For Stripping Photoresist Material Patents (Class 510/176)
  • Publication number: 20150094249
    Abstract: The disclosure is directed solutions and processes to remove substances from substrates. In some cases, the substances can include photoresist on semiconductor wafers. The solution can include hydrogen peroxide in an amount that is no greater than 15% by weight of the total weight of the solution. The solution can also include a quaternary ammonium hydroxide and water. Further, the solution can include an amine, a co-solvent, or both. One or more sides of the substrate can be contacted with the solution to remove one or more substances from the solution.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: Dynaloy, LLC
    Inventors: Richard Dalton Peters, Travis W. Acra, Yuanmei Cao, Nichelle Maria Gilbert, Michael Tod Phenis, Kimberly Dona Pollard, Joshua Cummins, Meng Guo, Donald James Pfettscher
  • Patent number: 8987181
    Abstract: A photoresist and post etch cleaning solution for semiconductor wafers comprising: A. a polar aprotic solvent, B. an inorganic base; C. a co-solvent for said inorganic base; D. a unsaturated cycloaliphatic compound having a ring ether group and at least one substituent bearing a primary hydroxyl group; E. an organic base comprising an amine compound; and F. a nonionic surfactant bearing at least one ether group. The wafer containing photoresist residue or post etch residue can be cleaned by contacting the solution in a spray or immersion.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: March 24, 2015
    Assignee: Dynaloy, LLC
    Inventors: Kimberly Dona Pollard, Donald Pfettscher, Meagan Hatfield, Spencer Erich Hochstetler, Nichelle M. Wheeler, Michael T. Phenis
  • Patent number: 8980812
    Abstract: There are provided a processing liquid for suppressing pattern collapse of a microstructure which includes at least one compound selected from the group consisting of an imidazolium halide containing an alkyl group having 12, 14 or 16 carbon atoms, a pyridinium halide containing an alkyl group having 14 or 16 carbon atoms and an ammonium halide containing an alkyl group having 16 or 18 carbon atoms, and water; and a method for producing a microstructure formed of silicon oxide using the processing liquid.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: March 17, 2015
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hiroshi Matsunaga, Masaru Ohto
  • Patent number: 8981148
    Abstract: An esteramide compound of the following formula (I): R1OOC-A-CONR2R3??(I) is described, wherein: A is a covalent bond or a methylene group —CH2—; R1 is an optionally substituted, saturated or unsaturated aliphatic or cycloaliphatic hydrocarbon group including from 5 to 36 carbon atoms, R2 and R3, either identical or different, are groups selected from a hydrogen atom, and optionally substituted hydrocarbon groups, preferably including from 1 to 36 carbon atoms, and R2 and R3 not being simultaneously hydrogen atoms. Also described, are applications for using the esteramide compound, notably as a solvent.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: March 17, 2015
    Assignee: Rhodia Operations
    Inventors: Massimo Guglieri, Thierry Vidal
  • Patent number: 8961744
    Abstract: In a system and method for recycling a high-boiling-point waste photoresist stripper generated in processes of manufacturing LCDs or semiconductor devices, an expensive high-boiling-point stripper solvent can be easily recycled at high yield and high-purity electronic grade.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: February 24, 2015
    Assignee: Korex Corporation
    Inventors: Ho Kyung Lee, In Gyoo Lee, Myung Jun Park, Kee-Kahb Koo, Jae-Kyeong Kim
  • Patent number: 8956462
    Abstract: The objects of the present invention are to provide a treatment liquid able to inhibit pattern collapse in a microstructure such as a semiconductor device or a micromachine, as well as a method of manufacturing a microstructure using the same. Means to solve the problems is to treat a microstructure with a treatment liquid for inhibiting pattern collapse in a metal microstructure comprising an alkylphosphonic acid or salt thereof in which said alkyl moiety contains 6 to 18 carbon atoms, water, and a water soluble solvent.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 17, 2015
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hiroshi Matsunaga, Kimihiro Aoyama
  • Patent number: 8957006
    Abstract: A chemical solution for use in cleaning a patterned substrate includes water, from approximate 0.01 to 99.98 percent by weight; hydrogen peroxide, from 0 to 30 percent by weight; a pH buffering agent, from approximate 0.01 to 50 percent by weight; a metal chelating agent, from approximate 0 to 10 percent by weight; and a compound for lowering a surface tension of the combination of water, hydrogen peroxide, pH buffering agent, and metal chelating agent. Examples of the compound include an organic solvent, from approximate 0 to 95 percent by weight, or a non-ionic surfactant agent, from approximate 0 to 2 percent by weight.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: February 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yuan Ting, Jeng-Shiou Chen
  • Publication number: 20150044839
    Abstract: A photoresist stripping and cleaning composition free from N-alkylpyrrolidones and added quaternary ammonium hydroxides comprising a component (A) which comprises the polar organic solvents N-methylimidazole, dimethylsulfoxide and 1-aminopropane-2-ol.
