-Schlobohm
  • Patent number: 5776862
    Abstract: The hole density of an oxide superconductor having holes as carriers is higher than the hole density to bring the highest value of the superconductivity critical temperature Tc thereof, and it can be made higher than the optimal density to bring the highest Tc value by treating the oxide superconductor with heat in an oxidizing gas atmosphere, or by replacing positive ions constituting the oxide superconductor except for copper with ions of a low valence number. Accordingly, it is possible to substantially reduce the rate of decrease of the critical current density owing to an applied magnetic field when the magnetic field is applied parallel to the crystal c axis, and to allow a current conductor produced by using the oxide superconductor to have high critical current density.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: July 7, 1998
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Tohoku Electric Power Company, Incorporated, Toshiba Corporation, International Superconductivity Technology Center
    Inventors: Ryo Usami, Kazuyuki Isawa, Hiroshi Kubota, Roman Puzniak, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 5716909
    Abstract: Process for increasing the pinning force of superconducting Bi-Sr-Ca-Cu-O ceramic moldings, which comprises heating the pure-phase 2212 phase of a Bi-Sr-Ca-Cu-O ceramic molding under pure oxygen or an oxygen-containing gas for from 1 to 40 minutes to a temperature of from 825.degree. to 900.degree. C. and generating secondary-phase precipitates in the process.
    Type: Grant
    Filed: October 1, 1996
    Date of Patent: February 10, 1998
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Peter Majewski, Guenter Petzow, Fritz Aldinger, Bernhard Hettich, Steffen Elschner
  • Patent number: 5703021
    Abstract: A description is given of superconducting substances having a content of Bi, Sr, Ca and Cu, and of processes for their preparation from the metal oxides within a range which is specified by the overall composition Bi.sub.a (Sr,Ca).sub.b -Cu.sub.6 O.sub.x, where a=3-24 and b=3.23-24, with an Sr/Ca atomic ratio of 1:9-9:1 and a Bi:(Ca+Sr) atomic ratio of 0.3-1.5. The transition temperature is at least 60 K. The principal phase crystallizes in the orthorhombic system. The pure compounds Bi.sub.4 (Sr,Ca).sub.4 Cu.sub.2 O.apprxeq..sub.12 and Bi.sub.4 (Sr,Ca).sub.6 Cu.sub.4 O.apprxeq..sub.20.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 30, 1997
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Hans-Georg von Schnering, Winfried Becker, Martin Schwarz, Bernhard Hettich, Martin Hartweg, Leonhard Walz, Thomas Popp
  • Patent number: 5674814
    Abstract: The present invention is directed to a process for producing high temperature superconducting ceramic materials. More particularly, the present invention is directed to a process that enhances the densification of Bi.sub.1.8 Pb.sub.0.4 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10 "BSCCO" ceramics.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: October 7, 1997
    Assignee: University of Chicago
    Inventors: Michael T. Lanagan, John J. Picciolo, Stephen E. Dorris
  • Patent number: 5665662
    Abstract: A high-temperature superconductor material based on the Bi--Sr--Ca--Cu--O system has the nominal composition:(Bi.sub.1-u Pb.sub.u).sub.2 (Sr.sub.1-x-y Ca.sub.x Bi.sub.y).sub.4 Cu.sub.3 O.sub.10+d (d=delta)wherein 0.01<x<0.50.ltoreq.y<x<0.50.ltoreq.d0.ltoreq.u.The high-temperature superconductor material has a transition temperature greater than 90.degree. K.
    Type: Grant
    Filed: November 8, 1990
    Date of Patent: September 9, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventor: Oliver Eibl
  • Patent number: 5661114
    Abstract: A method for preparing a BSCCO-2223 oxide superconducting article includes annealing an oxide superconductor article comprised of BSCCO-2223 oxide superconductor at a temperature selected from the range of about 500.degree. C..ltoreq.T.ltoreq.787.degree. C. and an annealing atmosphere having an oxygen pressure selected from within the region having a lower bound defined by the equation, P.sub.O2 (lower).gtoreq.3.5.times.10.sup.10 exp(-32,000/T+273) and an upper bound defined by the equation, P.sub.O2 (upper).ltoreq.1.1.times.10.sup.12 exp(-32,000/T+273). The article is annealed for a time sufficient to provide at least a 10% increase in critical current density as compared to the critical current density of the pre-anneal oxide superconductor article. An oxide superconductor having the formula Bi.sub.2-y Pb.sub.y Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10+x, where 0.ltoreq.x.ltoreq.1.5 and where 0.ltoreq.y.ltoreq.0.
