Polymerizing In The Presence Of A Specified Material Patents (Class 528/336)
  • Patent number: 7053171
    Abstract: In the production method of the present invention, the polyamide is produced by the polycondensation of a diamine component and a dicarboxylic acid component comprising a straight-chain ?,?-aliphatic dicarboxylic acid and an aromatic dicarboxylic acid. The dicarboxylic acid component is first made into a suspension phase of the solid aromatic dicarboxylic acid in a molten straight-chain ?,?-aliphatic dicarboxylic acid. A part of the diamine component is added while the reaction system is in the suspension phase. Then, the reaction system is made into a homogeneous molten phase, to which the rest of the diamine component is added. Finally, the reaction system is kept at temperatures within a specific range to complete the polycondensation.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: May 30, 2006
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Ryoji Otaki, Tomomichi Kanda
  • Patent number: 7038007
    Abstract: A process for a single-stage melt polymerization for the production of a high molecular weight polybenzimidazole which comprises the steps of: providing a reaction vessel having a means for agitation and a means for vacuum; charging the reaction vessel with reactants selected from: (A) a tetraaminiobiphenyl (TAB), and (B) a diphenyl isophthalate (DPIP); reacting the reactants under constant agitation and under a vacuum with an inert gas sweep; maintaining a reactant temperature which does not exceed 290° C. under constant agitation allowing pressure in the vessel to increase, with an inert gas sweep until a phase change is achieved, when the temperature reaches 250° C. pressure is increased to a slight positive pressure; and increase the reactant temperature and pressure within said reaction vessel while maintaining constant agitation and inert gas sweep, while maintaining a slight positive pressure. Preferably the vessel used in the instant invention is a high intensity reaction vessel.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: May 2, 2006
    Assignee: PBI Performance Products, Inc.
    Inventors: Bobby G. Dawkins, J. Dean Baker, Rita H. Joiner
  • Patent number: 7038006
    Abstract: A polyamide obtained by polycondensation of a diamine component containing at least 50 mol % of 2-methyl-1, 5-pentanediamine and a dicarboxylic acid component containing at least 50 mol % of azelaic acid, comprising the following properties of (1) to (4), (1) when a stretched film is polarized in an electric field of 200 MV/m, a remanent polarization is at least 30 mC/m2, (2) the relative viscosity of a 1 g/dl solution of the polyamide in 96% concentrated sulfuric acid at 25 ° C. is 1.3 to 5.0, (3) the glass transition temperature is 80° C. or less and a calorific value at a cooling crystallization exotherm peak is 5 J/g or less, and (4) it is soluble in an amount of at least 5 mass % at 25 ° C. in at least one selected from methanol, ethanol and 2-propanol, and a resin composition containing the above polyamide and an electrically conductive material.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: May 2, 2006
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Shun Ogawa, Satoshi Yoshinaka, Takeo Hayashi
  • Patent number: 7026435
    Abstract: Polymer derivatives based upon polyalkyleneimine backbones having from about 20% to about 60% of their reactive amino functionalities substituted by C14-20 carboxylic acids, are disclosed. Fiber lubricants and/or sizing compositions comprising such polymer derivatives are also disclosed. The disclosed fiber lubricants exhibit excellent affinity for fiberglass fibers and have excellent hydrophobicity, while also providing excellent lubrication. Methods for preparing said derivatives are also disclosed. Also disclosed are methods for treating fibers using the polymer derivatives.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: April 11, 2006
    Assignee: Cognis Corporation
    Inventors: Douglas F. Fry, Frank Norman Tuller
  • Patent number: 7009030
    Abstract: A wax containing the reaction product of: (a) a C6–C12 linear dicarboxylic acid; and (b) a diamine of formula H2N(CH2)nNH2, wherein n is an integer from 2 to 6, and the molar ratio of the C6–C12 linear dicarboxylic acid to the diamine is from 0.97 to 1.06.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: March 7, 2006
    Assignee: Rohm and Haas Company
    Inventors: Gene Kelly Norris, Rajiv Manohar Banavali
  • Patent number: 7009029
    Abstract: Provided is a polyamide composition comprising 100 parts by weight of (A) a polyamide having dicarboxylic acid units containing 60 to 100 mol % of terephthalic acid units, and diamine units containing 60 to 100 mol % of 1,9-nonanediamine units and/or 2-methyl-1,8-octanediamine units, and 5 to 100 parts by weight of (B) a titanium oxide with an average particle size of 0.1 to 0.5 ?m. The polyamide composition shows excellent heat resistance enough to withstand the SMT process, and gives a molded article with excellent whiteness and surface-reflectance.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: March 7, 2006
    Assignee: Kuraray Co., Ltd.