    Type: Application
    Filed: March 18, 2013
    Publication date: February 12, 2015
    Applicant: BASF SE
    Inventors: Simon Braun, Christian Bittner, Andreas Klipp
  • Patent number: 8951950
    Abstract: Al post-etch residue removal composition doped with an alkanoic acid of the formula R—COOH, where R can be a linear or branched alkyl group in the form of CnH2n+1, where n is from 4 to 19, simultaneously passivates exposed Al surfaces while removing post-etch residues.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: February 10, 2015
    Inventor: Chia-Yin Joyce Wei
  • Patent number: 8951948
    Abstract: A liquid removal composition and process for removing sacrificial anti-reflective coating (SARC) material from a substrate having same thereon. The liquid removal composition includes at least one fluoride-containing compound, at least one organic solvent, optionally water, and optionally at least one chelating agent. The composition achieves at least partial removal of SARC material in the manufacture of integrated circuitry with minimal etching of metal species on the substrate, such as aluminum, copper and cobalt alloys, and without damage to low-k dielectric materials employed in the semiconductor architecture.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: February 10, 2015
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Melissa K. Rath, David D. Bernhard, Thomas H. Baum, David W. Minsek
  • Patent number: 8951949
    Abstract: A composition for stripping a color filter and a color filter regeneration method are provided. A composition for stripping the color filter according to an exemplary embodiment of the present invention includes glycol and potassium hydroxide (KOH), in which either (a) the concentration of the glycol is in the range of 83 wt % to 91 wt % and of the concentration of the potassium hydroxide satisfies the condition: (wt % of KOH)?6?(0.065*(wt % of the glycol)), or (b) the concentration of glycol is more than 91 wt % and the concentration of potassium hydroxide (KOH) is more than 0.2 wt %.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: February 10, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kwang-Ho Lee, Jang-Sub Kim
  • Patent number: 8940104
    Abstract: A cleaning composition for removing temporary wafer bonding material is provided. The cleaning composition comprises an alkylarylsulfonic acid and an aliphatic alcohol dispersed or dissolved in a hydrocarbon solvent system. Methods of separating bonded substrates and cleaning debonded substrates using the cleaning composition are also provided. The invention is particularly useful for temporary bonding materials and adhesives. The methods generally comprise contacting the bonding material with the cleaning solution for time periods sufficient to dissolve the desired amount of bonding material for separation and/or cleaning of the substrates.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: January 27, 2015
    Assignee: Brewer Science Inc.
