Phenolic Reactant Contains A Single Phenolic -oh Group Or A Single Inorganic Phenolate Thereof Patents (Class 528/212)
  • Patent number: 7049388
    Abstract: A process for manufacturing an ?-dihydroxy derivative from an aryl allyl ether wherein such ?-dihydroxy derivative can be used to prepare an ?-halohydrin intermediate and an epoxy resin prepared therefrom including epoxidizing an ?-halohydrin intermediate produced from a halide substitution of an ?-dihydroxy derivative which has been obtained by a dihydroxylation reaction of an aryl allyl ether in the presence of an oxidant or in the presence of an oxidant and a catalyst.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: May 23, 2006
    Assignee: Dow Global Technologies Inc.
    Inventors: Clinton J. Boriack, Zeng K. Liao, Thomas H. Kalantar
  • Patent number: 7034100
    Abstract: The present invention is related to the functionalized polyanilines and also to a method for making said functionalized polyanilines.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: April 25, 2006
    Inventor: Chien-Chung Han
  • Patent number: 6992166
    Abstract: A phenolic resin obtainable by reacting a dihydroxy compound of the following formula (1) with a phenolic compound, wherein the dihydroxy compound is partially dehydrated.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: January 31, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tohru Nagashima, Noriaki Saito
  • Patent number: 6984712
    Abstract: The present invention provides a liquid-crystalline polyester resin which comprises monomer units derived from 2-hydroxy-3-naphthoic acid and/or 2-hydroxynaphthalene-3,6-dicarboxylic acid in an amount of 1-5000 mmol % based on the total monomer components of the resin and an alkaline metal compound in an amount of 10-3000 ppm as alkaline metal based on the total monomer components of the resin. The liquid-crystalline polyester resin of the present invention has good colorability, improved heat resistance and good mechanical properties.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: January 10, 2006
    Assignee: Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyujo
    Inventors: Ryuzo Ueno, Masaya Kitayama, Kiichi Kometani, Hiroyuki Kato, Kazunori Ueda
  • Patent number: 6969755
    Abstract: Ion-Exchange polymers for a polymer electrolyte membrane include a moiety of formula (I), and/or a moiety of formula (II), and/or a moiety of formula (III) wherein at least some of the units I, II and/or III are sulphonated; wherein the phenyl moieties in units I, II, and III are independently optionally substituted and optionally cross-linked; and wherein m, r, s, t, v, w and z independently represent zero or a positive integer, E and E? independently represent an oxygen or a sulphur atom or a direct link, G represents an oxygen or sulphur atom, a direct link or a —O—Ph—O— moiety where Ph represents a phenyl group and Ar is selected from one of the above moieties (i) to (x) which is bonded via one or more of its phenyl moieties to adjacent moieties
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: November 29, 2005
    Assignee: Victrex Manufacturing Limited
    Inventors: Peter Chamock, David J. Kemmish, Philip A. Staniland, Brian Wilson
  • Patent number: 6956100
    Abstract: An object of the present invention is to provide a polyamide resin composition from which the solvent is easily removed during film formation and which gives a film or adhesive layer reduced in residual solvent content. It is suitable for use especially as vanish. The composition and vanish are characterized by comprising as essential ingredients a phenolic hydroxyl group-having aromatic polyamide resin and a cycloalkanone as a solvent and preferably further containing a curable resin.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: October 18, 2005
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Masahiro Imaizumi, Toyofumi Asano, Masaki Shinmoto
  • Patent number: 6906166
    Abstract: The invention relates to polymers and oligomers, methods of their synthesis, and electronic devices comprising them.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: June 14, 2005
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Daike Wang
  • Patent number: 6903180
    Abstract: This invention relates to novel epoxy resins and epoxy resin compositions comprising said epoxy resins or cured articles thereof. The cured articles have excellent properties in respect to flame retardance, adhesiveness, moisture resistance and heat resistance and can be used in applications such as lamination, molding, casting and adhesion. The epoxy resins of this invention are represented by the following formula (3) wherein Y1 denotes a glycidyloxyarylmethyl group represented by —CH2—Ar—OG, Y2 and Y3 denote independently a glycidyl group or the aforementioned glycidyloxyarylmethyl group, Ar denotes a phenylene group which can be substituted with up to two hydrocarbon groups and G denotes a glycidyl group.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: June 7, 2005
    Assignee: Nippon Steel Chemical Co., Ltd.
