With Heating Or Cooling Means Or Having Insulation Patents (Class 55/315.1)
  • Patent number: 11322372
    Abstract: A fluid supply device includes a condenser, a tank that stores the fluid, a pump that pressure-feeds the fluid toward a processing chamber, a main pipe connecting the tank and the pump and transferring the liquid stored in the tank to the pump using a weight of the liquid, and a discharging pipe that is connected to the main pipe at a lowest position of the main pipe at one end, is opened to the atmosphere at the other end, and vaporizes and discharges the liquid in the tank and the main pipe to the outside. The discharging pipe is formed so that, after the liquid in the tank and the main pipe is fully discharged, a liquid pool that separates a space on the atmosphere side and a space on the main pipe side of the discharging pipe is temporarily produced in the discharging pipe.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: May 3, 2022
    Assignee: FUJIKIN INCORPORATED
    Inventors: Toshihide Yoshida, Yukio Minami, Tsutomu Shinohara
  • Patent number: 10571157
    Abstract: Example field instrument temperature apparatus and methods for affecting or regulating a temperature of a field instrument are disclosed. An example apparatus includes a vortex tube having an inlet to receive a fluid, a first outlet to dispense a first portion of the fluid at a first temperature and a second outlet to dispense a second portion of the fluid at a second temperature, the second temperature being greater than the first temperature. The example apparatus also includes a first passageway fluidly coupled to the first outlet to direct the first portion of the fluid to an electronic device in a process control system to affect a temperature of the device.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 25, 2020
    Assignee: Fisher Centrols International LLC
    Inventor: Mark Byer
  • Patent number: 9810117
    Abstract: A muffler cutter is fitted to a tailpipe of a vehicular exhaust system, the muffler cutter includes an exhaust pipe, a plurality of through-holes formed in a side wall of the exhaust pipe, a tubular heat shield plate provided around the exhaust pipe coaxially with the exhaust pipe, and a sound-absorbing heat insulator provided between the exhaust pipe and the tubular heat shield plate. The sound-absorbing heat insulator is partially provided between the exhaust pipe and the tubular heat shield plate so as to have a curved shape. A closed space having a curved shape is formed between the exhaust pipe and the tubular heat shield plate in an area in which the sound-absorbing heat insulator is not provided. The distance between the exhaust pipe and the tubular heat shield plate in an area in which the closed space is formed is 1 to 50 mm.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: November 7, 2017
    Assignee: NICHIAS CORPORATION
    Inventors: Akinao Hiraoka, Isami Abe, Yoshifumi Fujita
  • Patent number: 9089806
    Abstract: An exhaust gas collection system for capturing exhaust gas emitted by auxiliary engines, auxiliary boilers and other sources on an Ocean Going Vessel (OGV) while at berth or anchor, so that these gases may be carried to an emissions treatment system for removal of air pollutants and greenhouse gases. The exhaust gas collection system includes a diverter to redirect exhaust gas normally carried to the OGV's stack for release to the atmosphere, to an emissions treatment system. The emissions treatment system may be land-based, water-based, or on the OGV. When the emissions treatment system is land-based or water-based, the exhaust gas is carried to a connection location that accessible by a ducting system to carry the exhaust gas to the emissions treatment system. The exhaust gas collection system preferably includes parallel-flow ducts and a manifold to combine the parallel-flows into a single duct for more convenient routing through the vessel.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: July 28, 2015
    Assignee: ADVANCED CLEANUP TECHNOLOGIES, INC.
    Inventors: John Powell, Robert Sharp
  • Publication number: 20150033944
    Abstract: A method for waste gas purification in dust separation plants making use of a device (16) for generating a negative pressure, in particular by means of steam jet ejector pumps or mechanical vacuum pumps, wherein the waste gas coming from a vacuum chamber (15) is conducted into a cyclone separator (12), and that the method steps of coarse separation of particles from the waste gas and fine dust separation of particles from the waste gas and gas cooling in the cyclone separator (12) are carried out in succession in such a way that the waste gas, after coarse purification has taken place, is conducted directly via a fine dust filter (13) installed in the cyclone separator (12) and subsequently through a gas cooler (14), which follows the fine dust filter (13), into a suction line (2) connected to the device (16) for generating a negative pressure and to the device (16).
