Non-transition Metal To Carbon Atom Bond Compound Contains At Least Two Atoms Of Same Or Different Non-transition Metal Patents (Class 526/165)
  • Patent number: 8692009
    Abstract: The present invention relates to a novel metallocene compound, a catalyst composition comprising the same, and to olefinic polymers produced using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used when producing olefinic polymers, have outstanding copolymerization properties, and can produce olefinic polymers of high molecular weight. In particular, when the metallocene compound according to the present invention is employed, highly heat resistant block copolymers can be produced, and olefinic polymers can be produced which have a high melting point (Tm) even if the comonomer content is increased when producing the olefinic polymer.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: April 8, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Yong Ho Lee, Manseong Jeon, Ki-Soo Lee, Heon-Yong Kwon, Min-Seok Cho, Jong-Sang Park, Joon Hee Cho, Hyeon-Gook Kim, Eunkyoung Song, Seon-Kyoung Kim, Dae-Sik Hong
  • Patent number: 8664140
    Abstract: Process for supportation of a catalyst system comprising at least two different active catalyst components on a support wherein in an earlier supportation step a first active catalyst component is applied to the support at a first predetermined temperature and in a later supportation step a second active catalyst component is applied to the support at a temperature which is at least 20° C. lower than the first predetermined temperature.
    Type: Grant
    Filed: December 12, 2009
    Date of Patent: March 4, 2014
    Assignee: Basell Polyolefine GmbH
    Inventors: Harald Schmitz, Fabiana Fantinel, Jürgen Hilz, Shahram Mihan
  • Patent number: 8637615
    Abstract: Provided is a method for making a polyolefin comprising contacting one or more olefins in a reactor containing a catalyst; polymerizing the one or more olefins to produce an olefin polymer characterized by a first melt flow ratio (MFR) and a first haze; and altering the reaction temperature in the reactor to shift the first MFR to a MFR that is different than the first MFR and to shift the first haze to a haze that is different than the first haze.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: January 28, 2014
    Assignee: Univation Technologies, LLC
    Inventors: Dongming Li, Ching-Tai Lue, Chi-I Kuo, Mark G. Goode, Stefan B. Ohlsson
  • Patent number: 8637616
    Abstract: The present invention provides polymerization processes utilizing an ansa-metallocene catalyst system for the production of olefin polymers. Polymers produced from the polymerization processes have properties that vary based upon the presence or the absence of hydrogen and/or comonomer in the polymerization process.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: January 28, 2014
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Richard M. Buck, Qing Yang, Albert P. Masino, Christopher E. Wittner
  • Patent number: 8633287
    Abstract: A polymerization process for copolymerizing ethylene and a series of ?-olefins to form a branched polyethylene, in which the series of ?-olefins is generated in-situ by an ethylene oligomerization catalyst, is improved if the oligomerization catalyst has a Schulz-Flory constant of about 0.30 to about 0.55. This makes very little higher molecular weight ?-olefins, which allows for easy removal of unpolymerized ?-olefins from the polyolefin product.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: January 21, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Joel David Citron
  • Patent number: 8603933
    Abstract: The present application aims to provide a process for producing a solid polymerization catalyst component, including the steps of (A) producing a solution with a transition metal compound and a solvent; (B) solidifying a component with the transition metal compound to produce the solid polymerization catalyst component in a solidification stage; (C) recovering from the solidification stage a liquid stream containing a minor amount of the transition metal compound dissolved therein and a solid catalyst stream; and (D) recovering the transition metal component from the liquid stream, characterized in that step (D) may include concentrating the solution to produce a first product stream including the solvent and being essentially free of the transition metal compound and a second product stream including the solvent and the transition metal compound, characterized in that the concentration is conducted within a temperature range of from 0 to 100 degrees Celsius.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: December 10, 2013
    Assignee: Borealis AG
    Inventors: Pertti Elo, Sameer Vijay, Kimmo Hakala, Soile Rautio, Ismo Lehtiniemi
  • Patent number: 8598287
    Abstract: A process for polymerizing olefin(s) utilizing a cyclic bridged metallocene catalyst system to produce polymers with improved properties is provided. The catalyst system may include a cyclic bridged metallocene, LA(R?SiR?)LBZrQ2, activated by an activator, the activator comprising aluminoxane, a modified aluminoxane, or a mixture thereof, and supported by a support, where: LA and LB are independently an unsubstituted or a substituted cyclopentadienyl ligand bonded to Zr and defined by the formula (C5H4-dRd), where R is hydrogen, a hydrocarbyl substituent, a substituted hydrocarbyl substituent, or a heteroatom substituent, and where d is 0, 1, 2, 3 or 4; LA and LB are connected to one another with a cyclic silicon bridge, R?SiR?, where R? are independently hydrocarbyl or substituted hydrocarbyl substituents that are connected with each other to form a silacycle ring; and each Q is a labile hydrocarbyl or a substituted hydrocarbyl ligand.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: December 3, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, Dongming Li, Ching-Tai Lue, Francis C. Rix, Mark G Goode, Daniel P. Zilker, Jr., Tae Hoon Kwalk