    Inventors: Masashi Kaji, Koichiro Ogami
  • Patent number: 6890988
    Abstract: The present invention provides an aromatic polyester which is obtained by condensation polymerization reaction of terephthalic acid, 2,6-naphthalenedicarboxylic acid and acylated product obtained by acylation of parahydroxybenzoic acid and hydroquinone with fatty acid anhydride, wherein said aromatic polyester satisfy the following conditions (A) to (D), and the acylation and/or the condensation polymerization reaction are conducted in the presence of heterocyclic organic compound containing at least two nitrogen atoms: (A): Number of moles of a monomer unit derived from parahydroxybenzoic acid (UNIT (1)) is 54-62 moles per 100 moles of UNIT (1), a monomer unit derived from hydroquinone (UNIT (2)), a monomer unit derived from terephthalic acid (UNIT (3)) and a monomer unit derived from 2,6-naphthalenedicarboxylic acid (UNIT (4)) in total; (B): Number of moles of UNIT (2) is 19-23 moles per 100 moles of UNIT (1), UNIT (2), UNIT (3) and UNIT (4) in total; (C): The molar ratio of UNIT (3) and UNIT (4), which is
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: May 10, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tomoya Hosoda, Hiroshi Harada, Satoshi Okamoto
  • Patent number: 6881811
    Abstract: To provide a fluorinated aromatic polymer having excellent heat resistance and a low relative permittivity; and an insulating film for electronic devices and an insulating film for multilayered wiring boards, which are made of the polymer. A fluorinated aromatic polymer which contains two or more crosslinkable functional groups (A) per molecule and has a number average molecular weight of from 1×103 to 5×105 and an ether linkage and which is produced by e.g.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: April 19, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Shunsuke Yokotsuka, Fusaaki Takeo
  • Patent number: 6835785
    Abstract: The present invention provides a bifunctional phenylene ether oligomer compound having a thermosetting functional group at each terminal, an epoxy resin containing the above oligomer compound and a use thereof. That is, it provides a sealing epoxy resin composition for sealing an electric part, an epoxy resin composition for laminates, a laminate, a printed wiring board, a curable resin composition and a photosensitive resin composition. The resins and resin compositions of the present invention are used in electronics fields in which a low dielectric constant, a low dielectric loss tangent and high toughness are required and also used for various uses such as coating, bonding and molding.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: December 28, 2004
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kenji Ishii, Yasumasa Norisue, Kiyonari Hiramatsu, Makoto Miyamoto, Makoto Yamazaki, Daisuke Ohno
  • Patent number: 6828353
    Abstract: Ion-Exchange polymers for a polymer electrolyte membrane include a moiety of formula (I), and/or a moiety of formula (II), and/or a moiety of formula (III) wherein at least some of the units I, II and/or III are sulphonated. The phenyl moieties in units I, II, and III are independently optionally substituted and optionally cross-linked; m, r; s, t, v, w and z independently represent zero or a positive integer, E and E′ independently represent an oxygen or a sulphur atom or a direct link, G represents an oxygen or sulphur atom, a direct link or a —O—Ph—O— moiety where Ph represents a phenyl group and Ar is selected from one of the moieties (i) to (x) as set forth herein which is bonded via one or more of its phenyl moieties to adjacent moieties.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: December 7, 2004
    Assignee: Victrex Manufacturing Limited
    Inventors: Peter Charnock, David J. Kemmish, Philip A. Staniland, Brian Wilson
  • Patent number: 6783827
    Abstract: The present invention relates to a method for decreasing the cyclic oligomer content level in the manufacturing process of polyethylene terephthalate (PET) and in the PET products produced from said process by adding calcium phosphate at least one selected from the group consisting of a Ca3(PO4)2 structure and a Ca5OH(PO4)3 structure, and a carboxy phosphonic acid having a structure (1) as follows: wherein R1, R2, and R3 are alkyls or hydrogen atoms and R is an alkyl. The method of the prevent invention restrains the production of cyclic oligomers in the polyester chips produced and also decreases the cyclic oligomers regenerated in the rear-end melting process stage of the invention.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: August 31, 2004
    Assignee: Nan Ya Plastics Corporation
    Inventor: Zo-Chun Jen
  • Patent number: 6777532
    Abstract: The invention relates to polymers and oligomers, methods of their synthesis, and electronic devices comprising them.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: August 17, 2004
