Heavy Metal Containing (e.g., Ga, In Or T1, Etc.) Patents (Class 556/1)
  • Publication number: 20090036537
    Abstract: The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.
    Type: Application
    Filed: December 29, 2004
    Publication date: February 5, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kenneth N. Raymond, Stephane Petoud, Jide Xu
  • Publication number: 20090030214
    Abstract: Peroxo-carbonates derived from molten alkali and/or Group II metal salts, particularly carbonate salts are used as catalysts in oxidation and epoxidation reactions, transition metal compounds may be included to improve the selectivity of the reactions.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Inventors: Helge Jaensch, Gary David Mohr
  • Publication number: 20080297044
    Abstract: A metal sulfide nanocrystal manufactured by a method of reacting a metal precursor and an alkyl thiol in a solvent, wherein the alkyl thiol reacts with the metal precursor to form the metal sulfide nanocrystals, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. A metal sulfide nanocrystal manufactured with a core-shell structure by a method of reacting a metal precursor and an alkyl thiol in a solvent to form a metal sulfide layer on the surface of a core, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. These metal sulfide nanocrystals can have a uniform particle size at the nanometer-scale level, selective and desired crystal structures, and various shapes.
    Type: Application
    Filed: July 17, 2008
    Publication date: December 4, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shin Ae Jun, Eun Joo Jang, Seong Jae Choi
  • Publication number: 20080296537
    Abstract: In a method for functionalizing a carbon nanotube surface, the nanotube surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the nanotube surface, providing chemically functional groups at the nanotube surface, producing a functionalized nanotube surface. A functionalized nanotube surface can be exposed to at least one vapor stabilization species that reacts with the functionalization layer to form a stabilization layer that stabilizes the functionalization layer against desorption from the nanotube surface while providing chemically functional groups at the nanotube surface, producing a stabilized nanotube surface. The stabilized nanotube surface can be exposed to at least one material layer precursor species that deposits a material layer on the stabilized nanotube surface.
    Type: Application
    Filed: February 7, 2007
    Publication date: December 4, 2008
    Applicant: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer
  • Publication number: 20080271640
    Abstract: A porous organosilica glass (OSG) film consists of a single phase of a material represented by the formula SivOwCxHyFz, where v+w+x+y+z=100%, v is from 10 to 35 atomic %, w is from 10 to 65 atomic %, x is from 5 to 30 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %, wherein the film has pores and a dielectric constant less than 2.6. The film is provided by a chemical vapor deposition method in which a preliminary film is deposited from organosilane and/or organosiloxane precursors and pore-forming agents (porogens), which can be independent of, or bonded to, the precursors. The porogens are subsequently removed to provide the porous film. Compositions, such as kits, for forming the films include porogens and precursors. Porogenated precursors are also useful for providing the film.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 6, 2008
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Raymond Nicholas Vrtis, Mark Leonard O'Neill, Jean Louise Vincent, Aaron Scott Lukas, Manchao Xiao, John Anthony Thomas Norman
  • Publication number: 20080233378
    Abstract: Transparent, electrically conductive layer, a process for producing the layer and its use, wherein the layer is based on at least one compound of the formula 1 wherein the substituents are as defined.
    Type: Application
    Filed: July 16, 2007
    Publication date: September 25, 2008
    Applicant: DEGUSSA GmbH
    Inventors: Thomas LUTHGE, Rita Fugemann, Martina Inhester, Matthias Driess, Yilmaz Aksu
  • Publication number: 20080226550
    Abstract: The present invention relates to compounds and related technetium and rhenium complexes thereof which are suitable for imaging or therapeutic treatment of tumors, e.g., carcinomas, melanomas and other tumors. In another embodiment, the invention relates to methods of imaging tumors using radiolabeled metal complexes. Preferred radiolabeled complexes for imaging tumors include technetium and rhenium complexes. The high tumor uptake and significant tumor/nontumor ratios of the technetium complexes of the invention indicate that such small technetium-99m-based molecular probes can be developed as in-vivo diagnostic agents for melanoma and its metastases. In yet another embodiment, the invention relates to methods of treatment of tumors using a radiolabeled metal complex as a radiopharmaceutical agent to treat the tumor.