    Type: Application
    Filed: January 23, 2013
    Publication date: February 5, 2015
    Inventors: Michael Luven, Johannes Obitz, Arno Luven
  • Patent number: 8870990
    Abstract: A fracking trailer includes a particulate storage enclosure to receive a mixture of particulate and air in an interior of the particulate storage enclosure having a front end and a rear end. The fracking trailer also includes a filtration system connected to the particulate storage enclosure at the front end to filter particulate from the air in the mixture and exhaust filtered air.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 28, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Alexander Lynn Marks, Kary Layne Covington, Johnny Ray Sanders, Jr.
  • Patent number: 8845796
    Abstract: A fluid separation device (400) for separating water from a stream of compressed air, has a housing (402) defining a first volume (404) with two apertures (406, 408) therein in communication with the first volume, the first volume and the apertures being adapted to have a stream of air flowing there through, a first filter (414) contained within the first volume for separating liquid water from the air stream, and a plurality of desiccant beads contained within the first volume for separating water vapor from the air. An exhaust silencer for the fluid separation device is also disclosed.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: September 30, 2014
    Assignee: Nano-Porous Solutions Limited
    Inventors: Colin Billiet, Brian Austin
  • Patent number: 8764869
    Abstract: The present invention relates to a separator and more specifically, but not exclusively, to a centrifugal separator for the cleaning of a gaseous fluid. A centrifugal separator is provided as comprising a housing defining an inner space, and a rotor assembly for imparting a rotary motion onto a mixture of substances to be separated. The rotor assembly is located in said inner space and is rotatable about an axis relative to the housing. The rotor assembly comprises an inlet for receiving said mixture of substances, an outlet from which said substances are ejected from the rotor assembly during use, and a flow path for providing fluid communication between the inlet and outlet, wherein the outlet is positioned more radially outward from said axis than the inlet.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: July 1, 2014
    Assignee: Alfa Laval Corporate AB
    Inventor: Thomas Eliasson
  • Patent number: 8679234
    Abstract: An object of the present invention is to provide a heavy metal removing apparatus which can efficiently remove the heavy metal contained in the dust produced by burning of the raw material containing the heavy metal, and a cement production system comprising the heavy metal removing apparatus. The heavy metal removing apparatus 10 comprises a cyclone separator 11 which separates exhaust gas containing the heavy metal from a part of the dust heated to a temperature equal to or more than a temperature at which the heavy metal can volatilize, a bag filter 13 which is connected to the subsequent stage of the cyclone separator 11 and separates the exhaust gas containing the heavy metal from the remainder of the dust, and a heavy metal removal tower 14 which is connected to the subsequent stage of the bag filter and removes the heavy metal from the exhaust gas.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: March 25, 2014
    Assignee: Taiheiyo Cement Corporation
    Inventors: Kazuhiko Soma, Takahiro Kawano, Tokuhiko Shirasaka, Hidenori Isoda, Osamu Yamaguchi
  • Patent number: 8657926
    Abstract: A device for condensing water includes a container with a plurality of openings and a heat transfer zone arranged in an interior of the container. The heat transfer zone includes a bulk material layer and/or a fiber layer and/or a textile layer and/or a grid layer and/or a lattice layer and/or a perforated plate. The interior of the container is subdivided by the heat transfer zone into a first zone and a second zone. Further, the heat transfer zone has at least in sections an open porosity and/or channels through which process gas can flow from the first zone to the second zone and through which a further process gas in the form of cooling gas can flow in a reverse direction. A permeable region of the heat transfer zone partially includes materials which have a thermal conductivity of more than 20 W(mK)?1 in a temperature range up to 300° C.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: February 25, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jürgen Mielke, Klaus Strätz
  • Patent number: 8657929
    Abstract: Presented is a method and apparatus for treating an exhaust gas. A series of filters and conditioning units are used to separate and extract various substances from the exhaust gas, typically originating from an industrial process. In an exemplary embodiment, a cyclone filter, a ceramic filter, a baghouse filter, and a pair of gas conditioners are used to initially separate and extract iron-rich dust from an exhaust gas and then extract zinc from the gas.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: February 25, 2014
    Assignee: Arcelormittal Investigacion y Desarrollo
    Inventor: Naiyang Ma
  • Publication number: 20130145734
    Abstract: The drain valve apparatus and an air separator are provided. The air separator includes a main body having an upper cover and a cooling shaft extended the upper cover, an oil filter coupled to the cooling shaft, an outer body coupled to the upper cover and surrounding the main body and the oil filter, a drain body disposed at the outer body and having an interior passage, a drain valve passage, an air inflow passage and an exterior passage, and a drain valve. The drain valve apparatus includes a piston that has a first body, a second body, a connecting member, and a blocking body, and an elastic member that is connected to the first body and moves along a length direction of the drain valve passage.