    Inventors: Hideaki Oka, Hideharu Matsuoka, Toru Kuki
  • Patent number: 6995233
    Abstract: The invention relates to a continuous process for manufacturing polyamides. The polyamides are of the type obtained from diacids and diamines. The process comprises an operation of continuous mixing of a compound which is rich in amine end groups and a compound which is rich in acid end groups and a polycondensation operation using the mixture. The invention relates to the starting phase of such a process, during which an aqueous solution comprising a mixture of monomers in substantially stoichiometric proportions is used.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: February 7, 2006
    Assignee: Rhodianyl
    Inventors: Jean-Francois Thierry, Matthieu Helft
  • Patent number: 6958381
    Abstract: A process for preparing polyamides comprises polymerizing starting monomers in the presence of from 2.3 to 10 mmol, based on 1 mol of carboxamide group of the polyamide, of a chain regulator containing a nitrile group and a functional group capable of forming a carboxamide group.
    Type: Grant
    Filed: November 22, 2001
    Date of Patent: October 25, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Helmut Winterling, Michael Fischer
  • Patent number: 6956099
    Abstract: Copolymers having linked internal polyether blocks and internal polyamide blocks have advantageous physical properties and solvent-gelling abilities. The copolymer may be prepared from a reaction mixture that contains 1,4-cyclohexane dicarboxylic acid (CHDA) and poly(alkyleneoxy) diamine (PAODA). Optionally, the reaction mixture contains no monofunctional compound reactive with either amine or carboxylic acid groups, however some of this monofunctional compound may be present. Dimer diamine and/or dimer acid may be present in the reaction mixture. A copolymer may also be prepared from a reaction mixture containing dimer acid and at least two diamine compound(s) including PAODA and short-chain aliphatic diamine having 2-6 carbons (SDA), wherein: a) the reaction mixture comprises x grams of PAODA and y grams of SDA, and x/(x+y) is 0.8-0.98; b) the reaction mixture weighs z grams, and x/z is at least 0.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: October 18, 2005
    Assignee: Arizona Chemical Company
    Inventor: Mark S. Pavlin
  • Patent number: 6943231
    Abstract: Transparent polyamide molding materials are provided which are characterized in that they have a melting enthalpy between 0 and 12 J/g and the polyamides are constituted of 100 mole-% of a diamine mixture having 10-70 mole-% of PACM [bis-(4-amino-cyclohexyl)-methane] with less than 50 wt.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: September 13, 2005
    Assignee: EMS-Chemie AG
    Inventor: Friedrich Severin Bühler
  • Patent number: 6930165
    Abstract: The invention concerns polyamides modified by a multifunctional compound. Finished articles formed from said polyamides or from compositions based on said polyamides exhibit excellent mechanical properties, and a very good surface appearance. The modified polyamide is obtained by mixing in melted form a polyamide and a polyamide macromolecular compound comprising star-shaped or H-shaped macromolecular chains.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: August 16, 2005
    Assignee: Rhodia Engineering Plastics S.r.l.
    Inventors: Nicolangelo Peduto, Franco Speroni, Haichun Zhang
  • Patent number: 6916901
    Abstract: The present invention provides a method for the production of polyamide 6 by the hydrolytic polymerization of ?-caprolactam, in which, in the first step, caprolactam ring opening occurs under the action of water and, in the following steps, polycondensation is performed at low temperatures under anhydrous conditions.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: July 12, 2005
    Assignee: Bayer Aktiengesellschaft
    Inventors: Sven Gestermann, Ralph Ulrich
  • Patent number: 6906165
    Abstract: The invention concerns copolyamides obtained by using multifunctional monomers. It consists in using a multifunctional monomer comprising at least three reactive functions and at least another multifunctional monomer, in amounts such that the terminal group concentrations are balanced. The copolyamides are particularly high viscosity copolyamides. The invention also concerns compositions based on said copolyamides.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: June 14, 2005
    Assignee: Rhodia Engineering Palstics S.R.L.