  • Patent number: 8575284
    Abstract: Compositions useful for activating catalysts for olefin polymerization, and methods for making same, are provided. Such compositions can be derived from at least: an organoaluminum compound, a carrier, an oxygen source, and, optionally, a Lewis base.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: November 5, 2013
    Assignee: Albemarle Corporation
    Inventors: Lubin Luo, Samuel A. Sangokoya, Xiao Wu, Steven P. Diefenbach, Brian Kneale
  • Patent number: 8569194
    Abstract: The present invention relates to a supported catalyst composition for polymerization of olefins comprising at least two catalytic components; and a polymerization process using that catalyst composition; and a method for its preparation.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: October 29, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wei Xu, Syriac J. Palackal, Atieh Abu-Ruqabah, Maneet Muktibodh, Bing Wang, Nicolaas Hendrika Friederichs
  • Patent number: 8563671
    Abstract: Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR?2)MQn??(1) or by the formula: B?(Cp?R?aR?b)(Fl?)M?Q?n???(2) In the formulas Cp and Cp? are substituted cyclopentadienyl groups, Fl and Fl? are fluorenyl groups, and B and B? are structural bridges. R? are substituents at the 2 and 7 positions, Ra and R?a are substituents distal to the bridge, and Rb and R?b are proximal to the bridge. M and M? are transition metals, Q? is a halogen or a C1-C4 alkyl group; and n? is an integer of from 0-4.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: October 22, 2013
    Assignee: Fina Technology, Inc.
    Inventors: William Gauthier, David Rauscher, Jun Tian, Nathan Williams
  • Patent number: 8507103
    Abstract: This invention relates to blown films produced from copolymer made by a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8501654
    Abstract: The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: August 6, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Rex E. Murray, William B. Beaulieu, Qing Yang, Errun Ding, Gary L. Glass, Alan L. Solenberger, Steven J. Secora
  • Patent number: 8497329
    Abstract: The invention generally provides for methods for controlling polymer properties. In particular, invention provides for methods for controlling the comonomer composition distribution of polyolefins such as ethylene alpha-olefin copolymers by altering at least one or more of the following parameters: the molar ratio of hydrogen to ethylene, the molar ratio of comonomer to ethylene, the partial pressure of ethylene, and the reactor temperature without substantially changing the density and/or the melt index of the copolymer.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: July 30, 2013
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, James M. Farley, John F. Szul, Mark P. Ossowski
  • Patent number: 8481659
    Abstract: The present invention relates to cure accelerators useful for anaerobic curable compositions, such as adhesives and sealants.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: July 9, 2013
    Assignees: Henkel Corporation, Henkel Ireland Ltd.
    Inventors: David P. Birkett, Martin Wyer, Andrew Messana, Philip Klemarczyk, Anthony F. Jacobine
  • Patent number: 8471050
    Abstract: The present invention relates to non-symmetrical organometallic transition metal compounds of the compound of the formula (I) where R8 and R9 are identical or different and each an substituted or unsubstituted organic radical having from 1 to 40 carbon atoms, catalyst systems comprising at least one of the organometallic transition metal compounds of the present invention and a process for preparing polyolefins by polymerization or copolymerization of at least one olefin in the presence of one of the catalyst systems of the present invention.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: June 25, 2013
    Assignee: Basell Polyolefine GmbH
    Inventors: Fabiana Fantinel, Ilya Nifant'ev, Shahram Mihan
  • Publication number: 20130144019
    Abstract: The instant invention provides an ethylene/alpha-olefin interpolymer suitable for use in shrinkage film applications, and articles made therefrom. The ethylene/alpha-olefin interpolymer according to the present invention has a CDBI of less than 60%, and comprises at least two fractions in crossfractionation of the ethylene/alpha-olefin interpolymer, eluting from 85° C. to 90° C. and from 90° C. to 95° C., comprising a weight fraction ratio of >0.68 and a molecular weight homogeneity index of greater than 0.65; wherein the weight fraction ratio is the ratio of the weight of polymer in each fraction divided by the weight of polymer eluting between 95° C. and 100° C. and the molecular weight homogeneity index is the ratio of the weight average molecular weight of the polymer in the fraction divided by the weight average molecular weight of the polymer eluting between 95° C. and 100° C., and wherein the ethylene/alpha-olefin interpolymer has a density in the range of 0.920 to 0.940 g/cm3.