    Assignee: The Ohio State University
    Inventors: Arthur J. Epstein, Daike Wang
  • Patent number: 6774203
    Abstract: The present invention provides a method for producing a liquid crystalline polyester which is produced from an aromatic carboxylic acid, an aromatic hydroxycarboxylic acid, an aromatic diol and/or an aromatic hydroxylamine, including a polymerization step (1) for producing a prepolymer of the liquid crystalline polyester and a solid-state polymerization step (2) for elevating the polymerization degree of the resultant prepolymer, the number of aromatic ring terminal groups of the prepolymer satisfying the following equation (i): [(the number of aromatic ring terminal groups)/[(the number of carboxylic terminal groups)+(the number of aromatic ring terminal groups)]]×100≧7(%) (i). According to the invention, all-aromatic type liquid crystalline polyesters can be produced within a short time and at low cost.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: August 10, 2004
    Assignee: Polyplastics Co., Ltd.
    Inventor: Yasuyuki Fukute
  • Publication number: 20040147710
    Abstract: To provide a fluorinated aromatic polymer having excellent heat resistance and a low relative permittivity; and an insulating film for electronic devices and an insulating film for multilayered wiring boards, which are made of the polymer. A fluorinated aromatic polymer which contains two or more crosslinkable functional groups (A) per molecule and has a number average molecular weight of from 1×103 to 5×105 and an ether linkage and which is produced by e.g.
    Type: Application
    Filed: January 12, 2004
    Publication date: July 29, 2004
    Applicant: ASAHI GLASS COMPANY LIMITED
    Inventors: Shunsuke Yokotsuka, Fusaaki Takeo
  • Patent number: 6759104
    Abstract: A photocurable composition, wherein a small amount of an alicyclic skeleton-containing mono(meth) acrylate is incorporated in a combination of an alicyclic skeleton-containing bis(meth)acrylate and a mercapto compound, a cured product obtained by the copolymerization thereof, and a process for producing the cured product.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: July 6, 2004
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Seiichiro Hayakawa, Akihiko Sakai, Akira Esaki, Yutaka Tamura
  • Publication number: 20040054121
    Abstract: A method of precipitating a poly(arylene ether) includes preparing a poly(arylene ether) solution comprising a poly(arylene ether) and a solvent, combining the poly (arylene ether) solution with an antisolvent to form a poly(arylene ether) dispersion comprising a poly(arylene ether) solid, separating the poly(arylene ether) solid from the poly(arylene ether) dispersion to form an isolated poly(arylene ether) solid, determining a particle size distribution of the poly(arylene ether) solid prior to separating the poly(arylene ether) solid from the poly(arylene ether) dispersion, and adjusting a precipitation parameter in response to the particle size distribution. Although the measured particle size distribution is very different from the particle size distribution of the solid poly(arylene ether) ultimately isolated, it is useful for controlling the process. The method may be automated to rapidly adjust precipitation conditions in response to the particle size distribution measurements.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 18, 2004
    Inventors: Rudy Francois Alain Jos Peemans, Wiebe Knol, Peter Groefsema
  • Patent number: 6689920
    Abstract: A process for producing 2,2′,3,3′,5,5′-hexamethyl-[1,1′-biphenyl]-4,4′-diol, which process comprises, while setting a pH of a reaction liquid containing an alkaline aqueous solution, a surfactant, a copper catalyst and 2,3,6-trimethylphenol during a reaction in the range of from 8 to 14 and controlling the variation range of the pH of the reaction liquid within ±1, oxidatively coupling the 2,3,6-trimethylphenol with an oxygen-containing gas, and a process for producing a bifunctional phenylene ether oligomer compound having a controlled average molecular weight, comprising carrying out oxidation polymerization under a proper oxygen concentration.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: February 10, 2004
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kenji Ishii, Kiyonari Hiramatsu, Makoto Miyamoto, Yasumasa Norisue, Katsuhiko Yanagida
  • Publication number: 20040024124
    Abstract: An object of the present invention is to provide a polyamide resin composition from which the solvent is easily removed during film formation and which gives a film or adhesive layer reduced in residual solvent content. It is suitable for use especially as vanish. The composition and vanish are characterized by comprising as essential ingredients a phenolic hydroxyl group-having aromatic polyamide resin and a cycloalkanone as a solvent and preferably further containing a curable resin.