    Inventors: Giuseppe Di Silvestro, Franco Speroni, Cuiming Yuan, Haichun Zhang
  • Patent number: 6894135
    Abstract: High molecular weight random polyhydroxypolyamides (PHPAs) are produced by creating prepolymers which are further polymerized. Random prepolymers are formed from a stoichiometrically molar balance (1:1) starting material. The starting material is a 1:1 stoichiometrically balanced esterified aldaric acid:alkylene or alkylene derived diammonium salt. Alternatively, the starting material is an esterified stoichiometrically balanced diacid:diamine salt and a N?-ammoniumalkyl (or alkyl derived)-D-aldaramic acid terminal carboxylate zwitterionic salt mixture. The starting materials are polymerized in a basic alcohol using a second amine. The polymerized material, or the random prepolymers, are isolated and then further polymerized in a solvent, typically a mixed solvent of an alcohol and non-alcohol, to obtain the high molecular weight PHPAs.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: May 17, 2005
    Assignee: The University of Montana
    Inventors: Donald E. Kiely, Kylie Kramer, Jinsong Zhang
  • Patent number: 6887400
    Abstract: A UV-protective composition comprising a water-soluble polyaminoamide containing 1,3-diimine groups, wherein the polyaminoamide containing 1,3-diimine groups absorbs ultraviolet light radiation having a wavelength of about 200 nm to about 420 nm, and methods of treating substrates with the UV-protective polyaminoamide containing 1,3-diimine groups.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: May 3, 2005
    Assignee: Nalco Company
    Inventors: Mingli Wei, Yin Z. Hessefort, Wayne M. Carlson
  • Patent number: 6884865
    Abstract: The invention concerns copolyamides obtained by using multifunctional monomers. It consists in using at least one multifunctional monomer comprising at least three reactive functions and at least another multifunctional monomer, in amounts such that the terminal group concentrations are balanced. The copolyamides are more particularly high viscosity copolyamides. The invention also concerns compositions based on said copolyamides.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: April 26, 2005
    Assignee: Rhodia Engineering Plastics S.R.L.
    Inventors: Giuseppe Di Silvestro, Franco Speroni, Cuiming Yuan, Haichun Zhang
  • Patent number: 6881477
    Abstract: A method is disclosed for producing a polyamide molding compound which includes the following method steps: addition and dissolving of m-xylylene diamine and dicarboxylic acids, which include adipic acid and aromatic dicarboxylic acids, with water and additives in a dissolving chamber and production of a mixture, the sum of the aromatic dicarboxylic acids added being 2 mol-percent to 15 mol-percent (in relation to the addition of dicarboxylic acids); transfer of the mixture into a reaction vessel and polycondensation of the mixture in this reaction vessel; granulation of the polycondensate; drying of the granulate. This method is distinguished in that the polycondensation is performed at a pressure of at most 10 bar and a temperature of 255° C. to 270° C., the pressure being built up while heating the reaction vessel to 255° C. to 270° C. and—immediately after the mixture has reached the maximum temperature—being reduced to atmospheric conditions while maintaining a temperature of 255° C. to 270° C.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: April 19, 2005
    Assignee: EMS-Chemie AG
    Inventors: Ulrich Presenz, Rosmarie Hartmann, Hans Rudolf Luck, Stephan Schmid
  • Patent number: 6872800
    Abstract: The invention relates to hyperbranched copolyamides (HBPAs), to their production and to their use as additives, in particular as melt viscosity modifiers in thermoplastic polymer compositions. This copolyamide is obtained by a reaction between a monomer (I): A—R—Bf with A and B=polymerization functions of a 1st and 2nd type, respectively, which are capable of reacting with each other, R=hydrocarbon-based species and f=total number of B per monomer (preferably 2?f?10); and a monomer (II) A?—R?—B? or the corresponding lactams, with A?, B? and R? having the same definition as that given above for A, B and R, respectively. This HBPA has a I/II molar ratio such that 0.125?I/II?2. One of the species R or R? of (I) or (II) is aliphatic, cycloaliphatic or arylaliphatic. For example: A=NH2 and B=COOH or A=COOH and B=NH2 with F=2. A?=NH2 and B?=COOH or A?=COOH and B?=NH2. A—R—B2, e.g.: 5-aminoisophthalic acid or 3,5-diaminobenzoic acid and A?—R?—B?=?-caprolactam.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: March 29, 2005
    Inventors: Franck Bouquerel, Jean-Francois Sassi
  • Patent number: 6864354
    Abstract: The invention relates to modified polyamides, and more particularly to polyamides containing units of the type obtained by reacting a diacid with a diamine, modified with a multifunctional compound. The finished articles shaped from these polyamides or from compositions based on these polyamides have excellent mechanical properties and also a very good surface aspect. The modified polyamide according to the invention is obtained by melt-blending polyamides of different natures, in the presence of a multifunctional compound.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: March 8, 2005
    Assignee: Rhodia Engineering Plastics S.r.l.