    Type: Application
    Filed: July 19, 2012
    Publication date: June 13, 2013
    Applicants: Taechullndustrial Co., Ltd., Hyundai Motor Company
    Inventors: Jae Seol CHO, Yeonsik LIM
  • Patent number: 8377175
    Abstract: Presented is a method and apparatus for treating an exhaust gas. A series of filters and conditioning units are used to separate and extract various substances from the exhaust gas, typically originating from an industrial process. In an exemplary embodiment, a cyclone filter, a ceramic filter, a baghouse filter, and a pair of gas conditioners are used to initially separate and extract iron-rich dust from an exhaust gas and then extract zinc from the gas.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: February 19, 2013
    Assignee: ArcelorMittal Investigacion y Desarrollo, S.L.
    Inventor: Naiyang Ma
  • Patent number: 8308836
    Abstract: A system for depressurizing and cooling a high pressure, high temperature dense phase solids stream having coarse solid particles with entrained gas therein. In one aspect, the system has an apparatus for at least partially depressurizing and cooling the high pressure, high temperature dense phase solids stream having gas entrained therein and a pressure letdown device for further depressurization and separating cooled coarse solid particles from a portion of the entrained gas, resulting in a lower temperature, lower pressure outlet of solid particles for downstream processing or discharge to a storage silo for future use and/or disposal. There are no moving parts in the flow path of the solids stream in the system.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: November 13, 2012
    Assignee: Southern Company
    Inventors: Guohai Liu, Wan Wang Peng, Pannalal Vimalchand
  • Publication number: 20120192718
    Abstract: Embodiments of recirculating filtration and exhaust systems for material processing systems are disclosed herein. A material processing system configured in accordance with one embodiment includes an enclosure for processing a workpiece, the enclosure having an enclosure inlet and an enclosure outlet. The system also includes a first flow path fluidly coupled to the enclosure inlet and the enclosure outlet, and a first filtration assembly in the first flow path. The first filtration assembly draws airflow from the enclosure and returns the airflow to the enclosure. The system further includes a second flow path in fluid communication with the first flow path upstream from the enclosure inlet, and a second filtration assembly in the second flow path. The second filtration assembly draws airflow from the first flow path and returns airflow to the first flow path.
    Type: Application
    Filed: February 1, 2011
    Publication date: August 2, 2012
    Applicant: Universal Laser Systems, Inc.
    Inventors: Yefim P. Sukhman, Christian J. Risser, Nathan H. Schuknecht, James W. Rabideau, Joseph T. Hillman
  • Publication number: 20120186328
    Abstract: A liquid separator includes: a housing including: a first part including a first chamber; a second part including a second chamber; an inflow port into which a respiratory gas flows; a process chamber configured to perform a trapping process to trap liquid from the respiratory gas; and an outflow port from which the processed respiratory gas is discharged; a filter which is disposed in the process chamber interposed between the inflow port and the outflow port, and which partitions the process chamber into the first chamber on a side of the inflow port and the second chamber on a side of the outflow port; and a heating unit configured to heat at least one of the second part, the filter, and a vicinity of the filter.
    Type: Application
    Filed: January 21, 2012
    Publication date: July 26, 2012
    Applicant: NIHON KOHDEN CORPORATION
    Inventors: Tetsuya MAKINO, Shinji YAMAMORI, Yukio NONAKA
  • Publication number: 20120090463
    Abstract: A process and an apparatus for the treatment of a carbon dioxide-containing flue gas stream are described, at least part of the carbon dioxide present being removed from the flue gas stream in a separating device having in particular an absorption column 7 with the formation of a gas stream having a low carbon dioxide content and a carbon dioxide-rich gas stream. For overcoming the pressure drop caused by the carbon dioxide removal in the absorption column 7, it is proposed that the gas stream having a low carbon dioxide content and formed after the removal of the carbon dioxide from the flue gas stream is subjected to a gas stream compression, for example by means of a flue gas blower 14.