    Type: Application
    Filed: April 16, 2003
    Publication date: February 5, 2004
    Inventors: Masahiro Imaizumi, Toyofumi Asano, Masaki Shimoto
  • Patent number: 6667104
    Abstract: A phenol resin composition for wet friction material comprising a curable resin composition obtained by mixing a resol-type phenol resin and a hydrolysis solution of an alkoxysilane or a condensate thereof, wherein the ratio by weight of the nonvolatile components of the resol-type phenol resin (R) and the nonvolatile components of the hydrolysis solution of the alkoxysilane or the condensate thereof (S), obtained after heat-treatment at 135° C. for one hour, is in the range of 64/36 to 10/90.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: December 23, 2003
    Assignees: Sumitomo Bakelite Company Limited, NSK-Warner K.K.
    Inventors: Hiroshi Aiba, Masahiro Mori
  • Patent number: 6646102
    Abstract: A process for manufacturing an &agr;-dihydroxy derivative from an aryl allyl ether wherein such &agr;-dihydroxy derivative can be used to prepare an &agr;-halohydrin intermediate and an epoxy resin prepared therefrom including epoxidizing an &agr;-halohydrin intermediate produced from a halide substitution of an &agr;-dihydroxy derivative which has been obtained by a dihydroxylation reaction of an aryl allyl ether in the presence of an oxidant or in the presence of an oxidant and a catalyst.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: November 11, 2003
    Assignee: Dow Global Technologies Inc.
    Inventors: Clinton J. Boriack, Zeng K. Liao, Thomas H. Kalantar
  • Patent number: 6613493
    Abstract: Photoresist polymers having nitro groups (—NO2), and photoresist compositions containing the same. A photoresist pattern having excellent endurance, etching resistance, reproducibility and resolution can be formed by the use of the photoresist copolymer comprising polymerization repeating units represented by Chemical Formula 1a or 1b: wherein, R1, a, b, c, d, e, f, g and h is defined in the specification. Having nitro groups in the polymer, the photoresist polymer results in a low absorbance in the range of 157 nm wavelength, so that it is extremely useful for a photolithography process using, in particular, VUV light source.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: September 2, 2003
    Assignee: Hynix Semiconductor Inc
    Inventors: Geun Su Lee, Jae Chang Jung, Ki Soo Shin
  • Patent number: 6608166
    Abstract: A three dimensional copolymer network of polyphenylene ether segments and styrenic resins such as styrene/acrylonitrile copolymers provide articles of high heat reesistance and dielectric properties suitable for use in electronic components. Methods for preparing the copolymers employ polyphenylene ether polymers with end caps having at least one pair of unsaturated aliphatic carbon atoms, i.e. carbon-carbon double bond, and polymerize styrene monomers and acrylonitrile monomers or styrene/acrylonitrile copolymers or both in the presence of these polyphenylene ether polymers.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Hua Guo, Manuel Cavazos, John B. Yates, III
  • Patent number: 6576800
    Abstract: An oxidation polymer of a substituted phenol, obtained by oxidative polymerization of at least one compound selected from the group consisting of a compound of formula (Ia) and a compound of formula (Ib), in which the oxidation polymer has a number-average polymerization degree of 3 or more: wherein R1 to R4 each represent a hydrogen atom and the like; provided that at least one of R1 to R4 represents a substituted or unsubstituted, saturated hydrocarbon group having 10 or more carbon atoms, and R1 and/or R4 represent a hydrogen atom; wherein R11 represents a substituted or unsubstituted, saturated hydrocarbon group having 15 or more carbon atoms, and R12 is the same as R11, or when R12 is different from R11, R12 represents a substituted or unsubstituted hydrocarbon group and the like.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: June 10, 2003
    Assignees: National Institute of Advanced Industrial Science and Technology, Japan Chemical Innovation Institute
    Inventors: Hideyuki Higashimura, Shiro Kobayashi
  • Patent number: 6472499