    Type: Application
    Filed: September 29, 2010
    Publication date: June 6, 2013
    Applicant: Dow Global Technologies LLC
    Inventors: Mehmet Demirors, Lawrence J. Effler, Lonnie G. Hazlitt, Teresa P. Karjala, Cristina Serrat
  • Patent number: 8450436
    Abstract: The present invention provides dual catalyst systems and polymerization processes employing these dual catalyst systems. The disclosed polymerization processes can produce olefin polymers at higher production rates, and these olefin polymers may have a higher molecular weight and/or a lower melt index.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: May 28, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Albert P. Masino, Rex E. Murray, Qing Yang, Steve J. Secora, Kumudini C. Jayaratne, William B. Beaulieu, Errun Ding, Gary L. Glass, Alan L. Solenberger, Ted H. Cymbaluk
  • Patent number: 8445608
    Abstract: The present invention discloses a method for preparing long-chain-branched isotactic polypropylene by first oligomerizing propylene with a suitable oligomerization catalyst system and then copolymerizing propylene and the oligomer obtained in situ with a mono-aryl-substituted methylene bridged catalyst system.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: May 21, 2013
    Assignees: Total Petrochemicals Research Feluy, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Jean-Franøois Carpentier, Evgueni Kirillov, Nicolas Marquet, Abbas Razavi
  • Patent number: 8436114
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 1 to 25 mol %, prior to use as an activator, where the mol % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the amount of the unknown species is determined by the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: May 7, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8436113
    Abstract: There is provided a method for producing copolymer that is composed of ethylene and alpha-olefin by a solution polymerization, and more specifically, a method for producing copolymer that is composed of ethylene and aromatic monomer as main components by using a transition metal catalyst including a cyclopentadiene derivative, and one or more anionic ligand having aryloxy group in which an aryl derivative is substituted at an ortho-position
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 7, 2013
    Assignees: SK Innovations Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Hwan Kyu Jung, Young Wook Kim, Byoung Tak Yim, Ho Seong Lee, Myung Ahn Ok, Jong Sok Hahn, Dong Cheol Shin
  • Patent number: 8435911
    Abstract: The present invention relates to a new hybrid catalyst system for the polymerization of olefins and to a polymerization process carried out in the presence of said catalyst. The new hybrid catalyst system comprises a tridendate iron compound and a zirconocene having a bridge of at least three carbon atoms connecting two indenyl ligands.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 7, 2013
    Assignee: Basell Polyolefine GmbH
    Inventors: Harald Schmitz, Shahram Mihan
  • Patent number: 8431661
    Abstract: This invention relates to a process for polymerizing olefins in which the amount of trimethylaluminum in a methylalumoxane solution is adjusted to be from 6 to 25 mole %, prior to use as an activator, where the mole % trimethylaluminum is determined by 1H NMR of the solution prior to combination with any support. This invention also relates to a process for polymerizing olefins in which the amount of an unknown species present in a methylalumoxane solution is adjusted to be from 0.10 to 0.65 integration units prior to use as an activator, where the unknown species is the peak is identified in the 1H NMR spectra of the solution performed prior to combination with any support. Preferably, the methylalumoxane solution is present in a catalyst system also comprising a metallocene transition metal compound.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 30, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, David M. Fiscus
  • Patent number: 8426536
    Abstract: The present invention provides polymerization catalyst compositions employing novel heterodinuclear metallocene compounds. Methods for making these new dinuclear metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins are also provided.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: April 23, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, Kumudini C. Jayaratne, Qing Yang, Joel L. Martin, Gary L. Glass
  • Patent number: 8420563
    Abstract: Multinuclear catalyst complex comprising two or more active metal centers and at least one phenoxyimine derivative and at least one substituted cyclopentadienyl, indenyl or fluorenyl derivative, each phenoxyimine derivative being bonded to a cyclopentadienyl, indenyl or fluorenyl derivative forming a ligand framework, the cyclopentadienyl, indenyl or fluorenyl derivative being coordinated with one of the metal centers and the phenoxyimine derivative being coordinated with an active metal center other than the metal center the cyclopentadienyl, indenyl or fluorenyl derivative is coordinated with, and wherein the phenoxyimine derivative is derived from a phenoxyimine compound of the formula wherein R1 is hydrogen, alkyl, cycloalkyl, aryl or aralkyl; R2 is hydrogen, halogen, alkyl, cycloalkyl, aryl, O-alkyl or aralkyl; and R3 is alkyl, cycloalkyl, aryl or aralkyl, process for preparing a multinuclear catalyst composition comprising the steps of bonding the substituted phenoxyimine compound to a substitute