    Type: Application
    Filed: April 8, 2010
    Publication date: April 19, 2012
    Applicant: Linde-Kca-Dresden GmbH
    Inventors: Torsten Stoffregen, Veselin Stamatov, Thomas Walter
  • Publication number: 20110297478
    Abstract: A fluid separation device (400) for separating water from a stream of compressed air, has a housing (402) defining a first volume (404) with two apertures (406, 408) therein in communication with the first volume, the first volume and the apertures being adapted to have a stream of air flowing there through, a first filter (414) contained within the first volume for separating liquid water from the air stream, and a plurality of desiccant beads contained within the first volume for separating water vapour from the air. An exhaust silencer for the fluid separation device is also disclosed.
    Type: Application
    Filed: February 22, 2010
    Publication date: December 8, 2011
    Applicant: NANO-POROUS SYSTEMS LIMITED
    Inventors: Colin Billiet, Brian Austin
  • Patent number: 8070863
    Abstract: The present invention provides a gas conditioning system for processing an input gas from a low temperature gasification system to an output gas of desired characteristics. The system comprises a two-stage process, the first stage separating heavy metals and particulate matter in a dry phase, and the second stage including further processing steps of removing acid gases, and/or other contaminants. Optional processes include adjusting the humidity and temperature of the input gas as it passes through the gas conditioning system. The presence and sequence of processing steps is determined by the composition of the input gas, the desired composition of output gas for downstream applications, and by efficiency and waste minimization.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: December 6, 2011
    Assignee: Plasco Energy Group Inc.
    Inventors: Andreas Tsangaris, Margaret Swain
  • Patent number: 8066789
    Abstract: A system for depressurizing and cooling a high pressure, high temperature fine solid particles stream having entrained gas therein. In one aspect, the system has an apparatus for cooling the high pressure, high temperature fine solid particles stream having entrained gas therein and a pressure letdown device for depressurization by separating the cooled fine solid particles from a portion of the fine solid particles stream having entrained gas therein, resulting in a lower temperature, lower pressure outlet of solid particles for disposal or handling by downstream equipment.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: November 29, 2011
    Assignee: Southern Company
    Inventors: Guohai Liu, Wan Wang Peng, Pannalal Vimalchand
  • Patent number: 8016901
    Abstract: Multiple designs and methods for aerodynamic separation nozzles and systems for integrating multiple aerodynamic separation nozzles into a single system are disclosed herein. These aerodynamic separation nozzles utilize a combination of aerodynamic forces and separation nozzle structure to induce large centrifugal forces on the gases that in combination with the structure of the nozzle are used to separate heavier constituents of the process gas from lighter constituents. In some embodiments a number of separation nozzles are combined into a single system suitable for dynamic processing of a process gas. In other embodiments the separation nozzles are temperature controlled to condition the incoming gas to a temperature in order to encourage a phase change in certain constituents of the gas to occur within the nozzle to further enhance separation.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: September 13, 2011
    Assignee: Tenoroc LLC
    Inventor: Michael R. Bloom
  • Publication number: 20110209615
    Abstract: Presented is a method and apparatus for treating an exhaust gas. A series of filters and conditioning units are used to separate and extract various substances from the exhaust gas, typically originating from an industrial process. In an exemplary embodiment, a cyclone filter, a ceramic filter, a baghouse filter, and a pair of gas conditioners are used to initially separate and extract iron-rich dust from an exhaust gas and then extract zinc from the gas.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Inventor: Naiyang MA
  • Patent number: 7892336
    Abstract: The invention relates to an apparatus and to a method for extracting elements from a gaseous medium and concentrating them in a liquid medium, by nebulizing this liquid medium by means of the gaseous medium and condensing the mist produced by this nebulization. This apparatus comprises a first enclosure for nebulization and condensation, intended to contain the liquid medium, which is provided with a conduit for delivering the gaseous medium, means for nebulizing the liquid medium, and a conduit for discharging the gaseous medium, means for depressurizing or pressurizing the interior of the first enclosure, and is characterized in that it comprises a second enclosure for condensation and means for cooling this second enclosure.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: February 22, 2011