    Abstract: Poly(arylene ether) resins having intrinsic viscosities greater than about 0.8 dL/g are produced in the reaction of a phenol with oxygen in the presence of an organic solvent and a metal complex catalyst, the phenol concentration being about 5 to about 15 weight percent of the sum of phenol and solvent, and the molar ratio of metal in the metal complex catalyst to the phenol being about 1:100 to about 1:200.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: October 29, 2002
    Assignee: General Electric Company
    Inventors: Adrianus J. F. M. Braat, Hugo G. E. Ingelbrecht
  • Patent number: 6469128
    Abstract: A process for producing a poly(arylene ether) resins includes oxidatively coupling a monohydric phenol in the presence of a solvent and a catalyst to form a soluble poly(arylene ether) and an insoluble poly(arylene ether), separating the soluble poly(arylene ether) and the insoluble poly(arylene ether), and recycling the soluble poly(arylene ether). The process is particularly useful for synthesizing poly(arylene ether) copolymers in which the monomer compositions of soluble and insoluble copolymers may vary.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: October 22, 2002
    Assignee: General Electric Company
    Inventors: Hua Guo, Hugo Gerard Eduard Ingelbrecht, David Parrillo, Probjot Singh
  • Patent number: 6455663
    Abstract: The invention relates to a novel process for the manufacture of functionalized polyphenylene ether resins through redistribution with a functionalized phenolic compound in the polyphenylene ether resin polymerization reaction solution without the addition of an added redistribution catalyst or promoter. The invention also relates to the functionalized polyphenylene ether resin made by the process as well as blends and articles containing the functionalized polyphenylene ether resin made by the process.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: September 24, 2002
    Assignee: General Electric Company
    Inventors: Adrianus J. F. M. Braat, Hugo G. E. Engelbrecht, Juraj Liska
  • Patent number: 6444779
    Abstract: A method of preparing a poly(arylene ether) includes oxidatively polymerizing a monohydric phenol in solution, concentrating the solution by removing a portion of the solvent to form a concentrated solution having a cloud point, Tcloud, adjusting the temperature of the concentrated solution to at least about (Tcloud−10° C.), and combining the concentrated solution with an anti-solvent to precipitate the poly (arylene ether). The method reduces the formation of undesirably fine particles in the product poly(arylene ether).
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: September 3, 2002
    Assignee: General Electric Company
    Inventors: Probjot Singh, Hugo Gerard Eduard Ingelbrecht, David Parrillo, Mukund Parthasarathy
  • Patent number: 6437084
    Abstract: A method of preparing a poly(arylene ether) includes oxidatively coupling a monohydric phenol in a reaction solution at a reaction temperature that exceeds the cloud point temperature of the reaction solution. The oxidative coupling occurs in the presence of a metal complex catalyst, and when the catalyst includes an amine ligand, the method facilitates incorporation of the amine ligand into the poly(arylene ether) resin. The amine-incorporated poly(arylene ether) resins prepared by the method are useful in the preparation of higher molecular weight poly(arylene ether) resins and compatibilized blends of poly(arylene ether) resins with other thermoplastics.
    Type: Grant
    Filed: November 12, 2001
    Date of Patent: August 20, 2002
    Assignee: General Electric Company
    Inventors: Joop Birsak, Hugo Gerard Eduard Ingelbrecht, David Parrillo, Mukund Parthasarathy, Probjot Singh
  • Patent number: 6429277
    Abstract: The invention relates to a novel process for the manufacture of very low molecular weight polyphenylene ether resin, typically within the intrinsic viscosity range of about 0.08 dl/g to about 0.16 dl/g as measured in chloroform at 25° C. The method preferably comprises 2,6-dimethylphenol as a monovalent phenol species. The invention also relates to the polyphenylene ether resin made by the process as well as blends and articles containing the polyphenylene ether resin made by the process.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: August 6, 2002
    Assignee: General Electric
    Inventors: Adrianus J. F. M. Braat, Hugh Ingelbrecht, Ruud Trion
  • Publication number: 20020095020
    Abstract: An improvement to the melt transesterification reaction of diaryl carbonate with dihydroxy aryl compound is disclosed.
