Nitrogen Reactant Contains A C-xh Group Wherein X Is A Chalcogen Atom And Wherein The C Atom Is Not Double-bonded To A Chalcogen Atom Patents (Class 521/164)
  • Patent number: 11261287
    Abstract: A composition capable of substituting the use of styrene-acrylonitrile copolymer POP, comprising polyether polyol A having a hydroxyl value of 100-1000 mgKOH/g and a functionality of 4-8, and a polymer polyol having a hydroxyl value of 12-100 mgKOH/g, a functionality of 2-4, and a solid content of 4-45%, the branches thereof not containing polystyrene units. The polyurethane foam produced using the present composition to substitute the use of traditional styrene-acrylonitrile copolymer POP avoids the problem of styrene volatilisation due to the absence of styrene, and the produced polyurethane foam also maintains equivalent or even superior physical properties compared to the polyurethane foam made from styrene-acrylonitrile copolymer POP in the prior art; thus, the present compound is fully capable of substituting traditional styrene-acrylonitrile copolymer POP for the production of environmentally friendly, high rebound, and block-shaped soft polyurethane foam materials.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: March 1, 2022
    Assignees: Jiahua Science & Technology Development (Shanghai) Ltd., Jiahua Chemicals Inc.
    Inventors: Yongjian Guan, Baoning Song, Yubo Li
  • Patent number: 11059277
    Abstract: A curved screen laminating apparatus and a laminating method is provided. The flexible display panel is driven to bend via a photoactive polymer layer which is controlled by a light source; next, the bent flexible display panel and the curved glass are laminated; last, the flexible display panel and the curved glass are laminated. Compared with the prior art, air bubbles are effectively discharged from edges by employing a segmented lamination which ensures product yields.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: July 13, 2021
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Siheng Gao, Jinlong Tan
  • Patent number: 10160142
    Abstract: Disclosed are processes for in-mold coating of a plastic substrate. The processes include: (a) molding a plastic substrate in a first mold cavity of a mold comprising at least two cavities to form a molded plastic substrate; (b) introducing the molded plastic substrate into a second mold cavity of the mold; (c) introducing a coating composition into the second mold cavity containing the molded plastic substrate in order to coat the substrate, the coating composition comprising: (i) a polymer comprising isocyanate-reactive groups; and (ii) a polyisocyanate; (d) curing the composition in the second mold cavity; and (e) opening the mold cavity.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: December 25, 2018
    Assignee: Covestro LLC
    Inventors: Robert A. Wade, Kurt E. Best, Jessee McCanna
  • Patent number: 9834655
    Abstract: The invention relates to a method for producing a polyurethane foam, wherein a mixture having the following is discharged from a mixing head through a discharge line: A) a component reactive toward isocyanates; B) a surfactant component; C) a blowing agent component selected from the group comprising linear, branched, or cyclic C1 to C6 hydrocarbons, linear, branched, or cyclic C1 to C6 fluorocarbons, N2, O2, argon, and/or CO2, wherein the blowing agent C) is present in the supercritical or near-critical state; and D) a polyisocyanate component. The component A) has a hydroxyl value=100 mg KOH/g and =1000 mg KOH/g. The blowing agent component C) is present at least partially in the form of an emulsion, and means provided with an opening or several openings are arranged in the discharge line in order to increase the flow resistance during the discharge of the mixture comprising A), B), C), and D), wherein the cross-sectional area of the opening or the sum of the cross-sectional areas of all openings is =0.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: December 5, 2017
    Assignee: CONVESTRO DEUTSCHLAND AG
    Inventors: Dirk Steinmeister, Stephan Moers, Stefan Lindner, Wolfgang Friederichs, Juergen Straeter
  • Patent number: 9777212
    Abstract: The various embodiments herein provide a light emitting concrete composition and a method of synthesizing a light emitting concrete structure. The light emitting concrete composition comprises light-emitting pigments. The light emitting pigments include a titanium powder, a sulphide powder and resins, cement, sand, gravel and water. The method of synthesizing a light emitting concrete structure comprises preparing slurry. The slurry is prepared by mixing sand, gravel, cement and water. Further, a light emitting pigment mixture is prepared. The light emitting pigment mixture is prepared by mixing a titanium powder, resins and a sulphide powder. The light-emitting pigment mixture is added to the slurry. The slurry is molded by adding the slurry in molds. The molds are further kept at a temperature of 15-20° C. for at least 12-14 hours. The slurry is cured at a temperature of less than 30° C. for 24 hours.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: October 3, 2017
    Inventors: Hadi Barghlame, Hojjat Hashempour Gavgani
  • Patent number: 9006304
    Abstract: The present invention relates to aqueous polyurethane-polyurea dispersions which stabilize a foam—produced by mechanical expansion—without addition of further foam-stabilizing components in such a way that aqueous foams are obtainable which are stable both during temporary storage and during processing, so that they can be applied in the form of foam also by customary application methods and substantially retain the foam structure even after drying.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 14, 2015
    Assignee: Stahl International B.V.