    Inventors: Nicolangelo Peduto, Franco Speroni, Haichun Zhang
  • Patent number: 6841651
    Abstract: The polyamide resin of the present invention is produced by polycondensation of a diamine component comprising 70 mol % or more of m-xylylenediamine and a dicarboxylic acid component comprising 70 mol % or more of a C4-C20 ?, ?-straight-chain aliphatic dicarboxylic acid in the presence of at least one phosphorus compound selected from the group consisting of phosphinic acid compounds and phosphonous acid compounds and in the presence of an alkali metal compound of a weak acid. The weak acid has a dissociation constant lower than a first dissociation constant of a dicarboxylic acid mainly constituting the polyamide resin. The polyamide resin satisfies the following requirements (A), (B) and (C): 14000?a?40000??(A) b?1.000??(B) 0.9930?b?1.1a2×10?11+3.2a×10?7?0.9980??(C) wherein a and b are as defined in the disclosure.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: January 11, 2005
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazunobu Maruo, Tomomichi Kanda, Koji Yamamoto
  • Publication number: 20040266979
    Abstract: In the process of the present invention, a solvent-soluble polyimide is produced by polycondensing at least one tetracarboxylic acid component with at least one diamine component in a solvent in the presence of a tertiary amine.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 30, 2004
    Applicant: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hiroki Oguro, Shuta Kihara, Tsuyoshi Bito
  • Patent number: 6835800
    Abstract: A method for preparing a nylon 6 copolymer containing dimeric acid comonomers. The method includes reacting 80.0˜99.9 mol % of caprolactam, 0.1˜3.0 mol % of dimeric acid and 0.1˜3.0 mol % of 2-methyl-1,5-pentadiamine in a polymerization reaction. Moreover, the invention provides a method for preparing a nylon 66 copolymer containing dimeric acid comonomers, which comprising reacting 60.0˜90 mol % of hexadiacid and hexadiamine, 0.1˜3.0 mol % of dimeric acid and 0.1-3.0 mol % of 2-methyl-1,5-pentadiamine in a polymerization reaction. The reaction temperature for both of the methods are at 200˜280° C.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: December 28, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Tun-Fun Way, Cheng Yeh, Hsiang-In Tang, Lien-Tai Chen
  • Patent number: 6828413
    Abstract: The invention relates to a process for the preparation of a polyamide comprising at least a step in which a composition that comprises at least (a) a primary aminocarbonamide and (b) an aminocarboxylic acid and/or a lactam is polymerised, said composition comprising at least (a) 10-90 wt. % primary aminocarbonamide; (b) 10-90 wt. % aminocarboxylic acid and/or lactam; (c) 0-4 wt. % water; the amounts being relative to the sum of the compounds (a+b+c). Preferably the sum of the compounds (a+b+c) is at least 75 wt. % of the total composition, more preferably 85 wt. %, most preferably 90 wt. %. The polyamide obtained with the process has a &eegr;rel of more than 2.2. The process is eminently suitable for the preparation of polyamide-6 (polycapronamide) from a composition comprising 6-aminocapronamide, 6-aminocaproic acid and/or &egr;-caprolactam. This composition is preferably obtained via the reductive amination of a 5-formylyalerate ester, preferably 5-formylmethylvalerate in water.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: December 7, 2004
    Assignee: OSM IP Asseta, B.V.