    Type: Application
    Filed: January 2, 2002
    Publication date: July 18, 2002
    Inventors: Uwe Hucks, Kaspar Hallenberger, Silke Kratschmer, Michael Prein, Steffen Kuhling
  • Patent number: 6417274
    Abstract: The invention relates to a novel process for preparing functionalized PPE, the process comprising oxidative coupling in a reaction solution at least one monovalent phenol species using an oxygen containing gas and a complex metal catalyst to produce a PPE; and functionalizing the PPE prior to and/or during at least one isolation step for devolatilization of the reaction solvent. The invention also relates to the polyphenylene ether resin made by the process as well as blends and articles containing the polyphenylene ether resin made by the process.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: July 9, 2002
    Assignee: General Electric Co.
    Inventors: Adrianus J. F. M. Braat, Rene de Jongh, Juraj Liska
  • Patent number: 6407200
    Abstract: A method of preparing a poly(arylene ether) includes oxidatively polymerizing a monohydric phenol in solution, concentrating the solution by removing a portion of the solvent to form a concentrated solution having a cloud point, Tcloud, and combining the concentrated solution with an anti-solvent to precipitate the poly (arylene ether), wherein the concentrated solution has a temperature of at least about (Tcloud−10° C.) immediately before it is combined with the anti-solvent. The method reduces the formation of undesirably fine particles in the product poly(arylene ether).
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: June 18, 2002
    Assignee: General Electric Company
    Inventors: Probjot Singh, Hugo Gerard Eduard Ingelbrecht, David Parrillo, Mukund Parthasarathy
  • Patent number: 6392005
    Abstract: The present invention relates to a manufacturing method for decreasing the cyclic oligomer content in polyester which effectively restrains the production of the cyclic oligomer in ester chips and further decreases the amount of regenerated cyclic oligomer at the melting process stage by adding the additive, during the process of manufacturing polyethylene terephthalate, with the following structure:
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: May 21, 2002
    Assignee: Nan Ya Plastics Corporation
    Inventor: Zo-Chun Jen
  • Publication number: 20020055608
    Abstract: The invention relates to a novel process for the manufacture of very low molecular weight polyphenylene ether resin, typically within the intrinsic viscosity range of about 0.08 dl/g to about 0.16 dl/g as measured in chloroform at 25° C. The method preferably comprises 2,6-dimethylphenol as a monovalent phenol species.
    Type: Application
    Filed: August 30, 2001
    Publication date: May 9, 2002
    Inventors: Adrianus J.F.M. Braat, Hugo Ingelbrecht, Ruud Trion
  • Patent number: 6383636
    Abstract: There is disclosed a (2,5-disubstituted-1,4-phenylene oxide) block copolymer which comprises one or more block structural units represented by formula (I) and at least one particular divalent structural unit in a molecule. There is also disclosed a (2,5-disubstituted-1,4-phenylene oxide) graft polymer which comprises one or more structural units of formula (IV), or three or more of structural unit of formula (IV) and particular divalent structural unit, in a molecule. (wherein R1 represents an unsubstituted or substituted hydrocarbon group, and the two R1s may be the same or different; a represents a number average degree of polymerization and is 5 or more; R4 represents a trifunctional unsubstituted or substituted hydrocarbon group; U represents —CO—, —OCO—, or —NHCO—; and f is 1 or 0.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: May 7, 2002
    Assignees: Director-General of National Institute of Advanced Industrial Science and Technology, Ministry of Economy, Trade and Industry, Japan Chemical Innovation Institute
    Inventors: Hideyuki Higashimura, Shuhei Namekawa, Shiro Kobayashi
  • Patent number: 6380346
    Abstract: The present invention is related to a method for making functionalized polyanilines.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: April 30, 2002
    Inventor: Chien-Chung Han
  • Patent number: 6376076