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: April 16, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Syriac Palackal, Atieh Aburaqabah, Helmut G. Alt, Christian Goerl
  • Patent number: 8420742
    Abstract: The present invention relates to an ethylene/?-olefin interpolymer product comprising at least one ?-olefin interpolymerized with ethylene and, characterized in at least one aspect, as having improved properties when utilized in a hot melt adhesive formulation. The invention also relates to a process for manufacturing the interpolymer product wherein the process comprises employing two or more single site catalyst systems in at least one reaction environment (or reactor) and wherein the at least two catalyst systems have (a) different comonomer incorporation capabilities or reactivities and/or (b) different termination kinetics, both when measured under the same polymerization conditions. The interpolymer products are useful, for example, in applications such as hot melt adhesives, and also for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings, thermoforms, profiles and fibers.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: April 16, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Teresa P. Karjala, Brian W. Kolthammer
  • Patent number: 8420562
    Abstract: Improved process for the preparation of an unsupported, heterogeneous olefin polymerization catalyst system, comprising an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC) or of an actinide or lanthanide in the form of solid particles comprising the steps of a) preparing a solution of catalyst components, including an aluminoxane, a compound being effective to form stable, liquid clathrates with aluminoxane and an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC 2007) or of an actinide or lanthanide, in a hydrocarbon solvent, yielding a two phase system with an upper solvent layer, which is separated, b) preparing a liquid/liquid emulsion system comprising a continuous phase in which said solution of the catalyst components forms a dispersed phase in the form of droplets, c) solidifying said dispersed phase to convert said droplets to solid particles and optionally recovering said particles to obtain said catalyst system, t
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: April 16, 2013
    Assignee: Borealis AG
    Inventors: Pertti Elo, John Severn, Peter Denifl, Soile Rautio, Marja Mustonen, Anu-Leena Hongell
  • Patent number: 8415492
    Abstract: Certain metallocene compounds are provided that, when used as a component in a supported polymerization catalyst under industrially relevant polymerization conditions, afford high molar mass homo polymers or copolymers like polypropylene or propylene/ethylene copolymers without the need for any ?-branched substituent in either of the two available 2-positions of the indenyl ligands. The substituent in the 2-position of one indenyl ligand can be any radical comprising hydrogen, methyl, or any other C2-C40 hydrocarbon which is not branched in the ?-position, and substituent in the 2-position of the other indenyl ligand can be any C5-C40 hydrocarbon radical with the proviso that this hydrocarbon radical is branched in the ?-position and that the ?-carbon atom is a quarternary carbon atom and part of a non-cyclic hydrocarbon system. This metallocene topology affords high melting point, very high molar mass homo polypropylene and very high molar mass propylene-based copolymers.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: April 9, 2013
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Thorsten Sell, Andreas Winter, Matthew Grant Thorn, Anita Dimeska, Franz Langhauser
  • Patent number: 8404880
    Abstract: Disclosed are: a solid polymethylaluminoxane composition which does not utilize silica or the like, has the form of relatively fine particles, has more uniform particle sizes, and exhibits a high polymerization activity when used in the preparation of an olefin polymer; a process for producing the solid polymethylaluminoxane composition; a polymerization catalyst; and a process for producing an olefin polymer.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: March 26, 2013
    Assignee: Tosoh Finechem Corporation
    Inventors: Eiichi Kaji, Etsuo Yoshioka
  • Patent number: 8399375
    Abstract: The invention relates to a supported metallocene catalyst composition and a process for the preparation of polyolefin using the same. A supported metallocene catalyst composition according to the invention is prepared by bringing a compound of a group IV transition metal into contact with an inorganic or organic porous carrier treated with an ionic compound. Advantages of a supported metallocene catalyst composition of the invention include an increase in the catalyst activity during polymerization of slurry and an olefin compound in the vapor phase even at a low content of metallocene metal components within the carrier, and an improvement in solving process problems such as fouling, sheeting, plugging or the like.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: March 19, 2013
    Assignees: SK Global Chemical Co., Ltd., SK Innovation Co., Ltd.