    Inventor: Juergen Muenter
  • Patent number: 9000062
    Abstract: Semi-rigid polyurethane foams having a density of 90 to 180 kg/m3 and a compressive strength of 20 to 95 kPa are produced by reacting a polyisocyanate with an isocyanate-reactive component that includes an o-toluenediamine initiated polyether polyol. These foams are particularly useful as composites for automotive interior components.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 7, 2015
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Rolf Albach, Monika Haselbach, Harald Fietz
  • Publication number: 20150094389
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 2, 2015
    Inventors: Sachchida N. Singh, Jinhuang Wu, Alan J. Hamilton
  • Publication number: 20150094388
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 2, 2015
    Inventors: Sachchida N. Singh, Jinhuang Wu, Alan J. Hamilton
  • Patent number: 8986801
    Abstract: The present invention relates to a rigid polyurethane foam in which rigid polyurethane foam constituents are embedded in a polyurethane matrix, articles which are enveloped by such a foam for insulation and corresponding production processes.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: March 24, 2015
    Assignee: BASF SE
    Inventors: Christof Grieser-Schmitz, Carsten Ellersiek
  • Patent number: 8980965
    Abstract: To provide a method for producing a low-odor polyester-type flexible polyurethane foam which is excellent in formability and free from scorch in the interior of the foam, and further discharges substantially no volatile amine compound from a product, in the production of a polyester-type flexible polyurethane foam, and to provide a catalyst composition to be used for the production method.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: March 17, 2015
    Assignee: Tosoh Corporation
    Inventor: Yoshihiro Takahashi
  • Patent number: 8975306
    Abstract: A viscoelastic foam system is provided having an amine-based polyoxypropylene extended polyol to impart strength, recoverability and endurance to the foam, and an appropriately selected non-amine-based polyol to provide flexibility to the foam. The combination of amine-based propylene oxide extended polyol and non-amine-based polyol provides a viscoelastic semi-rigid foam with excellent impact and recovery properties, recovering to substantially 100% of its initial volume and shape following an impact, yet with sufficient rigidity and stiffness so that it is effective at absorbing multiple impacts. A method of making the above viscoelastic foam is also provided.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 10, 2015
    Assignee: Intellectual Property Holdings, LLC
    Inventor: Charles M. Milliren
  • Patent number: 8957123
    Abstract: A process for producing resilient, flexible polyurethane foams that function well in noise and vibration absorption applications for vehicle applications that are made from a blend of polyols (i) and an isocyanate (ii), wherein the blend of polyols (i) comprises a mixture of polyether polyols (i.a) that each has a hydroxyl equivalent weight of from 1200 to 3000 and at least 70% primary hydroxyl groups, from 5 to 80% by weight of the ethylene oxide-capped polypropylene oxides are nominally difunctional, from 0.5 to 20% by weight of the ethylene oxide-capped polypropylene oxides have a nominal functionality of four or higher, and the balance of the ethylene oxide-capped polypropylene oxides, but not less than 1.5% by weight thereof, are nominally trifunctional; an autocatalytic polyol (i.b) having a functionality in the range of 2 to 8 and a hydroxyl number in the range of 15 to 200, wherein said autocatalytic polyol compound comprising at least one tertiary amine group; and a low unsaturation polyol (i.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 17, 2015
    Assignee: Dow Global Technologies Inc
    Inventors: Issam Lazraq, Helmut Stegt, Allan James, Stephen R. Burks
  • Patent number: 8937107
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: January 20, 2015
    Assignee: Huntsman International LLC