    Abstract: Provided are a aromatic liquid crystalline polyester resin having improved low temperature processability, a film having excellent gas barrier property. The aromatic liquid crystalline polyester resin is obtained from an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid and an aromatic diol, by optimizing formulation ratio of the above-described three components. The aromatic liquid crystalline polyester resin comprises an aromatic hydroxycarboxylic acid unit, an aromatic dicarboxylic acid unit and an aromatic diol unit, as repeating units, wherein the repeating unit (A) as an aromatic hydroxycarboxylic acid unit, is contained in an amount of 30 mol % or more based on the total amount of repeating units, and the polyester has a logarithmic viscosity of 1.5 dl/g or more, a flow temperature of 300° C. or less, and a melt tension measured at a temperature higher than the flow temperature by 25° C. or more of 1.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: April 23, 2002
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshitaka Ohbe, Kazunori Akiyoshi, Takanari Yamaguchi
  • Publication number: 20020042494
    Abstract: The invention relates to a novel process for the manufacture of functionalized polyphenylene ether resins through redistribution with a functionalized phenolic compound in the polyphenylene ether resin polymerization reaction solution without the addition of an added redistribution catalyst or promoter.
    Type: Application
    Filed: August 30, 2001
    Publication date: April 11, 2002
    Inventors: Adrianus J.F.M. Braat, Hugo G.E. Engelbrecht, Juraj Liska
  • Patent number: 6362315
    Abstract: A process of controlling the molecular weight and dispersity of poly(p-ethylphenol) and poly(m-cresol) synthesized enzymatically by varying the composition of the reaction medium. Polymers with low dispersities and molecular weights from 1000 to 3000 are synthesized in reversed micelles and biphasic systems. In comparison, reactions in bulk solvents resulted in a narrow range of molecular weights (281 to 675 with poly(p-ethylphenol) in a DMF/water system and 1,400 to 25,000 with poly(m-cresol) in an ethanol/water system). Poly(p-ethylphenol) was functionalized at hydroxyl positions with palmitoyl, cinnamoyl, and biotin groups.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: March 26, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, David L. Kaplan, Madhu Ayyagari
  • Patent number: 6362314
    Abstract: A process of controlling the molecular weight and dispersity of poly(p-ethylphenol) and poly(m-cresol) synthesized enzymatically by varying the composition of the reaction medium. Polymers with low dispersities and molecular weights from 1000 to 3000 are synthesized in reversed micelles and biphasic systems. In comparison, reactions in bulk solvents resulted in a narrow range of molecular weights (281 to 675 with poly(p-ethylphenol) in a DMF/water system and 1,400 to 25,000 with poly(m-cresol) in an ethanol/water system). Poly(p-ethylphenol) was functionalized at hydroxyl positions with palmitoyl, cinnamoyl, and biotin groups.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: March 26, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joseph A. Akkara, David L. Kaplan, Madhu Ayyagari
  • Publication number: 20020028907
    Abstract: An oxidation polymer of a substituted phenol, obtained by oxidative polymerization of at least one compound selected from the group consisting of a compound of formula (Ia) and a compound of formula (Ib), in which the oxidation polymer has a number-average polymerization degree of 3 or more: 1
    Type: Application
    Filed: July 17, 2001
    Publication date: March 7, 2002
    Inventors: Hideyuki Higashimura, Shiro Kobayashi
  • Patent number: 6333393
    Abstract: An aromatic polyester having the following structural units, (1), (2), (3), (4) and (5), wherein the amount of the structural unit (1) is 30 to 50% based on the total of the all structural units, (2)/(3) is more than 2.78 and smaller than 4, (4)/(5) is more than 1.0 and smaller than 1.5, and {(2)+(3)}/{(4)+(5)} is from 0.9 to 1.1: wherein Ra, Rb, Rc, Rd, Re and Rf each independently represents a lower alkyl group, lower alkoxy group, phenoxy group, phenyl group or halogen atom, and l, m, n, o, p and q each independently represents an integer from 0 to 3, is provided; and the aromatic polyester has excellent molding property and a molded article made from this polyester has excellent soldering temperature resistance and rigidity.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: December 25, 2001
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Hiroshi Harada
  • Patent number: 6307010