    Inventors: Xing-Fu Zhong, John Moore
  • Patent number: 8926758
    Abstract: A composition for removing photoresist and bottom anti-reflective coating from a semiconductor substrate is disclosed. The composition may comprise a nontoxic solvent, the nontoxic solvent having a flash point above 80 degrees Celsius and being capable of dissolving acrylic polymer and phenolic polymer. The composition may further comprise Tetramethylammonium Hydroxide (TMAH) mixed with the nontoxic solvent.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 6, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Indranil De, Anh Duong
  • Patent number: 8927476
    Abstract: Aqueous alkaline composition free from organic solvents and metal ion-free silicates, the said compositions comprising (A) a thioamino acid having at least one primary amino group and at least one mercapto group, (B) a quaternary ammonium hydroxide, (C) a chelating and/or corrosion inhibiting agent selected from the group consisting of aliphatic and cycloaliphatic amines having at least two primary amino groups, and aliphatic and cycloaliphatic amines having at least one hydroxy group, (D) a nonionic surfactant selected from the group of acetylenic alcohols, alkyloxylated acetylenic alcohols and alkyloxylated sorbitan monocarboxylic acid mono esters; the use of the alkaline composition for the processing of substrates useful for fabricating electrical and optical devices; and a method for processing substrates useful for fabricating electrical and optical devices making use of the said aqueous alkaline composition.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: January 6, 2015
    Assignee: BASF SE
    Inventors: Raimund Mellies, Andreas Klipp
  • Patent number: 8921296
    Abstract: Methods and systems for cleaning corrosion product of a metallic capping layer from the surface of a substrate are provided. According to one embodiment, a treatment solution includes a surfactant, a complexing agent, and a pH adjuster. The surfactant is configured to enhance wetting of the substrate surface, and inhibit further corrosion of the capping layer. The complexing agent is configured to bind to metal ions which have desorbed from the substrate surface. The pH adjuster is configured to adjust the pH to a desired level, so as to promote desorption of the corrosion product from the substrate surface.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 30, 2014
    Assignee: Lam Research Corporation
    Inventor: Artur Kolics
  • Patent number: 8916338
    Abstract: Processes associated apparatus and compositions useful for removing organic substances from substrates, for example, electronic device substrates such as microelectronic wafers or flat panel displays, are provided. Processes are presented that apply a minimum volume of a composition as a coating to the inorganic substrate whereby sufficient heat is added and the organic substances are completely removed by rinsing. The compositions and processes may be suitable for removing and, in some instances, completely dissolving photoresists of the positive and negative varieties as well as thermoset polymers from electronic devices.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: December 23, 2014
    Assignee: Eastman Chemical Company
    Inventors: Michael Wayne Quillen, Dale Edward O'Dell, Zachary Philip Lee, John Cleaon Moore, Edward Enns McEntire, Spencer Erich Hochstetler, Richard Dalton Peters, Rodney Scott Armentrout, Darryl W. Muck
  • Patent number: 8912134
    Abstract: A method of cleaning copper material surfaces in ultra large scale integrated circuits after polishing, the method including: a) mixing and stirring between 1 and 4 wt. % of a surfactant, between 0.5 and 3 wt. % of a chelating agent, between 0.1 and 5 wt. % of a corrosion inhibitor, and deionized water, to yield a water soluble cleaning solution with pH value of between 7.4 and 8.2; and b) washing the copper material surfaces using the cleaning solution after alkaline chemical-mechanical polishing under following conditions: between 2000 and 3000 Pa of pressure; between 1000 and 5000 mL/min of flow rate; and at least between 0.5 and 2 min of washing time.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: December 16, 2014
    Assignee: Hebei University of Technology
    Inventors: Yuling Liu, Xiaoyan Liu, Na Liu, Yangang He
  • Patent number: 8906838
    Abstract: Cleaning compositions suitable for cleaning microelectronic structures having silicon dioxide, low-k or high-k di-electrics and copper or aluminum metallizations contain a polar organic solvent selected from amides, sulfones, sulfolenes, selenones and saturated alcohols and a strong alkaline base.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: December 9, 2014
    Assignee: Avantor Performance Materials, Inc.
    Inventor: Chien-Pin Sherman Hsu
  • Patent number: 8900371
    Abstract: The present invention provides a cleaning agent for a substrate and a cleaning method thereof, which can effectively remove fine particles (particles) present on a surface of substrate or impurities derived from various kinds of metals (metallic impurities), without causing roughness surface of a substrate, in particular, a semiconductor substrate, and without causing corrosion or oxidation of metal wirings, in particular, copper wirings, provided on a surface of substrate, and can further remove at the same time a carbon defect present on a surface of substrate, without removing a metal corrosion inhibitor—Cu film, in particular, a Cu-BTA film.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: December 2, 2014
    Assignee: Wako Pure Chemical Industries, Ltd.