    Type: Grant
    Filed: February 17, 1994
    Date of Patent: August 26, 1997
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Gilbert N. Riley, Jr., William L. Carter
  • Patent number: 5654259
    Abstract: The substance has a composition of a general chemical formula ofBi.sub.2 -(Sr.sub.2 Ca.sub.1).sub.1-x (La.sub.2 Y.sub.1).sub.x -Cu.sub.y -O.sub.z,where 0.4.ltoreq.x.ltoreq.1, y=2 and z=9-10.5, wherein the substance is an insulator or a semiconductor in the dark, and has a photoconductivity Q(.lambda.,T) in conjugate with superconductivity of a superconductor of an adjacent component of the Bi-SrCa-LaY-Cu-O system at and below a critical temperature (T) of less than 105.degree.-115.degree. K. and below 65.degree.-85.degree. K. at photoexcitation in an optical wavelength range (.lambda.) of 420-670 nm. The present invention relates to a method for producing the same and a superconductive optoelectronic device by using the same. The present invention also relates to an organized integration of the element or device into an apparatus to further develop a new field of "Superconductive Optoelectronics.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 5, 1997
    Assignee: The University of Tokyo
    Inventor: Taizo Masumi
  • Patent number: 5643857
    Abstract: A ceramic superconductive material (1) including a compound containing oxygen and at least two types of metal elements and having layer structure is molten in a vessel (2), at least an inner surface (3) of which is formed of a solid solution alloy having a base of gold or silver. Preferably the alloy is prepared from Au--5 to 40 wt. % Pd or Ag--5 to 40 wt. % Pd.
    Type: Grant
    Filed: May 8, 1991
    Date of Patent: July 1, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kazuhiko Hayashi
  • Patent number: 5627140
    Abstract: Enhanced flux pinning in superconductors is achieved by embedding carbon nanotubes into a superconducting matrix. The carbon nanotubes simulate the structure, size and shape of heavy ion induced columnar defects in a superconductor such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8+x. The nanotubes survive at treatment temperatures of up to approximately 800.degree. C. both in oxygen containing and in inert atmospheres. The superconducting matrix with nanotubes is heat treated at a lower temperature than the temperature used to treat the best case pure superconductor material.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: May 6, 1997
    Assignees: NEC Research Institute, Inc., Florida State University
    Inventors: Kristian Fossheim, Thomas W. Ebbesen
  • Patent number: 5618776
    Abstract: The invention provides certain novel metal oxide materials which exhibit superconductivity at elevated temperatures and/or which are useful in electrode, electrolyte, cell and sensor applications, or as electrochemical catalysts. The metal oxide materials are generally within the formulaR.sub.n+1-u-s A.sub.u M.sub.m+e Cu.sub.n O.sub.w (1)where n.gtoreq.0 and n is an integer or a non-integer, 1.ltoreq.m.ltoreq.2, 0.ltoreq.s.ltoreq.0.4, 0.ltoreq.e.ltoreq.4, and 2n+( 1/2)<w<(5/2)n+4, with the provisos that u is 2 for n.gtoreq.1, u is n+1 for 0.ltoreq.
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: April 8, 1997
    Inventors: Jeffrey L. Tallon, Robert G. Buckley, Murray R. Presland
  • Patent number: 5614472
    Abstract: The invention relates to a spray pyrolyric process for the preparation of multi-element metal oxide powders useful as precursors of high temperature superconductor ceramics. Aerosols of aqueous solutions containing corresponding metal salts admixed in the required stoichiometric proportion are sprayed through an independently operated hydrogen/oxygen flame in such a way that a flame temperature of 800.degree.-1100.degree. C. is maintained to form said powders. Any contact of the aerosols and powders generated during the process with carbon or carbon-containing compounds or materials is strictly avoided.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: March 25, 1997
    Assignee: Merck Patent Gesellschaft Mit Beschrankter Haftung
    Inventors: Rodney Riddle, Matthias Kuntz, Bernd M uller, Dietmar Raulin, G unther Feldmann-Schlobohm
  • Patent number: 5610123
    Abstract: In a method of preparing a bismuth oxide superconducting wire comprising the steps of filling raw material powder into a metal sheath, working the same into a wire by performing deformation processing in this state, and heat treating the wire, the raw material powder is heat treated before the step of working the raw material powder into a wire by performing deformation processing, so that the ratio of a 2212 phase, containing Bi or (Bi,Pb), Sr, Ca and Cu in composition ratios of about 2:2:1:2, to a 2223 phase, containing Bi or (Bi,Pb), Sr, Ca and Cu in composition ratios of about 2:2:2:3, is 75 to 90:10 to 25, in order to prepare a wire which is excellent in critical current density as well as in critical current.