    Inventors: Cornelis E. Koning, Rudy Rulkens, Nicolaas F. Haasen, Albert A. Van Geenen
  • Patent number: 6812324
    Abstract: A method for preparing nylon 6 copolymer containing 5-sulfoisophthalate salts comonomer. The method includes the steps of reacting 5-sulfoisophthalate salts ester with aliphatic diamine in a molar ratio of 2˜20 at 160˜200° C., followed by completely removing the unreacted aliphatic diamine, to obtain the intermediate compound with terminal amine, 5-sulfobenzenediamide compound (formula III). Next, caprolactam and aliphatic diacid (formula IV) are reacted at 200˜260° C. to form an oligomer with a low molecular weight. 5-Sulfobenzenediamide (formula III) and catalyst are then added into the oligomer obtained in previous step to cause a polymerization reaction at 200˜280° C. to obtain nylon 6 copolymer containing 5-sulfoisophthalate salt comonomer. The molar ratio of E/C is 0.005˜0.150 and the molar ratio of D/E is 1.05-1.00. Compounds present in the water extract are greatly reduced.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 2, 2004
    Assignee: Industrial Technology Research Institute
    Inventors: Tun-Fun Way, Cheng Yeh, Lien-Tai Chen, Chia-Hung Chen
  • Patent number: 6812322
    Abstract: A process for the preparation of novel polyamides, the use of such polyamides for the production of fibers, sheets and moldings, and fibers, sheets and moldings obtainable from such polyamides, are provided.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: November 2, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Paul-Michael Bever, Ulrike Breiner, Bernd-Steffen von Bernstorff, Gerhard Conzelmann
  • Patent number: 6812323
    Abstract: A process for preparing polyamides comprises polymerizing starting monomers or starting oligomers in the presence of at least one compound of the formula (I) where R is a functional group R8 which bears 1-4 identical or different amide-forming groups R7, R1 is H, C1-C20-alkyl, cycloalkyl, benzyl or OR6, where R6 is H, C1-C20-alkyl, cycloalkyl or benzyl, R2, R3, R4 and R5 are independently C1-C10-alkyl, n is a natural number greater than 1, and the piperidine derivatives attached to R are identical or different with regard to the substituents, meaning R1, R2, R3, R4 and R5. The polyamides are useful for preparing filaments, fibers, films, sheetlike structures and moldings.
    Type: Grant
    Filed: September 14, 2000
    Date of Patent: November 2, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrike Breiner, Manfred Julius, Rainer Neuberg, Robert Weiss, Axel Wilms, Harry Y. Hu
  • Patent number: 6780963
    Abstract: The polyamide resin composition of the invention is characterized by having a solder reflow heat-resistant temperature of not lower than 250° C. Since the polyamdie resin composition has low water absorption and is excellent in moldability, heat resistance, shape stability and mechanical strength, it can be suitably used for, for example, automobile parts and electric or electronic parts.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: August 24, 2004
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Masahiro Sawada, Kunihiro Ohuchi
  • Patent number: 6774205
    Abstract: A process for the preparation of novel polyamides, the use of such polyamides for the production of fibers, sheets and moldings, and fibers, sheets and moldings obtainable from such polyamides, are provided.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: August 10, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Paul-Michael Bever, Ulrike Breiner, Bernd-Steffen von Bernstorff, Gerhard Conzelmann
  • Patent number: 6774208
    Abstract: A two step method for solid state polymerization of dry crystalline thermoplastic polymers to form polymers with superior mechanical properties, first by mechanically fluidizing dry crystalline thermoplastic polymer particles in the absence of oxygen by means of blades moving through the fluidized polymer particles at velocities sufficient to heat the particles to an incipient melt temperature and maintain the temperature until solid state polymerization provides the desired molecular weight and before chemical degradation of the polymer occurs; and second by immediately quenching by application of liquefied cryogenic gases directly to the surfaces of the polymer particles in amounts sufficient to cool the particles to temperatures lower than the glass transition temperature of the polymer before crystals in the polymer aggregate into large spherulites.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: August 10, 2004
    Assignee: Agri-Nutrients Technology Group, Inc.