    Inventors: Sachchida N. Singh, Jinhuang Wu, Alan J. Hamilton
  • Patent number: 8906976
    Abstract: Disclosed is a polyurethane composition including a polyol, a polyisocyanate, a curing catalyst, a crosslinking agent, a foam stabilizer and a blowing agent. The polyurethane composition may be used to manufacture automotive components, and in particular, an automotive seat. An automotive seat manufactured with the disclosed composition provides increased comfort to an occupant, as well as increased reduction of road vibration, thereby improving overall ride comfort.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: December 9, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Seok Hwan Kim, Jeong Seok Oh, Hyung-Won Jeon, Sang Ho Seo
  • Publication number: 20140329924
    Abstract: Disclosed are salt compositions of lysinol and dicarboxylic acids; and lysinol derived polymers including polyamide, polyimide, polyurea, cross-linked polyurea comprising urethane linkages, polyurea foams, cross-linked polyurea foams, and lysinol-epoxy thermoset.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 6, 2014
    Inventors: KENNETH GENE MOLOY, MARK A. SCIALDONE
  • Patent number: 8865785
    Abstract: A polishing pad capable of maintaining a high level of dimensional stability upon moisture absorption or water absorption and providing high polishing rate includes a polishing layer of a polyurethane foam having fine cells, wherein the polyurethane foam includes a cured product of a reaction of (1) an isocyanate-terminated prepolymer (A) that includes an isocyanate monomer, a high molecular weight polyol (a), and a low molecular weight polyol, (2) an isocyanate-terminated prepolymer (B) that includes a polymerized diisocyanate and a polyethylene glycol with a number average molecular weight of 200 to 1,000, and (3) a chain extender.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: October 21, 2014
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventor: Yoshiyuki Nakai
  • Publication number: 20140296358
    Abstract: Implant devices and structures that reduce inflammation and promote healing of the area of implant. Specifically, the use of shape memory open cell biocompatible polymer foams for implants that assist in and promote healing and especially in filling and sealing aneurisms.
    Type: Application
    Filed: June 18, 2014
    Publication date: October 2, 2014
    Inventors: Duncan J. Maitland, Thomas S. Wilson
  • Publication number: 20140275311
    Abstract: Disclosed are salt compositions of lysinol and dicarboxylic acids; and lysinol derived polymers including polyamide, polyimide, polyurea, cross-linked polyurea comprising urethane linkages, polyurea foams, cross-linked polyurea foams, and lysinol-epoxy thermoset.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: DAVID N. MARKS, KENNETH GENE MOLOY, MARK A. SCIALDONE, MANXUE WANG
  • Publication number: 20140275310
    Abstract: This invention relates to stable, low-viscosity polymer polyols and to a process for preparing these stable, low-viscosity polymer polyols. These polymer polyols comprise (a) a base polyol component that comprises a natural oil base polyol having a mean hydroxyl functionality of 1.7 to 5.0, a number average molecular weight of about 350 to about 725, and an OH number of 190 to 500.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Rick Adkins, Jiong England, Don Wardius
  • Patent number: 8785511
    Abstract: Low density silicone-containing polyurethane foams with excellent surface characteristics are prepared by reacting a foamable composition containing a siloxane of the formula and an isocyanate, in the presence of at least one blowing agent.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 22, 2014
    Assignee: Wacker Chemie AG
    Inventors: Jens Cremer, Steffen Jungermann
  • Publication number: 20140171535
    Abstract: Polyol compositions containing methane linkages derived from amino acids. The polyols are obtained from the reaction of the carbonate with the cadres in the amino acids. Individual amino acids or mixtures of amino acids that are prepared from the hydrolysis of the proteins can be used.