    Assignee: Commissariat A L'Energie Atomique
    Inventors: Pierre Charrue, Gilles Thevenot, Goulven Cavalin, Roger Delmas
  • Publication number: 20100275781
    Abstract: The present invention provides a gas conditioning system for processing an input gas from a low temperature gasification system to an output gas of desired characteristics. The system comprises a two-stage process, the first stage separating heavy metals and particulate matter in a dry phase, and the second stage including further processing steps of removing acid gases, and/or other contaminants. Optional processes include adjusting the humidity and temperature of the input gas as it passes through the gas conditioning system. The presence and sequence of processing steps is determined by the composition of the input gas, the desired composition of output gas for downstream applications, and by efficiency and waste minimization.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 4, 2010
    Inventors: Andreas Tsangaris, Margaret Swain
  • Patent number: 7749311
    Abstract: A treatment system to efficiently remove lead from dust contained in extracted cement kiln combustion gas while reducing facility and running costs. A treatment system 1 comprising a probe 3 for extracting a part of combustion gas, while cooling it, from a kiln exhaust gas passage, which runs from an inlet end of a cement kiln to a bottom cyclone; a first classifier 5 for separating coarse powder from dust contained in the combustion gas extracted; a dust collector 7 for collecting dust from the extracted gas containing fine powder discharged from the first classifier 5; and a second classifier 8 for dividing dust discharged from the dust collector 7 into fine powder and coarse powder, and others. Since more lead is distributed on the fine powder side classified by the second classifier 8, lead can efficiently be removed without using chemicals and the like.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: July 6, 2010
    Assignee: Taiheiyo Cement Corporation
    Inventors: Shinichiro Saito, Keizo Fujiwara
  • Patent number: 7749380
    Abstract: An integrated and modular infrastructure resource system (IRS) is herein described. The IRS includes one or more infrastructure modules adapted to fulfill a given infrastructure needs such as electrical power, communications, water purification, and air filtration. The IRS may be controlled locally by a control module coupled to the infrastructure modules by a power bus and a control bus or remotely by a remote control-panel that communicates with the IRS by means of a communications module that includes a two-way communications device. The power bus and control bus act to network all of the provided infrastructure modules into an integrated system. Maintenance and logistics for a plurality of IRS's may be managed remotely by a single remote control panel.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: July 6, 2010
    Assignee: Erbus, Inc.
    Inventors: Deborah Yungner, Frank G. Mendez, David J. Peterson
  • Publication number: 20100031821
    Abstract: Disclosed is a method for reducing emissions from exhaust gas generated during the grinding and drying of cement raw meal as part of a cement manufacturing process. The invention comprises circuiting the exhaust gas between a raw mill and a clinker cooler. In the clinker cooler at least a portion of said emissions are delivered to a cement kiln in which said emissions are removed by being combusted and/or absorbed.
    Type: Application
    Filed: August 7, 2008
    Publication date: February 11, 2010
    Inventors: Ove L. Jepsen, Steven Miller, Anthony Shave
  • Publication number: 20100024642
    Abstract: Provided is a filter for removing a sulfur-containing-gas (1), which removes the sulfur-containing-gas by being brought into contact with the sulfur-containing-gas in a gas flow path, the filter comprising a former filter (11) disposed on an upstream side of the gas flow path, and a latter filter (12) disposed on a downstream side of the gas flow path, wherein the former filter (11) comprises a first material for removing a sulfur-containing-gas, the first material comprising a porous support, and iodine which is supported on the porous support, and is produced by catalytic pyrolysis of ammonium iodide at a thermal decomposition ratio of 80% or more by use of the porous support as a catalyst, and the latter filter (12) comprises a second material for removing a sulfur-containing-gas, the second material comprising an activated carbon fiber, and an alkali component which is supported on the activated carbon fiber.