    Type: Application
    Filed: January 21, 2008
    Publication date: September 18, 2008
    Inventors: Ashfaq Mahmood, Matthias Friebe, Cristina Bolzati, Alun G. Jones, Alan Davison
  • Patent number: 7423101
    Abstract: The present invention is directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, mono- or di-anionic tridentate nitrogen/oxygen based ligands that are useful, with or without activators, to polymerize olefins, particularly ?-olefins, or other unsaturated monomers. For the purposes of this disclosure, “?-olefins” includes ethylene. The present invention is also directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, bidentate nitrogen/oxygen based ligands that are useful to polymerize olefins, particularly ?-olefins, or other unsaturated monomers.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 9, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gregory A. Solan, Christopher J. Davies
  • Publication number: 20080194679
    Abstract: The present invention is directed to methods and compositions which include high nitrogen metal amino acid chelates that can increase the metabolic activity or metal concentration in animals. In one embodiment, an amino acid composition can comprise an amino acid chelate with a first metal and first amino acid ligand, where the first amino acid ligand is devoid of a disulfide bond and has at least two nitrogen atoms, and an amino acid complex different from the amino acid chelate having a second metal and second amino acid ligand. The amino acid composition can also include nitrogen salts, proteinates, urea, nitric acid, carnitine, creatine, glucosamine, chondroitin, chitosan, nitrogen-containing botanicals, and combinations thereof.
    Type: Application
    Filed: February 14, 2007
    Publication date: August 14, 2008
    Inventors: H. DeWayne Ashmead, Stephen D. Ashmead
  • Publication number: 20080166296
    Abstract: Novel pharmaceutical gallium compositions, including gallium complexes having increased oral bioavailablity relative to uncomplexed gallium salts are disclosed. Such compositions are useful in the treatment of conditions and diseases in which inhibition of abnormally increased calcium resorption is desired, including cancer, hypercalcemia, osteoporosis, osteopenia and Paget's disease. Methods for preparation and treatment are also provided.
    Type: Application
    Filed: March 11, 2008
    Publication date: July 10, 2008
    Inventor: Thomas N. Julian
  • Publication number: 20080111124
    Abstract: Disclosed are a metallocenyl dendrimer, an organic memory device using the metallocenyl dendrimer and a method for fabricating the organic memory device. The metallocenyl dendrimer may be composed of a dendrimer and metallocenes as redox species linked to the dendrimer. The organic memory device may possess the advantages of shorter switching time, decreased operating voltage, decreased fabrication costs and increased reliability. Based on these advantages, the organic memory device may be used as a highly integrated, large-capacity memory device.
    Type: Application
    Filed: March 9, 2007
    Publication date: May 15, 2008
    Inventors: Tae Lim Choi, Kwang Hee Lee, Sang Kyun Lee
  • Patent number: 7358343
    Abstract: Trimetallic nitride endohedral metallofullerene derivatives and their preparation are described. The trimetallic nitride endohedral metallofullerene derivatives have the general formula A3-nXn@Cm(R) where n ranges from 0 to 3, A and X may be trivalent metals and may be either rare earth metal or group IIIB metals, m is between about 60 and about 200, and R is preferably an organic group. Derivatives where the R group forms cyclized derivatives with the fullerene cage are also described.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: April 15, 2008
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Harry C. Dorn, Erick B. Iezzi, James Duchamp
  • Patent number: 7354952
    Abstract: Novel pharmaceutical gallium compositions, including gallium complexes having increased oral bioavailability relative to uncomplexed gallium salts are disclosed. Such compositions are useful in the treatment of conditions and diseases in which inhibition of abnormally increased calcium resorption is desired, including cancer, hypercalcemia, osteoporosis, osteopenia and Paget's disease. Methods for preparation and treatment are also provided.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: April 8, 2008
    Assignee: Genta Incorporated
    Inventor: Thomas N. Julian
  • Patent number: 7332618
    Abstract: This invention relates to organometallic precursor compounds represented by the formula (H)mM(R)n wherein M is a metal or metalloid, R is the same or different and is a substituted or unsubstituted, saturated or unsaturated, heterocyclic radical containing at least one nitrogen atom, m is from 0 to a value less than the oxidation state of M, n is from 1 to a value equal to the oxidation state of M, and m+n is a value equal to the oxidation state of M, a process for producing the organometallic precursor compounds, and a method for producing a film or coating from the organometallic precursor compounds.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: February 19, 2008
    Assignee: Praxair Technology, Inc.