    Inventor: William P. Moore
  • Patent number: 6759505
    Abstract: There is provided a process for the continuous polymerization of polyamides which is carried out under conditions of pressure, temperature and polymer concentration in water that will ultimately yield multiple phases (including a second liquid polymer phase or a polymer precipitate). However, a single phase operation is achieved under these conditions by appropriate management of residence time and using a well-mixed reaction environment in early stages of the polymerization.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: July 6, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Jocelyn Willis-Papi, Turget Mutel
  • Patent number: 6750318
    Abstract: The polyamide resin of the present invention is produced by the polycondensation of a dicarboxylic acid component and a diamine component containing xylylenediamine and bisaminomethylcyclohexane in a total amount of 70 mol % or higher. The polyamide resin contains impurities having a boiling point of from 150 to 300° C. at ordinary pressure and a solubility parameter of from 8 to 16 in a total amount of 0.3% by weight or lower based on the weight of the polyamide resin. The polyamide resin is free from various inconveniences due to inclusion of the impurities, and suitably used in applications for molding materials, bottles, sheets, films and fibers.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: June 15, 2004
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazumi Tanaka, Takatoshi Shida, Hideyuki Kurose
  • Patent number: 6750317
    Abstract: Polyhydroxyamides are polymerized to form highly-crosslinked, temperature-stable polymers. The polyhydroxyamides include as their central, parent structure a benzenetricarboxylic acid to which side chains containing a terminal reactive group are attached by an amide bond. By way of this reactive group, highly crosslinked polymers can be formed. In addition, the polyhydroxyamide can be added as an additive to polymers in order to bring about three-dimensional crosslinking.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: June 15, 2004
    Assignee: Infineon Technologies AG
    Inventors: Marcus Halik, Holger Hösch, Sezi Recai, Andreas Walter
  • Patent number: 6747120
    Abstract: The invention relates to a semi-aromatic polyamide containing at least tetramethylene terephthalamide units and also hexamethylene terephthalamide units. The copolyamide has a melting point higher than approximately 290° C., a high crystallinity and a good stability. Preferably the copolyamide according to the invention contains approximately 30-75 mol % hexamethylene terephthalamide units and also approximately 0.01-20 mol % other units. The invention also relates to a process for the preparation of a semi-aromatic copolyamide containing at least tetramethylene terephthalamide units and hexamethylene terephthalamide units, characterized in that, successively, a first polymerization is effected in the melt phase, followed by an post-polymerization of the low molar mass polymer thus obtained in the solid phase; and to compositions and products that contain said copolyamide.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: June 8, 2004
    Assignee: DSM IP Assets B.V.
    Inventors: Rudy Rulkens, Robert C. B. Crombach
  • Patent number: 6703475
    Abstract: A process for continuous production of copolyamides based on a lactam (I), a diamine (II) and a dicarboxylic acid (III) comprises reacting a mixture (IV) comprising a diamine (II), a dicarboxylic acid (III) and water in a first reaction zone at a pressure in the range from 1.3*105 to 2.5*105 Pa in the entry zone of the reaction zone and at a temperature above the melting point of polymer (V) to a conversion, based on the molar amounts of diamine (II) and dicarboxylic acid (III), of at least 80% to form a polymer (V), reacting a mixture (VI) comprising lactam (I) and water in a second reaction zone at a pressure in the range from 5*105 to 40*105 Pa and at a temperature above the melting point of polymer (VII) to a conversion, based on the molar amount of lactam (I), of at least 80% to form a polymer (VII), then reacting polymer (V) and polymer (VII) with each other in a third reaction zone at a pressure in the range from 1*105 to 1.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: March 9, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Jürgen Deininger, Walter Götz, Alfons Ludwig, Gunter Pipper
  • Patent number: 6699960
    Abstract: A polyamide is prepared by reacting at least one dinitrile and at least one diamine with water at a temperature from 90 to 400° C. and a pressure from 0.1 to 50*106 Pa in a molar ratio of at least 1:1 for water to the sum total of dinitrile and diamine in the presence of a heterogeneous catalyst selected from the group consisting of aluminum oxide, tin oxide, silicon oxide, oxides of the second to sixth transition group of the periodic table, oxides of the lanthanides and actinides, sheet-silicates and zeolites.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: March 2, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Frank Ohlbach, Hermann Luyken
  • Patent number: 6693163
    Abstract: In the method for solid-phase drying or solid-phase polymerizing a polyamide of the present invention, the polyamide that is stored for 20 days or longer after the production thereof until subjected to the solid-phase drying or the solid-phase polymerization under the specific conditions is used as the starting material. By storing the polyamide under the specific conditions of the present invention, the resultant solid-phase dried or solid-phase polymerized polyamide with a low yellowness is obtained even if 20 days or more time has lapsed after the starting polyamide is produced until it is subjected to the solid-phase drying or solid-phase polymerization.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 17, 2004