    Type: Application
    Filed: September 24, 2013
    Publication date: June 19, 2014
    Applicant: BioPlastic Polymers and Composites, LLC.
    Inventors: Ramani Narayan, Daniel Graiver, Elodie Hablot, Vahid Sendijarevic, Siva Rama Krishna Chalasani
  • Patent number: 8735460
    Abstract: The invention relates to a foamed isocyanate-based polymer derived from a reaction mixture comprising an isocyanate, an active hydrogen-containing compound, a blowing agent and a highly branched polysaccharide which is derivatized with at least two esters of different length. Further the invention relates to a mix and a process for the production of isocyanate-based polymer. The mix for the production of a foamed isocyanate-based polymer comprises a mixture of the derivatized polysaccharide of the invention and an active hydrogen-containing compound. The process for producing a foamed isocyanate-based polymer comprises the steps of: contacting an isocyanate, an active hydrogen-containing compound, the derivatized highly branched polysaccharide of the invention and a blowing agent to form a reaction mixture and expanding the reaction mixture to produce the foamed isocyanate-based polymer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: May 27, 2014
    Assignee: Dupont Nutrition Bioscience APS
    Inventors: Kenneth Knoblock, Charles Nichols, James O'Connor
  • Patent number: 8686057
    Abstract: Polyurethane polymers are made from a reaction mixture that contains a polyisocyanate, a hydroxylmethyl-containing fatty acid or ester, and another polyol, polyamine or aminoalcohol. The carboxylic acid or ester group on the hydroxymethyl-containing fatty acid or ester are capable of engaging in a variety of reactions with the polyisocyanate and/or amine or hydroxyl groups present in the reaction mixture. This allows for good quality, high molecular weight polymers to be produced even though the hydroxymethyl-containing fatty acid or ester tends to be a low functionality material.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: April 1, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Hanno R. Van der Wal, Camiel F. Bartelink
  • Patent number: 8658708
    Abstract: Foam-forming compositions containing azeotropic or azeotrope-like mixtures containing cis-1,1,1,4,4,4-hexafluoro-2-butene are disclosed. The foam-forming composition contains (a) an azeotropic or azeotrope-like mixture of cis-1,1,1,4,4,4-hexafluoro-2-butene with methyl formate, 1,1,1,3,3-pentafluorobutane, trans-1,2-dichloroethylene, pentane, isopentane, cyclopentane, HFC-245fa, or dimethoxymethane; and (b) an active hydrogen-containing compound having two or more active hydrogens. Also disclosed is a closed-cell polyurethane or polyisocyanurate polymer foam prepared from reaction of an effective amount of the foam-forming composition with a suitable polyisocyanate. Also disclosed is a process for producing a closed-cell polyurethane or polyisocyanurate polymer foam by reacting an effective amount of the foam-forming composition with a suitable polyisocyanate.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: February 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Gary Loh, Mark L. Robin, Joseph Anthony Creazzo
  • Publication number: 20140051778
    Abstract: Embodiments of the invention include a method of producing polymer polyol dispersions is. The method includes providing at least one reaction system, and the reaction system includes: a) at least one polyol, b) at least one seed population, c) at least one catalyst, d) at least one co-reactant having an equivalent weight of up to 400 and at least one active hydrogen attached to a nitrogen or oxygen atom, and e) at least one polyisocyanate. The at least one seed population includes less than about 5% by weight of the total weight of the at least one reaction system and includes seed particles having diameters of less than 5 ?m. The at least one reaction mixture reacts to form at least one of a polyurea and polyurethane-urea particle population in the at least one polyol without the addition of any catalysts comprising tin. The polymer polyol dispersion has a solids content of at least 15% of the weight of the polymer polyol dispersion.