    Inventor: Scott Houston Meiere
  • Patent number: 7329727
    Abstract: Methods and compositions for the generation of polypeptides having varied material properties are disclosed herein. Methods include means for initiating the polymerization of aminoacid-N-carboxyanhydride (NCA) monomer by combining the monomer with an amido-containing metallacycle, for making self assembling amphiphilic block copolypeptides and related protocols for adding oligo(ethyleneglycol) functionalized aminoacid-N-carboxyanhydrides (NCAs) to polyaminoacid chains. Additional methods include means of adding an end group to the carboxy terminus of a polyaminoacid chain by reacting an alloc-protected amino acid amide with a transition metal-donor ligand complex to forming an amido-amidate metallacycle for use in further polymerization reactions. Novel compositions for use in peptide synthesis and design including five and six membered amido-containing metallacycles and block copolypeptides are also disclosed.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: February 12, 2008
    Assignee: The Regents of the University of California
    Inventor: Timothy J. Deming
  • Publication number: 20080026578
    Abstract: Organometallic compounds containing an electron donating group-substituted alkenyl ligand are provided. Such compounds are particularly suitable for use as vapor deposition precursors. Also provided are methods of depositing thin films, such as by ALD and CVD, using such compounds.
    Type: Application
    Filed: September 29, 2006
    Publication date: January 31, 2008
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Deodatta Vinayak Shenai-Khatkhate, Qing Min Wang
  • Patent number: 7321048
    Abstract: A method of purifying an organometallic compound by heating the organometallic compound in the presence of a trialkyl aluminum compound and a catalyst.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: January 22, 2008
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Deodatta Vinayak Shenai-Khatkhate, Ronald L. DiCarlo, Jr.
  • Patent number: 7317057
    Abstract: The present invention is directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, mono- or di-anionic tridentate nitrogen/oxygen based ligands that are useful, with or without activators, to polymerize olefins, particularly ?-olefins, or other unsaturated monomers. For the purposes of this disclosure, “?-olefins” includes ethylene. The present invention is also directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, bidentate nitrogen/oxygen based ligands that are useful to polymerize olefins, particularly ?-olefins, or other unsaturated monomers.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: January 8, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gregory A. Solan, Christopher J. Davies
  • Patent number: 7307063
    Abstract: Metallopeptides are provided for use in treatment of sexual dysfunction in mammals. The metallopeptides are agonists for at least one of melanocortin-3 or melanocortin-4 receptors. The metallopeptides are conformationally fixed on complexation of a metal ion-binding portion thereof with a metal ion. Also provided are metallopeptides that are antagonists for at least one of melanocortin-3 or melanocortin-4 receptors.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: December 11, 2007
    Assignee: Palatin Technologies, Inc.