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazumi Tanaka, Hideyuki Kurose
  • Patent number: 6680364
    Abstract: The invention describes polyamides having both strongly hydrophilic groups and unsaturated groups, the polyamides consequently being water-dispersible and curable. The hydrophilic groups are distributed along the chain, whereas the unsaturated groups are located at the ends. The polyamides of the invention are useful in many applications, especially in the preparation of intimate blends of polyamides with vinyl, acrylic and/or styrene polymers.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: January 20, 2004
    Assignee: Atofina
    Inventor: Reinhard Linemann
  • Patent number: 6657037
    Abstract: In the process for producing polyamide of the present invention, a diamine and a dicarboxylic acid are melt-polycondensed in a batch-wise fist polymerizer in the absence of a solvent to produce a middle-stage polyamide. The diamine has a boiling point higher than a melting point of the middle-stage polyamide being produced under inner pressures of the first polymerizer. The middle-stage polyamide is fed into a continuous second polymerizer while controlling the change of relative viscosity within ±0.2, and further polycondensed there to produce the objective polyamide. With such a process, the change of polymerization degree of the middle-stage polyamide during the switching of the polymerization step from a batch-wise manner to a continuous manner is avoided, thereby preventing the variation in quality of the final product.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: December 2, 2003
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazumi Tanaka, Takatoshi Shida, Hideyuki Kurose
  • Patent number: 6610816
    Abstract: In the production of polyamide by the melt-polymerization of the present invention, the polymerization conditions are rapidly and accurately controlled by a near-infrared spectroscopy to enable the efficient production of a desired polyamide with a good stability in its quality.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: August 26, 2003
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hideyuki Kurose, Kazumi Tanaka
  • Patent number: 6605694
    Abstract: The present invention relates to industrial high relative viscosity (RV) filaments, such as, for use in papermaking machine felts and other staple fiber applications. The invention is further directed to apparatus and processes for solid phase polymerization (SPP) of polyamide flake suitable for use, such as, in remelting and then spinning the industrial high RV filaments. The invention is also directed to processes for melt phase polymerization (MPP) of molten polymer for making the filaments.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: August 12, 2003
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Glenn Alan Schwinn, Gary Raymond West
  • Patent number: 6593448
    Abstract: (Co)polyamides, for example the polyamides 6 and 66, are prepared via the improvedly catalyzed polycondensation of (co)polyamide-forming (co)monomers, even in the presence of normally catalyst-inhibiting matting agents (e.g., microparticulate TiO2), the catalyst therefor comprising solid nanometric TiO2 particulates having diameters of less than 100 nm.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: July 15, 2003
    Assignee: Rhodianly
    Inventors: Dominique Kayser, Jean-François Thierry, Joël Varlet
  • Patent number: 6590064
    Abstract: Described is the use of metal oxides as heterogeneous catalysts in a process for producing polyamides by polymerization of lactams and optionally further polyamide-forming monomers wherein the metal oxides are used in a form which permits mechanical removal from the reaction mixture and are removed from the reaction mixture during or after the polymerization, to reduce the extractables content of the polyamide obtained.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: July 8, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Ralf Mohrschladt, Volker Hildebrandt
  • Patent number: 6586555
    Abstract: This invention provides processes of the preparation of polyamides, polyimides, and polyamideimides, which are easy to purify after reactions, from polycarboxylic acids and polyamines in high yield without side reactions such as a change of color to black by direct polycondensation reaction with heat, especially processes of preparing aromatic polyamides (aramids), aromatic polyimides, and aromatic polyamideimides, which are difficult to synthesize in direct polycondensation reaction. Polyamides, polymides, and polyamideimides are prepared in high yield by the polycondensation of aromatic dicarboxylic acids, aromatic tetracarboxylic acids or aromatic tricarboxylic acids and aromatic diamines, using arylboric acids such as 3,4,5-trifluorophenylboric acids as polycondensation catalysts, in a mixed solvent of pentamethylbenzene and N-methylpyrrolidinone or a mixed solvent of m-terphenyl and N-butylpyrrolidinone.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: July 1, 2003
    Assignee: Japan Science and Technology Corporation
    Inventors: Kazuaki Ishihara, Hisashi Yamamoto
  • Patent number: 6569988