    Type: Application
    Filed: May 9, 2012
    Publication date: February 20, 2014
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Paul Cookson, Ricco B. Borella, Daniel Hoehener, Francois M. Casati
  • Patent number: 8623933
    Abstract: A process for producing a polyether polyol which can form low viscosity rigid foamed synthetic resins excellent in strength, dimensional stability and flame retardancy, can give a low viscosity polyol system solution containing water instead of HFCs as a blowing agent with good miscibility with isocyanate compounds and can form good rigid foamed synthetic resins by spraying, which polyether polyol is produced by reacting a phenol component (molar ratio 1) selected from phenol and phenol derivatives having a hydrogen atom at one or more ortho-positions to the phenolic hydroxyl group, an aldehyde component (molar ratio 0.3 to 0.9) selected from formaldehyde and acetoaldehyde and an alkanolamine component (molar ratio 1.5 to 3.5) selected from monoethanolamine, diethanolamine and 1-amino-2-propanol and then adding an alkylene oxide to the resulting reaction product.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 7, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Katsuhiko Shimizu, Tomohiro Hayashi, Hiroshi Wada, Yoshinori Toyota
  • Publication number: 20130345331
    Abstract: If it is attempted to produce a polymer polyol at a high concentration, there will be a problem such that during polymerization of a monomer to form fine polymer particles, particles are likely to aggregate one another to form aggregates, and storage stability of the polymer polyol tends to deteriorate. A method for producing a polymer polyol is presented which comprises polymerizing at least one type of ethylenically unsaturated monomer together with a seed particle dispersion, in a polyol, wherein the seed particle dispersion is one obtained by polymerizing an ethylenically unsaturated monomer in the presence of an ethylenically unsaturated macromonomer, a solvent and a chain transfer agent, and the ethylenically unsaturated macromonomer is a reaction product of a specific polyol, an isocyanate compound and an ethylenically unsaturated monomer having a hydroxy group.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 26, 2013
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Chitoshi SUZUKI, Tomohiro Hayashi, Kensuke Harada, Takayuki Sasaki, Akio Horie, Takashi Ito
  • Publication number: 20130317541
    Abstract: A device, system and method for treatment of an opening in vascular and/or septal walls including patent foramen ovale. The device has wings/stops on either end, an axis core covered in a shape memory foam and is deliverable via a catheter to the affected opening, finally expanding into a vascular or septal opening where it is held in place by the expandable shape memory stops or wings.
    Type: Application
    Filed: March 12, 2013
    Publication date: November 28, 2013
    Inventors: Pooja Singhal, Thomas S. Wilson, Elizabeth Cosgriff-Hernandez, Duncan J. Maitland
  • Publication number: 20130253086
    Abstract: New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Thomas S. Wilson, Jane P. Bearinger
  • Patent number: 8541478
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: September 24, 2013
    Assignee: Huntsman International LLC
    Inventors: Sachchida Nand Singh, Jinhuang Wu, Alan J. Hamilton
  • Publication number: 20130225706
    Abstract: A reaction system comprising an organic polyisocyanate and an isocyanate reactive component for preparation of a viscoelastic polyurethane foam is provided. The isocyanate reactive component comprises (i) from 10 to 50% by weight of one or more low equivalent weight propylene oxide rich (PO-rich) polyols having a combined number average equivalent weight from 200 to 500, (ii) from 45 to 95% by weight of one or more ethylene oxide (EO-rich) polyols having a combined number average equivalent weight from 200 to 800 and an ethylene oxide content from 40% to 65% by weight of the total mass of the EO-rich polyol and at least one of (iii) from 10 to 30% by weight of one or more high equivalent weight PO-rich polyols having a number average equivalent weight from 800 to 2,000 or (iv) from 10 to 40% by weight of one or more propylene oxide co-polymer polyols containing styrene-acrylonitrile.