    Type: Application
    Filed: January 24, 2008
    Publication date: February 4, 2010
    Applicant: Toyota Boshoku Kabushiki Kaisha
    Inventors: Kazuhiro Fukumoto, Minoru Takahara, Kenichirou Suzuki, Nobuhiko Nakagaki, Yasunari Arai, Minoru Honda
  • Publication number: 20100005763
    Abstract: Multiple designs and methods for aerodynamic separation nozzles and systems for integrating multiple aerodynamic separation nozzles into a single system are disclosed herein. These aerodynamic separation nozzles utilize a combination of aerodynamic forces and separation nozzle structure to induce large centrifugal forces on the gases that in combination with the structure of the nozzle are used to separate heavier constituents of the process gas from lighter constituents. In some embodiments a number of separation nozzles are combined into a single system suitable for dynamic processing of a process gas. In other embodiments the separation nozzles are temperature controlled to condition the incoming gas to a temperature in order to encourage a phase change in certain constituents of the gas to occur within the nozzle to further enhance separation.
    Type: Application
    Filed: October 10, 2008
    Publication date: January 14, 2010
    Applicant: TENOROC, LLC
    Inventor: Michael R. Bloom
  • Publication number: 20090151565
    Abstract: A scrubbing system for removing particulate from an air stream generated during a glass-wool insulation forming process includes a first separator system for removing at least a first portion of the particulate from the air stream, a second separator system, in the form of a single cloud generating vessel, for removing another portion of the particulate, and a third separator system for removing both moisture and a further portion of the particulate. The first separator system is designed to effectively provide a high residence or pre-treatment time for the air stream that enables fine particles to grow into larger particles which are easier to trap and collect, while also allowing the air stream ample time to cool to saturation temperatures. The first and third separator systems combine with the single cloud generating vessel to synergistically enhance the overall efficacy and efficiency of the scrubbing system.
    Type: Application
    Filed: December 16, 2007
    Publication date: June 18, 2009
    Inventors: Michael A. Tressler, Donald R. Miller, Thomas I. Prosek, Frank Kristie, Richard A. Jenne, William R. Cooper
  • Publication number: 20090000484
    Abstract: Embodiments of the invention relate generally to systems used to measure mercury in gaseous emissions. In one aspect, the invention is directed to the use of silicon carbide as material for a thermal pyrolysis unit. In another aspect, at least one of silicon nitride, silicon boride, and/or boron nitride is used as material for a thermal pyrolysis unit. In another aspect, the invention is directed to an improved pyrolyzer design, in which a thermal pyrolysis unit comprises a tailpiece that allows water to be injected at the heated exit of the thermal pyrolysis unit. In another aspect, the invention is directed to the use of a coalescing filter in a scrubbing unit. In another aspect, the invention is directed to the use of a hydrophobic filter element in a scrubbing unit. One or more of these elements may be used in a conditioning module of a continuous emissions monitoring system, for example.
    Type: Application
    Filed: September 9, 2008
    Publication date: January 1, 2009
    Applicant: TEKRAN INSTRUMENTS CORPORATION
    Inventors: Frank H. Schaedlich, Daniel R. Schneeberger
  • Patent number: 7442239
    Abstract: A fuel-conditioning skid for an engine. The fuel-conditioning skid includes an inlet that is connectable to a source to receive a flow of fuel containing undesirable compounds. An outlet is connectable to the engine to deliver a flow of fuel that is substantially free of undesirable compounds. An inlet cleaner is in fluid communication with the inlet and is operable to remove a portion of the undesirable compounds. A compressor is in fluid communication with the inlet cleaner to receive the flow of fuel at a first pressure and discharge the flow of fuel at a second pressure. The second pressure is greater than the first pressure. A purifier is in fluid communication with the inlet cleaner to receive the flow of fuel. The purifier is operable to remove substantially all of the remaining undesirable compounds from the flow of fuel.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: October 28, 2008
    Assignee: Ingersoll-Rand Energy Systems Corporation
    Inventors: Jeffrey A. Armstrong, Shaun Sullivan, Eric Roslund
  • Publication number: 20080210089
    Abstract: The present invention provides a gas conditioning system for processing an input gas from a low temperature gasification system to an output gas of desired characteristics. The system comprises a two-stage process, the first stage separating heavy metals and particulate matter in a dry phase, and the second stage including further processing steps of removing acid gases, and/or other contaminants. Optional processes include adjusting the humidity and temperature of the input gas as it passes through the gas conditioning system. The presence and sequence of processing steps is determined by the composition of the input gas, the desired composition of output gas for downstream applications, and by efficiency and waste minimization.