    Inventors: Hironori Mizuta, Masahiko Kakizawa, Ichiro Hayashida
  • Patent number: 8889609
    Abstract: A water-rich hydroxylamine formulation for photoresist and post-etch/post-ash residue removal in applications wherein a semiconductor substrate comprises aluminum. The cleaning composition comprises from about 2 to about 15% by wt. of hydroxylamine; from about 50 to about 80% by wt. of water; from about 0.01 to about 5.0% by wt. of a corrosion inhibitor; from about 5 to about 45% by wt. of a component selected from the group consisting of: an alkanolamine having a pKa<9.0, a water-miscible solvent, and a mixture thereof. Employment of such composition exhibits efficient cleaning capability for Al substrates, minimal silicon etch while protecting aluminum for substrates comprising both materials.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: November 18, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Aiping Wu, Yi-Chia Lee, Wen Dar Liu, Machukar Bhaskara Rao, Gautam Banerjee
  • Patent number: 8883699
    Abstract: Disclosed herein is a resist stripping composition, which has an excellent ability of stripping a residual resist remaining after dry or wet etching at the tune of forming patterns in a process of manufacturing a flat panel display substrate.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: November 11, 2014
    Assignee: Dongwoo Fine-Chem Co., Ltd.
    Inventors: Jeong-Hyun Kim, Kyung-Jun Ko, Sung-Sik Kim, Yu-Jin Lee
  • Publication number: 20140326633
    Abstract: Compositions useful for the selective removal of silicon nitride materials relative to poly-silicon, silicon oxide materials and/or silicide materials from a microelectronic device having same thereon. The removal compositions include fluorosilicic acid, silicic acid, and at least one organic solvent. Typical process temperatures are less than about 100° C. and typical selectivity for nitride versus oxide etch is about 200:1 to about 2000:1. Under typical process conditions, nickel-based silicides as well as titanium and tantalum nitrides are largely unaffected, and polysilicon etch rates are less than about 1 ? min?.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Inventors: Emanuel I. COOPER, Eileen Sparks, William R. Bowers, Mark A. Biscotto, Kevin P. Yanders, Michael B. Korzenski, Prema Sonthalia, Nicole E. Thomas
  • Publication number: 20140318584
    Abstract: Compositions and methods for removing lanthanoid-containing solids and/or species from the surface of a microelectronic device or microelectronic device fabrication hardware. Preferably, the lanthanoid-containing solids and/or species comprise cerium. The composition is preferably substantially devoid of fluoride ions.
    Type: Application
    Filed: January 12, 2012
    Publication date: October 30, 2014
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Emanuel I. Cooper, Jeffrey A. Barnes
  • Patent number: 8859477
    Abstract: A composition comprising a phosphonitrile halide and an oligomeric organopolysiloxanes having from 10 to 50 Si units is effective to remove silicone residues from substrates with minimal swelling of thin polymer substrates.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: October 14, 2014
    Assignee: Wacker Chemie AG
    Inventor: Andreas Koellnberger
  • Patent number: 8853081
    Abstract: Provided are methods for processing semiconductor substrates to remove high-dose ion implanted (HDI) photoresist structures without damaging other structures made of titanium nitride, tantalum nitride, hafnium oxide, and/or hafnium silicon oxide. The removal is performed using a mixture of an organic solvent, an oxidant, a metal-based catalyst, and one of a base or an acid. Some examples of suitable organic solvents include dimethyl sulfoxide, n-ethyl pyrrolidone, monomethyl ether, and ethyl lactate. Transition metals in their zero-oxidation state, such as metallic iron or metallic chromium, may be used as catalysts in this mixture. In some embodiments, a mixture includes ethyl lactate, of tetra-methyl ammonium hydroxide, and less than 1% by weight of the metal-based catalyst. The etching rate of the HDI photoresist may be at least about 100 Angstroms per minute, while other structures may remain substantially intact.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 7, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Anh Duong, Olov Karlsson, Sven Metzger
  • Publication number: 20140256155
    Abstract: A chemical solution for use in cleaning a patterned substrate includes water, from approximate 0.01 to 99.98 percent by weight; hydrogen peroxide, from 0 to 30 percent by weight; a pH buffering agent, from approximate 0.01 to 50 percent by weight; a metal chelating agent, from approximate 0 to 10 percent by weight; and a compound for lowering a surface tension of the combination of water, hydrogen peroxide, pH buffering agent, and metal chelating agent. Examples of the compound include an organic solvent, from approximate 0 to 95 percent by weight, or a non-ionic surfactant agent, from approximate 0 to 2 percent by weight.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Taiwan Semiconductor Manufacturing Company, Ltd.