    Type: Application
    Filed: August 30, 2011
    Publication date: August 29, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Hongming Ma, Kaoru Aou, Rogelio R. Gamboa, Carola Rosenthal, Randal Autenrieth
  • Patent number: 8513318
    Abstract: A method for producing a rigid polyurethane foam, which comprises reacting a polyol with a polyisocyanate in the presence of an amine catalyst and a blowing agent, wherein as the amine catalyst, at least one amine compound having at least one type of substituent selected from the group consisting of a hydroxyl group, a primary amino group and a secondary amino group in its molecule, or N-(2-dimethylaminoethyl)-N?-methylpiperazine, is used, and as the blowing agent, 1,1,1,3,3-pentafluoropropane (HFC-245fa) and/or 1,1,1,3,3-pentafluorobutane (HFC-365mfc) is used.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: August 20, 2013
    Assignee: Tosoh Corporation
    Inventors: Hiroyuki Kiso, Katsumi Tokumoto, Yutaka Tamano
  • Publication number: 20130209778
    Abstract: Semi-rigid polyurethane foams having a density of 90 to 180 kg/m3 and a compressive strength of 20 to 95 kPa are produced by reacting a polyisocyanate with an isocyanate-reactive component that includes an o-toluenediamine initiated polyether polyol. These foams are particularly useful as composites for automotive interior components.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 15, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventor: Bayer Intellectual Property GmbH
  • Publication number: 20130184368
    Abstract: A process for producing resilient, flexible polyurethane foams that function well in noise and vibration absorption applications for vehicle applications that are made from a blend of polyols (i) and an isocyanate (ii), wherein the blend of polyols (i) comprises a mixture of polyether polyols (i.a) that each has a hydroxyl equivalent weight of from 1200 to 3000 and at least 70% primary hydroxyl groups, from 5 to 80% by weight of the ethylene oxide-capped polypropylene oxides are nominally difunctional, from 0.5 to 20% by weight of the ethylene oxide-capped polypropylene oxides have a nominal functionality of four or higher, and the balance of the ethylene oxide-capped polypropylene oxides, but not less than 1.5% by weight thereof, are nominally trifunctional; an autocatalytic polyol (i.b) having a functionality in the range of 2 to 8 and a hydroxyl number in the range of 15 to 200, wherein said autocatalytic polyol compound comprising at least one tertiary amine group; and a low unsaturation polyol (i.
    Type: Application
    Filed: December 7, 2010
    Publication date: July 18, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Issam Lazraq, Helmut Stegt, Allan James, Stephen R. Burks
  • Patent number: 8481605
    Abstract: An embodiment of a closed-cell polymeric rigid foam may be made using a one-shot method and a reaction system that includes a hydrofluoroalkene physical blowing agent and a polyol mixture having an aminic polyol. The hydrofluoroalkene blowing agent has 3 to 5 carbon atoms and a boiling point between 10° C. and 40° C. at 1 atmosphere pressure. Embodiments of rigid foams may have high closed cell content and are particularly well suited for thermal insulation.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: July 9, 2013
    Assignee: Huntsman International LLC
    Inventors: Sachchida Nand Singh, Jinhuang Wu, Alan J. Hamilton
  • Publication number: 20130150475
    Abstract: The invention provides for new flame retardant non-furan dicarboxylic acid (FDCA) based polyols; oligomers and polymers made from these new polyols with flame retardation properties; and methods of using them as a part or all of the flame retardation composition/material, such as foams and binders.
    Type: Application
    Filed: July 15, 2011
    Publication date: June 13, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Herman P. Benecke, Daniel B. Garbark
  • Publication number: 20130150964
    Abstract: The present invention relates to biocompatible, biodegradable polyurethane/urea polymeric compositions that are capable of in-vivo curing with low heat generation to form materials suitable for use in scaffolds in tissue engineering applications such as bone and cartilage repair. The polymers are desirably flowable and injectable and can support living biological components to aid in the healing process. They may be cured ex-vivo for invasive surgical repair methods, or alternatively utilized for relatively non-invasive surgical repair methods such as by arthroscope. The invention also relates to prepolymers useful in the preparation of the polymeric compositions, and to methods of treatment of damaged tissue using the polymers of the invention.