    Inventors: Shubh Sharma, Annette Shadiack, Yi-Qun Shi, Wei Yang, Hui-Zhi Cai
  • Patent number: 7304172
    Abstract: Poly(propylene carbonates) are prepared from propylene oxide and CO2 with less than 10% cyclic propylene carbonate by product using cobalt based catalysts of structure preferably in combination with salt cocatalyst, very preferably cocatalyst where the cation is PPN+ and the anion is Cl? or OBzF5?. Novel products include poly(propylene carbonates) having a stereoregularity greater than 90% and/or a regioregularity of greater than 90%.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: December 4, 2007
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Geoffrey W. Coates, Zengquan Qin, Claire Tova Cohen
  • Patent number: 7297804
    Abstract: The present invention relates to catalytic compositions for esterification, transestrification and polycondensation reactions, a process for the catalysis of said reactions employing such catalytic compositions and polyesters for resins obtainable by this process.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: November 20, 2007
    Assignee: Chemtura Organometalics GmbH
    Inventors: Jens Röder, Andrea Kapries, Liane Franke, Oliver Schumacher, Johannes Canisius
  • Patent number: 7282119
    Abstract: A process and apparatus to enable the continuous isolation of an organometallic compound, such as trimethylindium from a liquid feedstock. The liquid feedstock is delivered to a distillation column having two heating zones to effect dissociation of the feed stock thereby liberating the organometallic compound, which is collected as a vapor from the top of the column.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: October 16, 2007
    Assignee: Sigma-Aldrich Co.
    Inventors: Rajesh Odedra, Megan Ravetz, Graham Williams, Phillip Reeve Jacobs
  • Patent number: 7273942
    Abstract: A water-stable and water-soluble ceramic precursor is provided, containing at least one Group III element. Also, a metal acid salt complex is provided comprising (1) bismuth, lanthanum, and titanium, and (2) a polyether acid. In addition, methods are provided for preparing the Group III metal acid salt complex and the Bi, La, Ti acid salt complex comprising a bismuth polyether acid salt complex, a lanthanum polyether acid salt complex, and a titanium polyether acid salt complex. Finally, devices that include lanthanum-doped bismuth titanate as the active component are provided, as well as a water-stable and water-soluble gallium polyether acid complex.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: September 25, 2007
    Assignee: Raytheon Company
    Inventors: T. Kirk Dougherty, John J. Drab
  • Patent number: 7205422
    Abstract: Metal ketoiminate or diiminate complexes, containing copper, silver, gold, cobalt, ruthenium, rhodium, platinum, palladium, nickel, osmium, or indium, and methods for making and using same are described herein. In certain embodiments, the metal complexes described herein may be used as precursors to deposit metal and metal-containing films on a substrate through, for example, atomic layer deposition or chemical vapor deposition conditions.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: April 17, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventor: John Anthony Thomas Norman
  • Patent number: 7193098
    Abstract: A process for producing semiconductor nanocrystal cores, core-shell, core-buffer-shell, and multiple layer systems is disclosed. The process involves a non-coordinating solvent and in situ surfactant generation.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: March 20, 2007
    Assignee: The Research Foundation of State University of New York
    Inventors: Derrick W. Lucey, David J. MacRae, Paras N. Prasad, Orville T. Beachley, Jr.