    Inventors: Seungyeol Han, Myungahn Ok, Young-Soo Ko, Chang-il Lee
  • Patent number: 8394733
    Abstract: Improved process for the preparation of an unsupported, heterogeneous olefin polymerization catalyst, comprising an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC) or of an actinide or lanthanide in the form of solid particles comprising the steps of a) preparing a solution of an aluminoxane and an ionic complex M-X, M being an alkali or earth alkali metal and X being a halide or pseudo halide, in a molar ratio of Al of the aluminoxane to M of the ionic complex between 80:1 and 300:1, b) mixing said solution with an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC) or of an actinide or lanthanide in a molar ratio of M of the ionic complex to the transition metal of the organometallic compound between 1:1 and 4:1, yielding a second solution, c) dispersing said second solution obtained in step b) in a solvent immiscible therewith to form an emulsion in which said second solution of step b) forms the dispersed phase in the fo
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 12, 2013
    Assignee: Borealis AG
    Inventors: John Severn, Pertti Elo, Sameer Vijay, Marja Mustonen
  • Patent number: 8383848
    Abstract: A transition metal compound represented by the formula (1-1) or the formula (1-2) (M is a transition metal atom) and a process for producing a catalyst for olefin polymerization comprising a step of bringing the transition metal compound into contact with a co-catalytic component for activation.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: February 26, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hidenori Hanaoka, Masato Takano, Naoko Ochi, Kazuo Takaoki, Kazuyuki Ito, Masayuki Hasegawa
  • Patent number: 8372996
    Abstract: Provided are transition metal catalytic systems for preparing ethylene homopolymers or copolymers of ethylene with ?-olefins. More specifically, provided are Group 4 transition metal catalysts, which is characterized in that the Group 4 transition metal catalyst comprises around the Group 4 transition metal a cyclopentadiene derivative, and at least one naphthoxide ligand(s) having aryl substituent(s) that function(s) as an electron donor and serve(s) to stabilize the catalyst system by surrounding an oxygen atom that links the ligand to the transition metal at 2-position, and there is no cross-linkage between the ligands; catalytic systems comprising such transition metal catalyst and aluminoxane cocatalyst or boron compound cocatalyst; and processes for preparing ethylene homopolymers or copolymers of ethylene with ?-olefins by using the same.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: February 12, 2013
    Assignee: SK Innovation Co., Ltd.
    Inventors: Myungahn Ok, Dongcheol Shin, Jisu Jeong, Jongsok Hahn, Hoseong Lee, Daeho Shin
  • Patent number: 8354485
    Abstract: Compositions useful for activating catalysts for olefin polymerization, and methods for making same, are provided. Such compositions can be derived from at least: an organoaluminum compound, a carrier, an oxygen source, and, optionally, a Lewis base.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 15, 2013
    Assignee: Albemarle Corporation
    Inventors: Lubin Luo, Samuel A. Sangokoya, Xiao Wu, Steven P. Diefenbach, Brian Kneale
  • Patent number: 8344081
    Abstract: The present invention relates to a transition metal complex useful as a transition metal catalyst in the preparation of an ethylene homopolymer or a copolymer of ethylene and an ?-olefin, a catalyst composition comprising the same and a process of preparing an ethylene homopolymer or a copolymer of ethylene and an ?-olefin using the same. More particularly, it relates to a transition metal complex having a cyclopentadiene derivative and at least one phenyl oxide ligand substituted at the 2-position of phenyl with, for example, a silyl group having a C1-C30 hydrocarbon group or a C1-C20 hydrocarbon group, around a group IV transition metal, with no crosslinkage between the ligands, a catalyst composition comprising the transition metal complex and a cocatalyst selected from the group consisting of an aluminoxane and a boron compound, and a process for preparing an ethylene homopolymer or a copolymer of ethylene and an ?-olefin using the same.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: January 1, 2013
    Assignee: SK Innovation Co., Ltd.