    Type: Application
    Filed: October 31, 2012
    Publication date: June 13, 2013
    Applicant: POLYNOVO BIOMATERIALS PTY LIMITED
    Inventors: Raju Adhikari, Pathiraja Arachchillage Gunatillake
  • Publication number: 20130109775
    Abstract: Disclosed is a polyurethane composition including a polyol, a polyisocyanate, a curing catalyst, a crosslinking agent, a foam stabilizer and a blowing agent. The polyurethane composition may be used to manufacture automotive components, and in particular, an automotive seat. An automotive seat manufactured with the disclosed composition provides increased comfort to an occupant, as well as increased reduction of road vibration, thereby improving overall ride comfort.
    Type: Application
    Filed: February 10, 2012
    Publication date: May 2, 2013
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Seok Hwan Kim, Jeong Seok Oh, Hyung-Won Jeon, Sang Ho Seo
  • Patent number: 8426482
    Abstract: Invention relates to a process for producing viscoelastic flexible polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups, wherein as b) a mixture of bi) from 25 to 70% by weight of a hydroxyl-comprising natural oil or fat or a reaction product of a hydroxyl-comprising natural oil or fat with alkylene oxides, bii) from 3 to 30% by weight of at least one polyether having a hydroxyl number of from 100 to 800 mg KOH/g and a functionality of 3-5 selected from the group consisting of polyether prepared by addition of alkylene oxides onto an amine, biii) 20-50% by weight of at least one polyether alcohol having a hydroxyl number of from 10 to 80 mg KOH/g and a functionality of 2-5, where the proportion of ethylene oxide is 5-25% by weight, based on the weight of the polyether alcohol, and at least part of the ethylene oxide is added on at the end of the polyether chain, biv) >0-8% by weight of at least one polyether alcoh
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 23, 2013
    Assignee: BASF SE
    Inventors: Ansgar Frericks, Heinz-Dieter Lutter, Edmund Stadler, Heinz-Juergen Schroeder, Kirsten Simon, Andre Meyer, Franck Pomeris
  • Patent number: 8404348
    Abstract: A soft and resilient, cold-water dispersible polyurethane foam suitable for disposable personal care products is produced by the combination of corn syrup, glycerin, polyether diamine, PEG, a diisocyanate, water and a catalyst. The formulation and reaction conditions for forming the inventive foam are judiciously selected and carefully controlled to achieve water dispersibility and the desired mechanical properties. The characteristic resiliency, or percent rebound for the foams was generally over 75% and the foams are readily produced as soft foams, exhibiting a relative compression value of from 20% to 150% of that of a commercial polyurethane foam cosmetic pad which is not water dispersible. The foam may be incorporated into webs or stackable products or nestable three-dimensional products.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: March 26, 2013
    Assignee: Georgia-Pacific Consumer Products LP
    Inventors: Bruce J. Kokko, Lynn M. Daul, Dinesh M. Bhat, Joseph H. Miller
  • Patent number: 8372892
    Abstract: Polyurethane foams are made and attached to a substrate having an open cavity, but reacting prepolymer and polyol components in the presence of certain carbamate blowing agents. This process allows for very fast curing, good quality, adherent foamy to be produced on, for example, vehicle parts and assemblies, for acoustical or vibration dampening and for structural reinforcement.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 12, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Huzeir Lekovic, Ali El-Khatib, Frank Vincent Billotto, Rifat Tabakovic, Ali Ozasahin
  • Patent number: 8372893
    Abstract: This disclosure describes a method of making a polyurethane foam and a method of reducing NVH expected to be experienced by a substrate using the foam. When the foam is subjected to 95% relative humidity for a period of 7 days at a temperature of about 50° C., the foam absorbs an amount of water that is less than about 30% of the weight of the foam.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: February 12, 2013
    Assignee: Sika Technology AG
    Inventors: Hanna Lekovic, Frank Hoefflin, Michael Anderson, Trent Shidaker, Michael Connolly, Sheila Dubs, Jinhuang Wu
  • Patent number: 8367870
    Abstract: The present invention provides polymeric polyol compositions employing polyol compounds having multiple tertiary amine groups. Methods of making these compositions are also disclosed. Polyol formulations containing these polymeric polyol compositions and methods of making polyurethane gel and foam employing such polymeric polyol compositions are also provided.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: February 5, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Gamini Ananda Vedage