  • Patent number: 7193099
    Abstract: The invention relates to a process for preparing racemic metallocene biphenoxide complexes by reacting bridged transition metal complexes with cyclopentadienyl derivatives of alkali metals or alkaline earth metals and heating the reaction mixture obtained in this way to a temperature in the range from ?78 to 250° C., to the corresponding metallocene biphenoxide complexes and to their use as catalysts or as constituents of catalysts for the polymerization of olefinically unsaturated compounds or as reagents or catalysts in stereoselective synthesis.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: March 20, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Hans-Robert-Hellmuth Damrau, Patrik Müller, Valerie Garcia, Christian Sidot, Christian Tellier, Jean-François Lelong
  • Patent number: 7189791
    Abstract: This invention relates to a transition metal catalyst compound represented by the formula: LMX2 or (LMX2)2 wherein each M is independently a Group 7 to 11 metal, preferably a Group 7, 8, 9, or 10 metal; each L is, independently, a tridentate or tetradentate neutrally charged ligand that is bonded to M by three or four nitrogen atoms, (where at least one of the nitrogen atoms is a central nitrogen atom and at least two of the nitrogen atoms are terminal nitrogen atoms), and at least two terminal nitrogen atoms are substituted with one C3–C50 hydrocarbyl and one hydrogen atom or two hydrocarbyls wherein at least one hydrocarbyl is a C3–C50 hydrocarbyl, and the central nitrogen atom is bonded to three different carbon atoms or two different carbon atoms and one hydrogen atom; X is independently a monoanionic ligand, or two X may join together to form a bidentate dianionic ligand.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: March 13, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gregory Adam Solan, Christopher James Davies
  • Patent number: 7166734
    Abstract: Organometallic compounds of Group IIB and IIIA metals that are substantially pure and contain low levels of oxygenated impurities are provided. Also provided are methods of preparing such organometallic compounds.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: January 23, 2007
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Deodatta Vinayak Shenai-Khatkhate, Artashes Amamchyan
  • Patent number: 7122691
    Abstract: There are provided (1) a process for producing a compound, which comprises the step of contacting a compound (A) defined by the formula, M1L13, a compound (B) defined by the formula, R1t-1TH, and a compound (C) defined by the formula, R2t-2TH2; (2) a catalyst component for addition polymerization, which comprises a compound produced by said process; (3) a process for producing a polymerization catalyst, which comprises the step of contacting said catalyst component with a transition metal compound and an optional organoaluminum compound; and (4) a process for producing an addition polymer, which comprises the step of addition polymerizing an addition polymerizable monomer in the presence of a catalyst produced by said process.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: October 17, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hideki Oshima, Makoto Satoh
  • Patent number: 7119217
    Abstract: Provided are novel tri(alkylcarboxylato) gallium (III) compounds, exemplified by tripalmitato gallium (III), methods for making them, pharmaceutical compositions containing them, and methods of using the pharmaceutical compositions.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: October 10, 2006
    Assignee: Genta Incorporated
    Inventors: Jack B. Jiang, Raymond P. Warrell, Jr., Kollengode K. Ramaswamy, Robert E. Klem
  • Patent number: 7112691
    Abstract: A method of purifying an organometallic compound comprising distilling the organometallic compound for purification while blowing an inert gas through a vapor of the organopolysiloxane, thereby removing from the organometallic compound an impurity having a higher vapor pressure than the organometallic compound.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: September 26, 2006
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Takanobu Tsudera, Daisuke Iwai, Takayuki Honma, Hiromi Nishiwaki, Shuji Tanaka
  • Patent number: 7005530
    Abstract: A contaminated Group III metal hydrocarbon is purified by providing an adduct of Group III metal hydrocarbon with a Lewis base in a solvent having a boiling point which is up to 200° C., but at least 30° C. higher than the boiling point of the Group III metal hydrocarbon, separating the solvent from the adduct, and heating the adduct for thermal dissociation, thereby releasing the Group III metal hydrocarbon in high purity form.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: February 28, 2006
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiromi Nishiwaki, Takanobu Tsudera, Takayuki Honma, Shuji Tanaka
  • Patent number: 6998497
    Abstract: A metal bis-triflimide compound having the formula: [Mx]n+[(N(SO2CF3)2)(nx?yz)](nx?yz)?[Ly]z? where M is a metal selected from the metals in groups 5 to 10, 12 and 14 to 16 and Cu, Au, Ca, Sr, Ba, Ra, Y, La, Ac, Hf, Rf, Ga, In, Tl, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and the actinides; L is a negative or neutral ligand; n is 2,3,4,5,6,7 or 8; x is greater than or equal to 1 y is 0,1,2,3,4,5,6,7 or 8; and z is 0,1,2,3 or 4.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: February 14, 2006
    Assignee: The Queen's University of Belfast
    Inventors: Martyn J. Earle, Barry Joseph Mcauley, Alwar Ramani, Kenneth Richard Seddon, Jillian M. Thomson