    Type: Application
    Filed: May 7, 2007
    Publication date: September 4, 2008
    Inventors: Andreas Tsangaris, Margaret Swain
  • Patent number: 7399331
    Abstract: A system is disclosed which incorporates low pressure drop contaminant removal from gas phases or streams, which advantageously can be used to enhance efficiency, improve humidity characteristics, and reduce capital cost of air handing systems such as HVAC systems and the like. Placement of the low pressure drop contaminant removal mechanism for enhancing effectiveness of same is also disclosed.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: July 15, 2008
    Assignee: Carrier Corporation
    Inventors: Gregory M. Dobbs, Timothy Obee, Darren S. Sheehan, James D. Freihaut, Stephen O. Hay, Norberto O. Lemcoff, Joseph J. Sangiovanni, Mary Saroka, Robert C. Hall
  • Patent number: 7048776
    Abstract: A method and system removes nuclear, biological and chemical (NBC) agents from an air stream from a facility HVAC. The system includes an irradiation zone, a saturation zone and a precipitation zone. A contaminant detection apparatus controls the irradiation, saturation and precipitation of the air stream. The irradiation destroys biological agents along with saturation of air stream with a water based solution. The biological debris and dissolved chemical agents are precipitated out of the air stream by condenser coils. Nuclear agents are removed from the air stream by a diverting the air stream though a bypass filter containing high mass particulate filters and activated charcoal. The contaminants are stored for later removal and destruction. The contaminate detection apparatus includes NBC sensors.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: May 23, 2006
    Assignee: Radian, Inc.
    Inventors: Wayne K. Moore, Daniel B. Nickell
  • Patent number: 7014682
    Abstract: An apparatus and process for removing regulated pollutants and other contaminants from a flowing gas stream between a scrubber and an exhaust stack. The apparatus comprises a vessel having a heater chamber, an adsorbent chamber and a filter chamber. The vessel inlet receives the gas stream from the scrubber and the vessel outlet discharges clean gas to the exhaust stack. A heater in the heater chamber heats the incoming gas stream to lower the relative humidity. The gas stream then passes through granular adsorbent material located in the adsorbent chamber to remove contaminants remaining after the wet scrubber. From the adsorbent chamber the gas stream flows into the filter chamber where filters remove entrained particulate matter prior to discharge to the exhaust stack. The process of the present invention includes the above-described steps.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: March 21, 2006
    Inventors: Steven A. Hickerson, Henry L. Marschall
  • Patent number: 7004999
    Abstract: A method of continuously capturing BioOil and its constituents from a gas stream produced in a fast pyrolysis/thermolysis process, in a usable liquid form so as to produce a non-condensable gas free of fouling contaminates. The method includes separating BioOil and its constituents from a gas stream using hot inertial separation to maintain the temperature of said BioOil and its constituents above a temperature at which the thick and/or sticky constituents cause inefficient operation of the equipment but low enough so that they do not undergo rapid degradation. Next the gas velocity is reduced to a temperature sufficiently low to allow droplets in the gas stream to settle out but high enough so that a viscosity of said droplets remains low enough to avoid inefficient operation of the separation equipment. Finally, liquid is condensed out of the gas stream.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: February 28, 2006
    Assignee: Dynamotive Energy Systems Corporation
    Inventors: Warren L. Johnson, Gholam H. Yavari, Desmond St. A. G. Radelin
  • Patent number: 6960242
    Abstract: A carbon dioxide recovery apparatus and process for supercritical extraction includes providing a process stream from a supercritical extraction procedure in which the process stream includes pressurized carbon dioxide, extraction process waste and optionally at least one co-solvent; reducing the pressure of the process stream below critical pressure; venting low pressure carbon dioxide vapor to exhaust; cooling the process stream to form a two phase mixture; separating the two phase mixture into a process liquid, containing co-solvent if present, and a process vapor phase stream; collecting the process liquid; filtering the process vapor phase stream to remove particulates and optionally residual co-solvent; passing the filtered process vapor stream through an adsorber to remove trace impurities to form a purified carbon dioxide vapor stream; and, drying the purified carbon dioxide vapor stream to remove residual water vapor.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: November 1, 2005
    Assignee: The BOC Group, Inc.