    Type: Grant
    Filed: February 8, 1995
    Date of Patent: March 11, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Sato, Takeshi Hikata, Munetsugu Ueyama
  • Patent number: 5578555
    Abstract: A method of monitoring the fabrication of a superconductive material having a high critical temperature is wherein:the starting material is a mixture of powders of precursors for said material having stoichiometric proportions appropriate for the desired superconductive phase;the said mixture is agglomerated to form a tubular or a cylindrical piece;the agglomerated piece is placed in a controlled-atmosphere oven for synthesizing said superconductive phase;the conductivity of said piece is measured continuously;the temperature at which conductivity begins to decrease is exceeded and then the temperature is returned to a value where conductivity begins to increase; andthe temperature of the oven is permanently adjusted so that said conductivity does not decrease.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: November 26, 1996
    Assignee: Alcatel Alsthom Compagnie Generale d'Electricite
    Inventor: G erard Duperray
  • Patent number: 5569641
    Abstract: Two-powder processes for the synthesis of superconducting (Bi, Pb)-2223/Ag-clad wires by the oxide-powder-in-the-robe are provided. The first precursor powder, of nominal stoichiometry CaCuO.sub.x, is a solution-synthesized mixture of Ca.sub.0.45 Cu.sub.0.55 O.sub.2 and CaO. Using these oxide precursor mixtures, superconducting tapes with well-aligned grains and reproducible critical current densities J.sub.c in the range of 20,000 to 26,000 A/cm.sup.2 at 75 K in self-field after annealing less than 200 hours were obtained.
    Type: Grant
    Filed: April 10, 1995
    Date of Patent: October 29, 1996
    Assignees: University of California, Los Alamos National Laboratory
    Inventor: Michael G. Smith
  • Patent number: 5565414
    Abstract: A metal oxide is provided which is represented by the compositional formula :(Bi.sub.1-x A.sup.I.sub.x).sub.2 (Sr.sub.y Ca.sub.1-y-z A.sup.II.sub.z).sub.p (Cu.sub.1-r A.sup.III.sub.r).sub.q O.sub..delta.wherein 0.ltoreq.x.ltoreq.0.5, 0.3.ltoreq.y.ltoreq.0.7, 0.ltoreq.z.ltoreq.0.5, 0.ltoreq.r.ltoreq.0.1, 1>y+z, 2>p>11, 1.ltoreq.q.ltoreq.10 and 5.4.ltoreq..delta..ltoreq.24 with the exclusion of x=z=r=0, A.sup.I is at least one element selected from In, Sb, Pb and Sn; A.sup.II is at least one element selected from Na, K, Mg, Ba, and Sn and A.sup.III is at least one element selected from Ti, V, Cu, Ni, Zr, Nb, Ta, Fe and Ru. The metal oxide may further comprise an element selected from lanthanoids and yttrium. The metal oxide material shows superconductivity at a temperature not lower than the boiling point of liquid helium.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: October 15, 1996
    Assignee: Canon Kabushiki Kaisha
    Inventors: Jun Akimitsu, Tohru Den, Fumio Kishi, Norio Kaneko, Masatake Akaike, Kiyozumi Niizuma, Atsuko Tanaka
  • Patent number: 5541154
    Abstract: Process for preparing a high-T.sub.c superconductor as a precursor material for the oxide-powder-in-tube method (OPIT). The present invention relates to a process for preparing a high-T.sub.c superconductor as a precursor material for the oxide-powder-in-tube method, which involves mixing the oxides of the elements Bi, Sr, Ca and Cu and completely melting them at temperatures of .gtoreq.1000.degree. C., then casting the melt onto a substrate which is kept at room temperature, and disintegrating the cooled melt block and grinding it into a powder.
    Type: Grant
    Filed: February 16, 1994
    Date of Patent: July 30, 1996
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Marc Neubacher, Joachim Bock, Christoph Lang, Eberhard Preisler, Helga Weis
  • Patent number: 5529979
    Abstract: Superconducting oxide material containing compound represented by the formula:(Tl.sub.(l-p-q) Bi.sub.p Pb.sub.q).sub.y .gamma..sub.z (.alpha..sub.(l-r) .beta..sub.r).sub.s Cu.sub.v O.sub.win which each of ".alpha." and ".gamma." is an element selected in IIa group of the periodic table, ".beta." is an element selected from a group comprising Na, K, Rb and Cs, "y", "z", "v", "w", "p", "q", "r" and "s" are numbers each satisfying respective range of 0.5.ltoreq.y.ltoreq.3.0, 0.5.ltoreq.z.ltoreq.6.0, 1.0.ltoreq.v, 5.0.ltoreq.w, 0.ltoreq.p.ltoreq.1.0, 0.ltoreq.q.ltoreq.1.0, 0.ltoreq.r.ltoreq.1.0 and 0.5.ltoreq.s.ltoreq.3.0.