  • Patent number: 8828918
    Abstract: An object of the present invention is to provide a semiconductor surface treating agent composition, which can realize easy removing of an anti-reflection coating layer in a production process of a semiconductor device or the like at a low temperature in a short time, a method for treating a semiconductor surface using the same, and further a semiconductor surface treating agent composition, which can realize not only removing of both layer of an anti-reflection coating layer and a resist layer, but can realize even removing of a cured resist layer produced in an etching process, and a method for treating a semiconductor surface using the same. The semiconductor surface treating agent composition of the present invention is characterized by comprising a compound which generates a fluorine ion in water, a carbon radical generating agent, and water and optionally an organic solvent, and the method for treating a semiconductor surface of the present invention is characterized by using the composition.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: September 9, 2014
    Assignee: Wako Pure Chemical Industries, Ltd.
    Inventors: Hironori Mizuta, Osamu Matsuda
  • Publication number: 20140249065
    Abstract: Semi-aqueous, alkaline microelectronic cleaning composition of pH?8 containing: (A) at least one secondary alkanolamine that generates hydroxides when in contact with water; (B) at least one organic alcohol ether solvent having an evaporation rate of 0.3 or less when n-butyl acetate's evaporation rate is taken as the baseline rate of 1.0; (C) at least one corrosion inhibiting cyclic amide compound; (D) at least one pH balancing azole metal corrosion inhibitor in an amount of 0.08% or less by weight of the composition; and (E) water; and optionally (F) at least one polyhydroxylated phenol compound corrosion inhibitor; and (G) at least one polyalcohol or polythiol surface modification agent containing vicinal hydroxyl or vicinal sulfhydryl groups to pair with the polyhydroxylated phenol compound corrosion inhibitor.
    Type: Application
    Filed: October 5, 2012
    Publication date: September 4, 2014
    Inventor: Chien-Pin Sherman Hsu
  • Patent number: 8822396
    Abstract: A residue-removing solution for removing residues present on semiconductor substrates after dry etching and/or ashing, the residue-removing solution comprising a Cu surface protective agent including: at least one compound selected from compounds (1), (2) and (3) each having as a basic skeleton a five-membered or six-membered heteratomic structure as defined herein; a compound capable of forming a complex or chelate with Cu (copper); and water. Further, the residue-removing solution has a pH of 4 to 9.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: September 2, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Shingo Nakamura, Takehiko Kezuka
  • Patent number: 8809247
    Abstract: A cleaning composition which is capable of removing both organic soiling and particulate soiling adhered to a substrate for an electronic device with a high degree of cleanliness, and which also has minimal impact on the environment, as well as a method of cleaning a substrate for an electronic device. The present invention relates to a cleaning composition used for cleaning a substrate for an electronic device including a water-soluble salt (A) containing a transition metal, a chelating agent (B) and a peroxide (C), wherein the amount of the chelating agent (B) is not less than 0.5 molar equivalents relative to the amount of the water-soluble salt (A) containing a transition metal.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: August 19, 2014
    Assignee: LION Corporation
    Inventors: Makoto Hidaka, Taku Ogura
  • Patent number: 8802608
    Abstract: A composition for cleaning and corrosion inhibition which is used in a step of manufacturing a semiconductor device or a display device having a copper-containing metallic wiring is provided, wherein the corrosion inhibitor component is any one of pyrazole, a pyrazole derivative such as 3,5-dimethylpyrazole, a triazole derivative such as 1,2,4-triazole, an aminocarboxylic acid such as iminodiacetic acid or ethylenediaminedipropionic acid hydrochloride, or a disulfide compound such as diisopropyl disulfide or diethyl disulfide; and the cleaning agent component is any one of ammonium fluoride, tetramethylammonium fluoride, ammonium acetate, acetic acid, glyoxylic acid, oxalic acid, ascorbic acid, 1,2-diaminopropane or dimethylacetamide. Also, a method for manufacturing a semiconductor device or the like using the composition for cleaning and corrosion inhibition is provided.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: August 12, 2014
    Assignee: Mitsubishi Gas Chemical Comany, Inc.