    Abstract: In a process for producing polyamides, a mixture comprising hexamethylenediamine and aminocapronitrile and obtained from the hydrogenation of adiponitrile is reacted with water and a dicarboxylic acid.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: May 27, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Ralf Mohrschladt, Volker Hildebrandt, Dieter Krauss, Martin Leemann
  • Patent number: 6566486
    Abstract: A process for the production of polyamides is disclosed. In a first reaction step, suitable monomers such as caprolactam or an aliphatic aminocarboxylic acid are reacted with polyfunctional amines, which contain at least one secondary amino group, and/or with salts containing such amines and dicarboxylic acids. The reaction product is in a further process step undergoes solid phase post-condensation.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: May 20, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Detlev Joachimi, Hans-Jürgen Dietrich, Heinrich Morhenn, Cliff Scherer, Andreas Gittinger, Friedrich-Karl Bruder
  • Patent number: 6562940
    Abstract: The invention relates to a granule and granulate and to a process for the preparation of polyamide granules at least comprising a) polymerizing at least one dicarboxylic acid and at least one diamine until a low-molecular prepolymer powder is obtained; b) processing the prepolymer powder obtained in step (a) to form granules, with the prepolymer powder being extruded at a temperature, measured under the chosen extrusion conditions, below the melting point of the prepolymer. The process of the invention allows the production of granules that have a higher granule strength than that according to the state of the art. The process of the invention also produces fewer fines. It is preferred for polyamide-4,6 to be chosen as polyamide. The granules and the granulate obtained by the process of the invention are particularly suited for post-condensation.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: May 13, 2003
    Assignee: DSM N.V.
    Inventors: Frank T. Kühn, Rudy Rulkens
  • Patent number: 6541601
    Abstract: Polyamide polymers with side chains from a polyamide backbone, preferably containing carbon to carbon unsaturation which provides unique conductive and color change properties, are described. In particular, unsaturation is in the form of side chains from the polyamide backbone, with aligned diacetylene groups in each side chain which are aligned and in the same plane.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: April 1, 2003
    Assignee: Board of Trustees of Michigan State University
    Inventors: Rawle I. Hollingsworth, Guijun Wang
  • Patent number: 6541599
    Abstract: A process for the manufacture of soluble hyperbranched polyamides is disclosed comprising the steps of combining multifunctional monomer reactants comprising amine and carboxylic acid functional groups in a reactor with water, and reacting amine and carboxylic acid functional groups of the multi-functional monomers at elevated temperature and pressure for a period of time sufficient to form a highly branched polyamide. The present invention advantageously provides a simple, practical, and environmentally friendly process for the manufacture of soluble hyperbranched polyamides comprising multifunctional in-chain and/or end groups. The present invention also provides a process for the manufacture of soluble hyperbranched polyamides from monomers with a broad range of the ratio of functional amine groups to acid groups.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: April 1, 2003
    Assignee: Eastman Kodak Company
    Inventor: Jin-Shan Wang
  • Patent number: 6541600
    Abstract: Highly branched polyamides prepared in a single step procedure of condensation polymerization of multifunctional monomer reactants comprising amine and carboxylic acid functional groups. Polymerization proceeds by reaction of an amine group of a first monomer unit with an acid group of a second monomer unit to form a reaction product having an amide linkage between the first and second monomer units and repetition of such amidation reaction between additional amine groups and acid groups of the multi-functional monomers and reaction products of the multi-functional monomers. In the present invention, in order to obtain a water soluble or dispersible hyperbranched polyamide, at least one of the multifunctional monomer unit reactants contains an amine, phosphine, arsenine or sulfide group, such that the highly branched polyamide contains in the backbone thereof an N, P, As or S atom capable of forming an onium ion.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: April 1, 2003
    Assignee: Eastman Kodak Company
    Inventors: Jin-Shan Wang, Huijuan D. Chen
  • Patent number: 6525166
    Abstract: The invention concerns a polyamide comprising macromolecular chains having a star-shaped configuration, a method for making said polyamide and compositions comprising same. More particularly, the invention concerns a method for making a polyamide comprising linear macromolecular chains and star-shaped macromolecular chains with control of the star-shaped chain concentration in the polymer. Said control is obtained by using besides the polyfunctional polymers and amino acids or lactams a polyfunctional comonomer comprising either acid functions or amine functions. The resulting polyamide has optimal mechanical and rheological properties for improving the speed and quality of mould filling and producing mouldable compositions comprising high filler factors.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: February 25, 2003
    Assignee: Nyltech Italia S.r.l.
    Inventors: Giuseppe Di Silvestro, Franco Speroni, Cuiming Yuan, Haichun Zhang