  • Patent number: 6992204
    Abstract: The invention relates to a method for producing racemic metallocene complexes by reacting bridged or non-bridged transition metal complexes with cyclopentadienyl derivatives of alkaline or alkaline earth metals and optionally, subsequently substituting the phenolate ligands.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: January 31, 2006
    Assignee: Basell Polyolefine GmbH
    Inventors: Robert Damrau, Patrik Müller, Eva Royo, Hans-Herbert Brintzinger
  • Patent number: 6987132
    Abstract: The invention provides novel tetradentate enediyne ligands that are themselves thermally stable, yet react at about room temperature or slightly higher upon addition of metal ions or under photothermal conditions. In another aspect of the invention, a method of treating a disorder in a mammal comprising administering a therapeutically effective amount of a compound or composition is provided. In addition, the free ligand can be delivered to the mammal prior to complexation to metals, such that the ligand is exposed to a metal in the body and forms a metal complex in vivo. Furthermore, a metal complex of the invention can be administered to the mammal such that the complex exchanges the first metal center with another endogenous metal in order to form a second metal complex in vivo. The second metal complex is capable of forming a benzenoid diradical under physiological conditions and/or under photothermal conditions.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: January 17, 2006
    Assignee: Advanced Research and Technology Institute, Inc.
    Inventors: Jeffrey M. Zaleski, Diwan Singh Rawat
  • Patent number: 6979370
    Abstract: A method of forming a film on a substrate using Group IIIA metal complexes. The complexes and methods are particularly suitable for the preparation of semiconductor structures using chemical vapor deposition techniques and systems.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: December 27, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 6919467
    Abstract: The present invention provides a catalyst precursor and catalyst system comprising the precursor, an embodiment of the precursor is selected from the following structures: wherein T is a bridging group; M is selected from Groups 3 to 7 atoms, and the Lanthanide series of atoms the Periodic Table of the Elements; Z is a coordination ligand; each L is a monovalent, bivalent, or trivalent anionic ligand; X and Y are each independently selected from nitrogen, oxygen, sulfur, and phosphorus; R is a non-bulky substituent that has relatively low steric hindrance with respect to X; and R? is a bulky substituent that is sterically hindering with respect to Y.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 19, 2005
    Assignee: Univation Technologies, LLC
    Inventor: Rex Eugene Murray
  • Patent number: 6902891
    Abstract: A process of fragmenting and labeling a synthetic or natural nucleic acid, comprising the steps of providing a mixture containing a nucleic acid, a labeling agent containing a detectable label, and at least one multivalent metal cation in a substantially aqueous solution; chemically fragmenting the nucleic acid in the mixture to produce a multiplicity of nucleic acid fragments; and attaching at least one label to at least one of the nucleic acid fragments to produce a detectably labeled nucleic acid fragment.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: June 7, 2005
    Assignees: Bio Merieux, Gen-Probe Incorporated
    Inventors: Ali Laayoun, Lionel Menou, Christelle Tora, Aloke R. Banerjee, Michael M. Becker, Kenneth A. Browne, Matthew C. Friedenberg, Fred F. Hajjar
  • Patent number: 6896980
    Abstract: A novel water-scavenging agent of the present invention comprising a compound of formula (I) as a primary component can be dissolved in a polar solvent and coated by a screen printing method, and the inventive organic EL device comprising same can maintain stable luminescent characteristics for a prolonged time: wherein, R1, R2, R3, R4, R5 and R6 are each independently hydrogen; halogen; alkyl, aryl, cycloalkyl or hetero-ring, optionally substituted with at least one halogen atom, and M is a metal having a coordination number of 6.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: May 24, 2005
    Assignee: Futaba Corporation
    Inventors: Hisamitsu Takahashi, Shigeru Hieda, Yoshihisa Tsuruoka, Satoshi Tanaka
  • Patent number: 6894129
    Abstract: The present invention relates to a catalyst for preparing vinyl aromatic polymer and styrene polymerization using the same, and particularly to a transition metal half metallocene catalyst with a novel structure for preparing syndiotactic styrene polymer having high activity, superior stereoregularity, high melting point and various molecular weight distributions and a process for preparing styrene polymer using the same. The present invention provides a multinuclear half metallocene compound in which two or more of transition metals of groups 3 to 10 on periodic table are connected through bridge ligand simultaneously containing ?-ligand cycloalkandienyl group and ?-ligand functional group and its preparation, and a process for preparing styrene polymer using the compound as a catalyst. Polymers with various molecular weight distributions as well as vinyl aromatic polymer having predominant syndiotactic structure can be prepared with high activity using the multinuclear half metallocene catalyst.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: May 17, 2005
    Assignee: LG Chem, Ltd.