    Type: Grant
    Filed: February 2, 1994
    Date of Patent: June 25, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Hiroyuki Kusuhara
  • Patent number: 5525581
    Abstract: A Bi--Sr--Ca--Cu--O ceramic superconductor contains 0112 phases which are finely dispersed in a 2212-phase matrix with its c-axis oriented perpendicular to a growth direction.A method of preparing a Bi--Sr--Ca--Cu--O ceramic superconductor comprises the steps of growing crystals under conditions satisfying:G/R.gtoreq.1 and G.multidot.R.gtoreq.10000where G (K/cm) represents the temperature gradient at a solid-liquid interface and R (mm/h) represents the rate of crystal growth, and annealing the grown crystals in an atmosphere having oxygen partial pressure of at least 0.05 atm. within a temperature-range of 800.degree. to 860.degree. C. for at least 2 hours.
    Type: Grant
    Filed: December 14, 1994
    Date of Patent: June 11, 1996
    Assignee: Engineering Research Association for Superconductive Generation Equipment and Materials
    Inventor: Kazuhiko Hayashi
  • Patent number: 5523285
    Abstract: A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 4, 1996
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Uthamalingam Balachandran
  • Patent number: 5523284
    Abstract: In accordance this invention, there is provided a process for making a bulk superconductive material. In the first step of this process, a diffusion couple is formed from superconductor oxide and impurity oxide. Thereafter, the diffusion couple is heated to a temperature in excess of 800 degrees Centigrade, cooled at a controlled rate, and annealed.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: June 4, 1996
    Assignee: Alfred University
    Inventors: James G. Fagan, Jr., Vasantha R. W. Amarakoon
  • Patent number: 5521148
    Abstract: Novel superconducting oxide material containing compound oxide having a composition represented by the formula:[(Tl.sub.1-x Bi.sub.x).sub.1-p .alpha..sub.p ].sub.q Sr.sub.y Ca.sub.z Cu.sub.v O.sub.win which ".alpha." is at least one element selected from a group consisting of In, Sn, Sb, Pb, Y and lanthanide elements and "x", "y", "z", "p", "q", and "v" are numbers each satisfying respective range of 0.1.ltoreq.x.ltoreq.0.5, 0.5.ltoreq.y.ltoreq.4.0, 0.5.ltoreq.z.ltoreq.4.5, 0.ltoreq.p.ltoreq.0.6, 0.5.ltoreq.q.ltoreq.3.0, and 1.0.ltoreq.v.ltoreq.5.5.
    Type: Grant
    Filed: October 8, 1991
    Date of Patent: May 28, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Kengo Ohkura, Toshihiro Kotani
  • Patent number: 5516752
    Abstract: Superconducting oxide material containing compound represented by the formula:(Tl.sub.(1-p-q) Bi.sub.p Pb.sub.q).sub.y .gamma..sub.z (.alpha..sub.(1-r) .beta..sub.r).sub.s Cu.sub.v O.sub.win which each of ".alpha." and ".gamma." is an element selected in IIa group of the periodic table, ".beta." is an element selected from a group comprising Na, K, Rb and Cs, "y", "z", "v", "w", "p", "q", "r" and "s" are numbers each satisfying respective range of 0.5.ltoreq.y.ltoreq.3.0, 0.5.ltoreq.z.ltoreq.6.0, 1.0.ltoreq.v, 5.0.ltoreq.w, 0.ltoreq.p.ltoreq.1.0, 0.ltoreq.q.ltoreq.1.0, 0.ltoreq.r.ltoreq.1.0 and 0.5.ltoreq.s.ltoreq.3.0.
    Type: Grant
    Filed: November 29, 1993
    Date of Patent: May 14, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuko Torii, Hiroyuki Kusuhara
  • Patent number: 5510323
    Abstract: An oxide superconductor comprising a perovskite type oxide compound of thallium, strontium, calcium and copper or thallium, strontium, balium, calcium and copper is produced by absorbing thallium in a gaseous phase into a mixture of strontium oxide or strontium oxide and barium oxide, calcium oxide, and copper oxide or a mixture of compounds capable of producing these oxides upon firing. From this superconductor are provided a superconductor wire material, tape-shaped wire material, coil, thin film, magnet, magnetic shielding material, printed circuit board, measuring device, computer, power storing device and etc.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: April 23, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Tomoichi Kamo, Seizi Takeuchi, Shinpei Matsuda, Atsuko Soeta, Takaaki Suzuki, Yutaka Yoshida