    Inventors: Kenji Shimada, Hiroshi Matsunaga, Kojiro Abe, Kenji Yamada
  • Patent number: 8802609
    Abstract: Semiconductor processing compositions comprising amidoxime compounds having two or more amidoxime functional groups and their use in semiconductor processing to remove photoresist, polymeric materials, etching residues and copper oxides from semiconductor substrates, particularly substrates comprising copper, low-k dielectric material, titanium nitride, and/or titanium oxynitride.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: August 12, 2014
    Inventors: Wai Mun Lee, Hua Cui, Mark A. Scialdone, Albert G. Anderson
  • Publication number: 20140213498
    Abstract: Disclosed herein is a composition and method for semiconductor processing. In one embodiment, a wet-cleaning composition for removal of photoresist is provided. The composition comprises a strong base; an oxidant; and a polar solvent. In another embodiment, a method for removing photoresist is provided. The method comprises the steps of applying a wet-cleaning composition comprising about 0.1 to about 30 weight percent strong base; about one to about 30 weight percent oxidant; about 20 to about 95 weight percent polar solvent; and removing the photoresist.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 31, 2014
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: David W. Minsek, Melissa K. Rath, David D. Bernhard, Thomas H. Baum
  • Patent number: 8772214
    Abstract: A composition and method for removing residues such as, without limitation, post etched and/or post ashed photoresist, plasma etching, ashing, and mixtures thereof from a substrate is described herein. In one aspect, there is provided a method for removing residues from a substrate comprising: contacting the substrate with a composition comprising: water; a quaternary ammonium hydroxide compound; a fluoride containing compound; and optionally a corrosion inhibitor wherein the composition is free of an added organic solvent and wherein the composition has a pH greater than 9.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: July 8, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Aiping Wu, Roberto John Rovito
  • Publication number: 20140187460
    Abstract: Methods for removing a masking material, for example, a photoresist, and electronic devices formed by removing a masking material are presented. For example, a method for removing a masking material includes contacting the masking material with a solution comprising cerium. The cerium may be comprised in a salt. The salt may be cerium ammonium nitrate.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 3, 2014
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Ali Afzali-Ardakani, Emanuel Israel Cooper, Mahmoud Khojasteh, Ronald W. Nunes, George Gabriel Totir
  • Patent number: 8765654
    Abstract: An oxidizing aqueous cleaning composition and process for cleaning post-plasma etch residue and/or hardmask material from a microelectronic device having said residue thereon. The oxidizing aqueous cleaning composition includes at least one oxidizing agent, at least one oxidizing agent stabilizer comprising an amine species selected from the group consisting of primary amines, secondary amines, tertiary amines and amine-N-oxides, optionally at least one co-solvent, optionally at least one metal-chelating agent, optionally at least one buffering species, and water. The composition achieves highly efficacious cleaning of the residue material from the microelectronic device while simultaneously not damaging the interlevel dielectric and metal interconnect material also present thereon.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: July 1, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: David W. Minsek, Michael B. Korzenski, Martha M. Rajaratnam
  • Publication number: 20140179583
    Abstract: The invention discloses a peeling liquid for a resist, which relates to an optical element and is used for removing the color resist and the protective layer on a color filter rapidly and efficiently. The peeling liquid for a color resist on a color filter comprises an alkali metal alkoxide with a mass percentage of 10-45%, an organic amine with a mass percentage of 10-30%, a surfactant with a mass percentage of 5-30%, a solvent with a mass percentage of 20-60%, and an alcohol with a mass percentage of 1-55% in terms of the peeling liquid for a resist with a mass percentage of 100%. The peeling liquid for a resist in invention is used for removing the color resist and the protective layer of the substandard product in a color filter.
    Type: Application
    Filed: December 2, 2013
    Publication date: June 26, 2014
    Applicant: Boe Technology Group Co., Ltd.
    Inventors: Shi SHU, Lu LIU, Can Wang, Yonglian QI, Guanbao HUI
  • Patent number: 8759268
    Abstract: The present invention provides a residue-removing solution for use after a dry process, the residue-removing solution being capable of preventing minute cracks on a Cu surface, which has heretofore been unresolved with known polymer-removing solutions; and a method for manufacturing semiconductor devices using the residue-removing solution. More specifically, the invention relates to a residue-removing solution for removing residues present on semiconductor substrates after dry etching and/or ashing, the solution containing water and at least one component selected from the group consisting of (a) a keto acid, (b) a keto acid salt, and (c) an aldehyde acid salt; and a method for removing residues using the residue-removing solution.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: June 24, 2014
    Assignee: Daikin Industries, Ltd.