    Inventors: Min-Hyung Lee, You-Mi Jeong, Jin-Young Ryu
  • Patent number: 6869638
    Abstract: A CVD Method of forming gate dielectric thin films on a substrate using metalloamide compounds of the formula M(NR1R2)x, or wherein M is Zr, Hf, Y, La, Lanthanide series elements, Ta, Ti, or Al; N is nitrogen; each of R1 and R2 is same or different and is independently selected from H, aryl, perfluoroaryl, C1-C8 alkyl, C1-C8 perfluoroalkyl, alkylsilyl; and x is the oxidation state on metal M; and an aminosilane compound of the formula HxSiAy(NR1R2)4-x-y or wherein H is hydrogen; x is from 0 to 3; Si is silicon; A is a halogen; Y is from 0 to 3; N is nitrogen; each of R1 and R2 is same or different and is independently selected from the group consisting of H, aryl, perfluoroaryl, C1-C8 alkyl, and C1-C8 perfluoroalkyl; and n is from 1-6. By comparison with the standard SiO2 gate dielectric materials, these gate dielectric materials provide low levels of carbon and halide impurity.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: March 22, 2005
    Assignee: Advanced Tehnology Materials, Inc.
    Inventors: Thomas H. Baum, Chongying Xu, Bryan C. Hendrix, Jeffrey F. Roeder
  • Patent number: 6867315
    Abstract: Trialkylgallium is prepared by reacting a gallium halide or alkyl gallium with trialkylaluminum in a solvent having a boiling point which is at least 10° C. higher than the boiling point of the trialkylgallium, such as mesitylene or o-dichlorobenzene. High purity alkyl gallium is obtained in high yields.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: March 15, 2005
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Takayuki Honma, Takanobu Tsudera, Hiromi Nishiwaki, Shuji Tanaka
  • Patent number: 6855783
    Abstract: Supported metallocene catalysts and processes for the use of such catalysts in isotactic polymerization of a C3+ ethylenically unsaturated monomer. The supported catalysts comprise a particulate silica support, an alkyl alumoxane component, and a metallocene catalyst component. The support has an average particle size of 10-50 microns, a surface area of 200-800 m2/g and a pore volume of 0.9-2.1 milliliters per gram (ml/g). Alumoxane is incorporated onto the support to provide a weight ratio of alumoxane to silica of at least 0.8:1.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: February 15, 2005
    Assignee: Fina Technology, Inc.