  • Publication number: 20130030073
    Abstract: Amine-initiated polyether polyols are made by reacting an amine adduct with a triglyceride in the presence of an alkylene oxide to obtain a polyol having a total renewables content of at least 20%.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: Bayer MaterialScience LLC
    Inventors: Don S. Wardius, Steven L. Schilling
  • Patent number: 8299137
    Abstract: A foam-forming composition is disclosed which includes both cis-1,1,1,4,4,4-hexafluoro-2-butene and a poorly compatible active hydrogen-containing compound having two or more active hydrogens. Also disclosed is a closed-cell polyurethane or polyisocyanurate polymer foam prepared from reaction of effective amounts of the foam-forming composition and a suitable polyisocyanate. Also disclosed is a process for producing a closed-cell polyurethane or polyisocyanurate polymer foam by reacting an effective amount of the foam-forming composition with a suitable polyisocyanate.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: October 30, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Gary Loh, Joseph Anthony Creazzo
  • Patent number: 8293807
    Abstract: The invention relates to a process for producing rigid polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of c) blowing agents, wherein at least one graft polyol b1) which can be prepared by in-situ polymerization of olefinically unsaturated monomers in a polyether alcohol b1i), where the polyether alcohol b1i) has a functionality of from 2 to 4 and a hydroxyl number in the range from 100 to 250 mg KOH/g, its polyether chain comprises propylene oxide and up to 20% by weight, based on the polyether alcohol b1i), of ethylene oxide, and acrylonitrile and styrene in a weight ratio of acrylonitrile:styrene of from >1:1 to 4:1 are used as olefinically unsaturated monomers, is used as compounds having at least two hydrogen atoms which are reactive toward isocyanate groups b), and the reaction is carried out in the presence of at least one compound b1ii) which has at least one olefinic double bond an
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: October 23, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Andreas Emge, Daniel Freidank, Holger Seifert
  • Publication number: 20120259030
    Abstract: The present invention relates to a process for producing polyurethane (PU) rigid foams by reaction of polyisocyanates with compounds having two or more isocyanate-reactive hydrogen atoms in the presence of blowing agents.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 11, 2012
    Applicant: BASF SE
    Inventors: Andreas KUNST, Marc Fricke, Andreas Emge, Markus Schütte
  • Publication number: 20120244303
    Abstract: The present invention relates to a polyurethane foam which can be obtained by reacting at least one polyether polyol as component (A), at least one polyether polyol based on at least one amine as component (B), at least one polyester polyol as component (C) and at least one polyisocyanate as component (D), in the presence of at least one catalyst selected from the group consisting of salts of carboxylic acids having from 1 to 20 carbon atoms, amine-comprising compounds and mixtures thereof as component (E) and at least one blowing agent as component (F), wherein the ratio of OCN groups to OH groups (ISO index) is from 140 to 180. The present invention further relates to a process for producing said polyurethane foam, its use for insulation, in particular for the insulation of pipes, and also pipe insulation comprising a polyurethane foam according to the invention.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 27, 2012
    Applicant: BASF SE
    Inventors: Gianpaolo TOMASI, Christof Grieser-Schmitz, Ludwig Windeler, Carsten Ellersiek, Gunnar Kampf
  • Patent number: 8258196
    Abstract: To provide a method for producing a rigid polyurethane foam, whereby it is possible to reduce the density without causing deterioration in dimensional stability, and a rigid polyurethane foam. A method for producing a rigid polyurethane foam, which comprises a step of reacting a polyol having a hydroxyl value of from 200 to 800 mgKOH/g with a polyisocyanate compound in the presence of an amino-modified silicone, a catalyst, a blowing agent and a surfactant.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: September 4, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Katsuhiko Shimizu, Teruhiko Yasuda, Hiroshi Wada