    Inventor: Shingo Nakamura
  • Patent number: 8754021
    Abstract: A cleaning composition and process for cleaning post-chemical mechanical polishing (CMP) residue and contaminants from a microelectronic device having said residue and contaminants thereon. The cleaning compositions are substantially devoid of amine and ammonium-containing compounds, e.g., quaternary ammonium bases. The composition achieves highly efficacious cleaning of the post-CMP residue and contaminant material from the surface of the microelectronic device without compromising the low-k dielectric material or the copper interconnect material.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: June 17, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey A. Barnes, Jun Liu, Peng Zhang
  • Patent number: 8747564
    Abstract: A residue-removing solution for removing residues after a dry process, which includes an amine salt of a monocarboxylic acid and/or a salt of a polycarboxylic acid that forms a 7- or more-membered ring chelate with copper, and water, the residue-removing solution containing aqueous solution (A) or (B) as described herein. Also disclosed is a method for removing residues present on a semiconductor substrate after dry etching and/or ashing. Further, a method for manufacturing semiconductor devices is further disclosed, which includes subjecting a semiconductor substrate having Cu as an interconnect material, and a low dielectric constant film as an interlayer dielectric material, to dry etching and/or ashing; and bringing the processed semiconductor substrate into contact with the above residue-removing solution.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: June 10, 2014
    Assignee: Daikin Industries, Ltd.
    Inventor: Shingo Nakamura
  • Publication number: 20140155310
    Abstract: The disclosure is directed solutions and processes to remove substances from substrates. The substances can include photoresist. The solutions can include dimethylsulfoxide, a quaternary ammonium hydroxide, an alkanolamine, and less than 3% by weight water of a total weight of the solution. The quaternary ammonium hydroxide can include tetramethylammonium hydroxide, dimethyldipropylammonium hydroxide, or methyltriethylammonium hydroxide. Additionally, the solutions can include a secondary solvent. For example, the secondary solvent can include an alcohol. In another example, the secondary solvent can include ethylene glycol. Methods for the preparation and use of the solution to remove substances from substrates are also described.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: Dynaloy, LLC
    Inventors: Michael Tod Phenis, Lauri Johnson, Raymond Chan, Diane Marie Scheele, Kimberly Dona Pollard
  • Publication number: 20140147395
    Abstract: This disclosure is directed to compound of formula (1): wherein R1 is a C7-18 alkyl, R2 is hydrogen or a C1-3 alkyl, each R3, R4, R5, R6, and R7 is independently hydrogen or a C1-6 alkyl, a is 2-3, and b is 0-1, its method of preparation and uses thereof in water-borne coating compositions, cleaning compositions, fragrance, and personal care compositions.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Applicant: SEGETIS, INC.
    Inventors: Lee R. Rieth, Dorie J. Yontz
  • Publication number: 20140142017
    Abstract: Compositions are described that are useful for removing organic and organometallic substances from substrates, for example, photoresist wafers. Processes are presented that apply a minimum volume of a composition as a coating to the inorganic substrate whereby sufficient heat is added and the organic or organometallic substances are completely removed by rinsing. The compositions and processes may be suitable for removing and, in some instances, completely dissolving photoresists of the positive and negative varieties, and specifically negative dry film photoresist from electronic devices.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 22, 2014
    Applicant: DYNALOY, LLC
    Inventors: Richard Dalton Peters, Travis Acra, Yuanmei Cao, Spencer Erich Hochstetler, Michael Tod Phenis, Kimberly Dona Pollard
  • Patent number: 8729002
    Abstract: Methods for preventing isotropic removal of materials at corners formed by seams, keyholes, and other anomalies in films or other structures include use of etch blockers to cover or coat such corners. This covering or coating prevents exposure of the corners to isotropic etch solutions and cleaning solutions and, thus, prevents higher material removal rates at the corners than at smoother areas of the structure or film. Solutions, including wet etchants and cleaning solutions, that include at least one type of etch blocker are also disclosed, as are systems for preventing higher rates of material removal at corners formed by seams, crevices, or recesses in a film or other structure. Semiconductor device structures in which etch blockers are located so as to prevent isotropic etchants from removing material from corners of seams, crevices, or recesses of a film or other structure at undesirably high rates are also disclosed.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 20, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, J. Neil Greeley