    Inventors: Kelly Leitch, Gavin Hartigan, Robert D'Orazio
  • Patent number: 6840982
    Abstract: A storage device for the preservation of oxidizable materials is provided. The storage device includes a storage chamber enclosing a storage space where oxidizable materials may be placed and a differentially permeable membrane. The differentially permeable membrane allows at least one selected gas to pass therethrough while inhibiting at least oxygen from passing therethrough. The differentially permeable membrane is in fluid communication with the storage chamber such that the at least one selected gas is allowed to pass through the differentially permeable membrane flows into the storage chamber. An air mover, preferably a compressor, feeds gases to the differentially permeable membrane. A cooling element is provided for cooling the temperature within the storage chamber below that of the ambient temperature. The level of oxygen within the storage chamber is thus reduced relative to the level of oxygen in the atmosphere.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: January 11, 2005
    Assignee: American Moxie, LLC
    Inventors: Lawrence Kunstadt, Peter Carlson
  • Patent number: 6752856
    Abstract: An assembly for removing aerosol from crankcase gasses being returned to an air intake manifold is generally shown at and includes a housing having a housing wall defining a top portion and a base with at least one drain. An inlet line extends through the housing wall communicating with a crankcase. An outlet line extends through the top portion for communicating with an air intake manifold. An inertial separator generally shown at is attached to the inlet line and has a screen through which the crankcase gasses pass and an impacter plate for obstructing aerosol suspended in the gasses. A sheet wound in spaced convolutions to define a spiraled path from the exterior to a central space conveys gasses from the inertial separator to the central space. A thermal interception tube located in the central space receives gasses and has a tube wall for gasses to pass therethrough and an opening at one end for egress of gasses.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: June 22, 2004
    Assignee: Caterpillar Inc.
    Inventor: Russell R. Graze, Jr.
  • Patent number: 6638330
    Abstract: In a device for filtering the intake air of internal combustion engines, including a tubular housing (2) with one filtering cartridge (3) fixed at an end by means of support means (4) provided with an inlet opening (5) and fit to support the housing (2) in correspondence of a lower opening (9) thereof, the filtering cartridge (3) is fixed to the support means (4), near the edges of the opening (5) so forming a single body, and is internally provide with air deflectors (6) fixed at the free end of the filtering cartridge (3) in such a way that the air flow coming from the opening (5) is forced by the air deflectors (6) to pass through the filtering cartridge (3) and comes out from the device (1) through an outflow opening (7), passing through the space between the filtering cartridge (3) and the external housing (2).
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: October 28, 2003
    Assignee: BMC S.R.L.
    Inventor: Gaetano Bergami
  • Patent number: 6547844
    Abstract: The present invention has an object to improve the efficiency of collection of solidification constituents and solids in exhaust gas and to prevent early blockage of the filter without damaging the vacuum pump. In an exhaust path 48a, a vacuum pump and exhaust gas filtration device are provided. This exhaust gas filtration device is constituted by a trap device, pre-filter and filter. The pre-filter reduces the exhaust gas flow rate flowing through the interior of the exhaust path by controlling the exhaust gas flow path in the vessel. The aforesaid exhaust path is constituted by connecting this vacuum pump, trap device, pre-filter and filter which are arranged in this order from the side of airtight vessel and connected through piping if required.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: April 15, 2003
    Assignee: Anelva Corporation
    Inventors: Toshihiro Rikyuu, Keisuke Nagakura
  • Patent number: 6258151
    Abstract: The present invention relates to methods and apparatuses for the purification and reuse of waste air mixed with additives (for example, solvents) or impurities, in particular for the purification and reuse of waste air mixed with solvents from dryer appliances of web-fed offset printing machines, in a first method step the waste air being led through at least one condenser in order to condense out additives or impurities contained in the waste air, in a second method step the waste air, treated according to the first method stop, being led through at least one separator element for the further purification of the waste air to remove condensed additives or impurities contained in it, and, finally, the waste air, treated according to the second method step, being recirculated for the renewed absorption or suction-removal of additives and impurities.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: July 10, 2001
    Assignee: Maul & Co. - CHR Belser GmbH
    Inventors: Rainer Härle, Gunter Thielen