    Inventors: Jong-Sok Hahn, Myung-Ahn Ok, Dong-Cheol Shin, Ho-Seong Lee, Sang-Ook Kang, Tae-Jin Kim
  • Patent number: 8329834
    Abstract: The present invention provides dual catalyst systems and polymerization processes employing these dual catalyst systems. The disclosed polymerization processes can produce olefin polymers at higher production rates, and these olefin polymers may have a higher molecular weight and/or a lower melt index.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: December 11, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Albert P. Masino, Rex E. Murray, Qing Yang, Steve J. Secora, Kumudini C. Jayaratne, William B. Beaulieu, Errun Ding, Gary L. Glass, Alan L. Solenberger, Ted H. Cymbaluk
  • Patent number: 8309748
    Abstract: The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: November 13, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Errun Ding, Joel L. Martin, Albert P. Masino, Qing Yang, Youlu Yu
  • Patent number: 8304361
    Abstract: Fouling in a dispersed phase reactor in the presence of a phosphinimine catalyst and MAO may be reduced by reducing the loading of the phosphinimine catalyst to provide from 0.02 to 0.031 mmol of transition M per g of catalyst while still maintaining a productivity of not less than 2500 g of polymer/gram of catalyst. The catalyst may optionally be used in the presence of an antistatic agent.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: November 6, 2012
    Assignee: NOVA Chemical (International) S.A.
    Inventors: Xiaoliang Gao, Benjamin Milton Shaw, Cliff Robert Baar
  • Patent number: 8298978
    Abstract: Single site reactor/catalyst continuity in a dispersed phase reaction in terms of initial activation and subsequent deactivation may be improved by treating the support with a metal salt. The activator and catalyst are then deposited on the treated support. The resulting catalyst has a lower consumption of ethylene during initiation and a lower rate of deactivation. Preferably the catalyst is used with an antistatic agent.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: October 30, 2012
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Xiaoliang Gao, Billy Gaspar Santos, Peter Phung Minh Hoang, Amy Marie Jones, Benjamin Milton Shaw, Ian Ronald Jobe
  • Patent number: 8299188
    Abstract: Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR?2)MQn??(1) or by the formula: B?(Cp?R?aR?b)(Fl?)M?Q?n???(2) In the formulas Cp and Cp? are substituted cyclopentadienyl groups, Fl and Fl? are fluorenyl groups, and B and B? are structural bridges. R? are substituents at the 2 and 7 positions, Ra and R?a are substituents distal to the bridge, and Rb and R?b are proximal to the bridge. M and M? are transition metals, Q? is a halogen or a C1-C4 alkyl group; and n? is an integer of from 0-4.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: October 30, 2012
    Assignee: Fina Technology, Inc.
    Inventors: William Gauthier, David Rauscher, Jun Tian, Nathan Williams
  • Patent number: 8293856
    Abstract: [Problem] To efficiently obtain an ?-olefin polymer having a high melting point and a high molecular weight. [Solution to Problem] The process for preparing an olefin polymer of the present invention is a process for preparing an olefin polymer, comprising polymerizing at least one monomer selected from ?-olefins of 2 or more carbon atoms, wherein the polymerization is carried out at a temperature of not lower than 40° C.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: October 23, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Takashi Yukita, Masahiro Yamashita, Nobukazu Yamahira, Wataru Yamada, Hiromu Kaneyoshi
  • Patent number: 8288487
    Abstract: The present invention provides a polymerization process utilizing a dual metallocene catalyst system for the production of broad or bimodal molecular weight distribution polymers, generally, in the absence of added hydrogen. Polymers produced from the polymerization process are also provided, and these polymers can have a Mn in a range from about 9,000 to about 30,000 g/mol, and a short chain branch content that decreases as molecular weight increases.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: October 16, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Max P. McDaniel, Tony R. Crain, Youlu Yu
  • Patent number: 8278403
    Abstract: Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Fina Technology, Inc.
    Inventors: Tim Coffy, Kenneth Blackmon, Joseph Thorman, David Rauscher, Jun Tian, William Gauthier, Nathan Williams
  • Patent number: 8268944
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: September 18, 2012
    Assignee: Chevron Phillips Company, L.P.