  • Publication number: 20140135246
    Abstract: A cleaning method is provided that includes a step of preparing a cleaning composition containing 57 to 95 wt % of (component a) water, 1 to 40 wt % of (component b) a secondary hydroxy group- and/or tertiary hydroxy group-containing hydroxy compound, (component c) an organic acid, and (component d) a quaternary ammonium compound, the composition having a pH of 5 to 10, and a step of removing plasma etching residue formed above a semiconductor substrate by means of the cleaning composition.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: FUJIFILM Corporation
    Inventors: Atsushi MIZUTANI, Hideo FUSHIMI, Tomonori TAKAHASHI, Kazutaka TAKAHASHI
  • Patent number: 8716210
    Abstract: Material for cleaning using a tri-state body are disclosed. A substrate having a particle deposited thereon is provided. A tri-state body that has a solid portion, liquid portion, and a gas portion is generated. A force is applied over the tri-state body to promulgate an interaction between the solid portion and the particle. The tri-state body is removed along with the particle from the surface of the substrate. The interaction between the solid portion and the particle causes the particle to be removed along with the tri-state body.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 6, 2014
    Assignee: Lam Research Corporation
    Inventors: Erik M. Freer, John M. de Larios, Katrina Mikhaylichenko, Michael Ravkin, Mikhail Korolik, Fred C. Redeker
  • Publication number: 20140109931
    Abstract: A composition and method for removing copper-containing post-etch and/or post-ash residue from patterned microelectronic devices is described. The removal composition includes water, a water-miscible organic solvent, an amine compound, an organic acid, and a fluoride ion source. The compositions effectively remove the copper-containing post-etch residue from the microelectronic device without damaging exposed low-k dielectric and metal interconnect materials.
    Type: Application
    Filed: August 27, 2013
    Publication date: April 24, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS INC.
    Inventors: Yi Chia Lee, Madhukar Bhaskara Rao, Gautam Banerjee, Wen Dar Liu, Aiping Wu, Seiji Inaoka
  • Patent number: 8697345
    Abstract: A photoresist stripping solution comprising (a) a specified quaternary ammonium hydroxide, such as tetrabutylammonium hydroxide, tetrapropylammonium hydroxide, methyltributylammonium hydroxide or methyltripropylammonium hydroxide, (b) a water-soluble amine, (c) water, (d) a corrosion inhibitor and (e) a water-soluble organic solvent, the compounding ratio of component (a) to component (b) being in the range of from 1:3 to 1:10 by mass, as well as a method of stripping photoresists using the solution. The stripping solution of the invention assures effective protection of Al, Cu and other wiring metal conductors against corroding as well as efficient stripping of the photoresist film, post-ashing residues such as modified photoresist film and metal depositions. It also assures efficient stripping of Si-based residues and effective protection of the substrate (particularly the reverse side of a Si substrate) from corroding.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: April 15, 2014
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Kazumasa Wakiya, Shigeru Yokoi
  • Publication number: 20140100151
    Abstract: Stripping and cleaning compositions suitable for the removal of film resists include about 2-55% by weight of at least one alkanolamine or at least one morpholine or mixtures thereof; about 20-94% by weight of at least one organic solvent; and about 0.5-60% by weight water based on the total weight of the composition.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 10, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS INC.
    Inventors: Matthew I. Egbe, Aiping Wu, Madhukar Bhaskara Rao
  • Patent number: 8685910
    Abstract: It is disclosed a cleaning liquid for stripping and dissolving a photoresist pattern having a film thickness of 10-150 ?m, which contains (a) 0.5-15 mass % of a quaternary ammonium hydroxide, such as tetrapropylammonium hydroxide and tetrabutylammonium hydroxide, (b) 65-97 mass % of a water-soluble organic solvent, such as dimethylsulfoxide or a mixed solvent thereof with N-methyl-2-pyrrolidone, sulforane, etc., and (c) 0.5-30 mass % of water, and a method for treating a substrate therewith.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: April 1, 2014
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Shigeru Yokoi, Kazumasa Wakiya, Koji Saito