    Abstract: The invention relates to a novel process for the manufacture of functionalized polyphenylene ether resins through redistribution with a functionalized phenolic compound in the polyphenylene ether resin polymerization reaction solution without the addition of an added redistribution catalyst or promoter. The invention also relates to the functionalized polyphenylene ether resin made by the process as well as blends and articles containing the functionalized polyphenylene ether resin made by the process.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: October 23, 2001
    Assignee: General Electric Company
    Inventors: Adrianus J. F. M. Braat, Hugo G. E. Engelbrecht, Juraj Liska
  • Patent number: 6303748
    Abstract: The invention relates to a novel process for the manufacture of very low molecular weight polyphenylene ether resin, typically within the intrinsic viscosity range of about 0.08 dl/g to about 0.16 dl/g as measured in chloroform at 25° C. The method preferably comprises 2,6-dimethylphenol as a monovalent phenol species. The invention also relates to the polyphenylene ether resin made by the process as well as blends and articles containing the polyphenylene ether resin made by the process.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: October 16, 2001
    Assignee: General Electric Company
    Inventors: Adrianus J. F. M. Braat, Hugh Ingelbrecht, Ruud Trion
  • Patent number: 6300461
    Abstract: The invention relates to a novel process for the manufacture of very low molecular weight polyphenylene ether resin, typically within the intrinsic viscosity range of about 0.08 dl/g to about 0.16 dl/g as measured in chloroform at 25° C. The method preferably comprises 2,6-dimethylphenol as a monovalent phenol species. The invention also relates to the polyphenylene ether resin made by the process as well as blends and articles containing the polyphenylene ether resin made by the process.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: October 9, 2001
    Assignee: General Electric Company
    Inventors: Adrianus J. F. M. Braat, Hugh Ingelbrecht, Ruud Trion
  • Patent number: 6284863
    Abstract: A polymer having an O-substituted vinylphenol unit represented by the following formula (I) wherein R1, R2 and R3 represent an alkyl; or R1 and R2, R1 and R3 or R2 and R3 are bound together and respectively form an alkylene; or R2 is methylidyne wherein one bond in the methylidyne is bound to R1, the other bond is bound to R3, and R1 and R3 represent alkylene, and a resist composition comprising the polymer are provided.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: September 4, 2001
    Assignee: Sumitomo Chemical Company, Ltd.
    Inventors: Yoshiteru Ohta, Sang-tae Kim, Masumi Suetsugu
  • Publication number: 20010007013
    Abstract: The present invention provides a method for producing a formed article from a dope comprising a polyphosphoric acid solvent and a polymer soluble in polyphosphoric acid, which includes using a production apparatus containing an apparatus for stirring and uniformly dispersing or homogenizing a dope and a pump apparatus for delivering the uniformly dispersed or homogeneous dope, wherein at least one of the apparatus and the pump apparatus has a part that comes into contact with the dope. According to the present invention, maintenance frequency of production facility due to the corrosion and elution of metal in a recovered solvent can be reduced, which in turn decreases the production cost.
    Type: Application
    Filed: December 12, 2000
    Publication date: July 5, 2001
    Inventors: Yoshihiko Teramoto, Shoichi Uemura, Kiyoshi Hotta
  • Patent number: RE37370
    Abstract: A method of emulsion polymerization of aniline or substituted anilines for making substituted or unsubstituted homopolymers and co-polymers of aniline. The method includes formation of an emulsion of aniline monomers, polar solvent, non-polar or weakly polar solvent and functionalized protonic acid, which is selected for its ability to perform two functions: acting as a surfactant and acting as a protonating agent (dopant) in producing an electrically conducting polymer. Then, an oxidant is added to polymerize the ingredients of the emulsion. This method provides polyaniline particles of highly crystalline and oriented morphologies of controlled aspect ratios.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: September 18, 2001
    Assignee: Neste Oy
    Inventors: Yong Cao, Jan-Erik Österholm