    Inventors: Qing Yang, Kumudini C. Jayaratne, Michael D. Jensen, Max P. McDaniel, Joel L. Martin, Matthew G. Thorn, Jerry T. Lanier, Tony R. Crain
  • Patent number: 8258247
    Abstract: The object is to provide a catalyst component for ethylene polymerization which can produce an ethylene polymer of high molecular weight which has substantially only an ethyl branch, and a process for producing the catalyst component for ethylene polymerization which can produce an ethylene polymer of high molecular weight which has substantially only an ethyl branch. A catalyst component for polymerization of ethylene obtained by contacting the following components (A), (B), (C) and (D): component (A): a meso-metallocene compound, component (B): a compound which ionizes a metallocene compound to form an ionic complex, component (C): an organoaluminum compound, and component (D): an electron donating compound, and a process for producing the ethylene polymer by polymerizing ethylene in the presence of the above catalyst component for ethylene polymerization.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: September 4, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Yasutoyo Kawashima
  • Patent number: 8232359
    Abstract: Provided are transition metal catalytic systems for preparing ethylene homopolymers or copolymers of ethylene with ?-olefins. More specifically, provided are Group 4 transition metal catalysts, which is characterized in that the catalyst comprises around the Group 4 transition metal a cyclopentadiene derivative, and at least one aryloxide ligand(s) having a fluorenyl group or a derivative thereof (which is ready to be substituted at 9-position) that functions as an electron donor and serves to stabilize the catalytic system by surrounding an oxygen atom that links the ligand to the transition metal at ortho-position, and there is no cross-linkage between the ligands; catalytic systems comprising such transition metal catalyst and aluminoxane cocatalyst or boron compound cocatalyst; and processes for preparing ethylene homopolymers or copolymers of ethylene with ?-olefins by using the same.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 31, 2012
    Assignee: SK Innovation Co., Ltd.
    Inventors: Myungahn Ok, Dongcheol Shin, Jisu Jeong, Hoseong Lee, Jongsok Hahn, Choonsik Shim
  • Patent number: 8227552
    Abstract: The invention generally provides for methods for controlling polymer properties. In particular, invention provides for methods for controlling the comonomer composition distribution of polyolefins such as ethylene alpha-olefin copolymers by altering at least one or more of the following parameters: the molar ratio of hydrogen to ethylene, the molar ratio of comonomer to ethylene, the partial pressure of ethylene, and the reactor temperature without substantially changing the density and/or the melt index of the copolymer.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: July 24, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Rainer Kolb, James M. Farley, John F. Szul, Mark P. Ossowski
  • Patent number: 8222361
    Abstract: The present invention relates to a method for the production of an ethylene/propylene/diene copolymer by means of solution polymerization, and more specifically one for a copolymer whose main components are ethylene, propylene and diene monomers using a catalyst of a transition metal coordination compound; the constituent components and characteristics of the copolymer being as follows. The catalyst composition provided by the present invention, which is used to produce a copolymer of which (a) the ethylene content is from 30 wt. % to 80 wt. %, (b) the propylene content is from 19.9% to 60 wt. % and (c) the diene content is from more than 0 wt. % to 15 wt.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 17, 2012
    Assignees: SK Innovation Co., Ltd., SK Global Chemical Co., Ltd.
    Inventors: Byoungtak Yim, Youngwook Kim, Myungahn Ok, Jongsok Hahn, Dongcheol Shin
  • Patent number: 8222175
    Abstract: This invention relates to a process for the preparation of an olefin polymerization catalyst, to the use of the catalyst in olefin polymerization and to the catalyst and polymers obtained. In particular, the invention relates to the preparation of a catalyst comprising an organometallic compound of a transition metal of Group 3 to 10 of the Periodic Table (IUPAC) by a semi-continuous or continuous process.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: July 17, 2012
    Assignee: Borealis Technology Oy
    Inventors: Michael Bartke, Peter Denifl
  • Patent number: 8207281
    Abstract: The present invention relates to a process for preparing transition metal compounds, in particular ansa-bisindenyl-metallocenes having nitrogen, phosphor, sulfur or oxygen comprising substituents, the corresponding transition metal compounds themselves and their use in the preparation of catalyst systems and also the use of the catalyst systems in the polymerization and copolymerization of olefins.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: June 26, 2012
    Assignee: Basell Polyolefine GmbH
    Inventor: Reynald Chevalier
  • Patent number: 8207280
    Abstract: The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: June 26, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Rex E. Murray, William B. Beaulieu, Qing Yang, Errun Ding, Gary L. Glass, Alan L. Solenberger, Steven J. Secora