    Inventors: William J. Gauthier, Margaret Kerr, Jun Tian, David J. Rauscher, Constance Hayworth Patrick, Shady Henry
  • Patent number: 6843842
    Abstract: A glass coating agent is provided which is adapted for application onto the surface of a glass substrate and, upon heating, forms a metal oxide layer. The glass coating agent comprises a metallic compound represented by formula (I): R1k-mM(OCOR2)m??(I) wherein M represents a metal atom selected from the group consisting of tin, titanium, indium, silicon, zirconium, and aluminum; R1 represents a straight-chain, branched, or cyclic alkyl, alkenyl, or aryl group having 1 to 6 carbon atoms; R2 represents a branched alkyl group having 3 to 6 carbon atoms; k is a number representing the valence of the metal atom M; and m is a number of 1 to k. Further, there is provided a glass coating method using the glass coating agent. According to the glass coating agent, a metal oxide layer having excellent fastness properties and free from haze can be formed on the surface of glass substrates. According to the glass coating method, the metal oxide layer can be continuously and stably produced.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: January 18, 2005
    Assignee: Kirin Beer Kabushiki Kaisha
    Inventors: Eihaku Shimamura, Katsuhiro Imashita, Tsutomu Amano, Tatsuya Nagai, Takayuki Okada, Hitoshi Tabuchi, Masaaki Katayama
  • Publication number: 20040260106
    Abstract: Trialkylgallium is prepared by reacting a gallium halide or alkyl gallium with trialkylaluminum in a solvent having a boiling point which is at least 10° C. higher than the boiling point of the trialkylgallium, such as mesitylene or o-dichlorobenzene. High purity alkyl gallium is obtained in high yields.
    Type: Application
    Filed: June 17, 2004
    Publication date: December 23, 2004
    Inventors: Takayuki Honma, Takanobu Tsudera, Hiromi Nishiwaki, Tanaka Shuji
  • Publication number: 20040254389
    Abstract: A process and apparatus to enable the continuous isolation of an organometallic compound, such as trimethylindium form a liquid feedstock. The liquid feedstock is delivered to a distillation column (2) having two heating zones (6, 8) to effect dissociation of the feedstock thereby liberating the organometallic compound which is collected as a vapour form the top (4) of the column.
    Type: Application
    Filed: July 23, 2003
    Publication date: December 16, 2004
    Inventors: Rajesh Odedra, Megan Ravetz, Graham Williams, Phillip Reeve Jacobs
  • Patent number: 6824824
    Abstract: The present invention is a method for recycling an organometallic compound for MOCVD comprising extracting an unreacted organometallic compound from a used raw material which has undergone a thin film production process, wherein the unreacted organometallic compound is extracted after the used raw material is subjected to a reforming treatment. The method for reforming the used raw material is either a method for contacting the used raw material with a hydrogenation catalyst or a reducing agent or a method for contacting the used raw material with either a halogen, a hydrogen halide, an inorganic acid, an alkene, or a diene. In this case, an organometallic compound of higher purity can be obtained through this recycling method by contacting the used raw material with a decoloring agent comprising activated carbon, silica, or activated clay.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: November 30, 2004
    Assignee: Tanaka Kikinzoku Kogyo, K.K.
    Inventor: Masayuki Saito
  • Publication number: 20040225134
    Abstract: The present invention provides a metal-organic framework (“MOF”) comprising a plurality of metal clusters and a plurality of multidentate linking ligands. Each metal of the plurality of metal clusters comprises one or more metal ions. Each ligand of the plurality of multidentate linking ligands connects adjacent metal clusters. The present invention also provides a method of forming the metal-organic framework. The method of the invention comprises combining a solution comprising one or metal ions with a multidentate linking ligand having a sufficient number of accessible sites for atomic or molecular adsorption that the surface area of the resulting metal-organic framework is greater than 2,900 m2/g.
    Type: Application
    Filed: May 7, 2004
    Publication date: November 11, 2004
    Applicant: The Regents of the University of Michigan
    Inventors: Omar M. Yaghi, Adam J. Matzger, Jesse L.C. Rowsell
  • Patent number: 6809209
    Abstract: The invention addresses an composition of matter comprising a cation [Ct]+ and an anion [A]−, the anion comprises a core Group-13 element bound to partially or completely fluorinated fluoroaryl ligands, at least one of the fluoroaryl ligands is substituted with a Group-15 element that has been rendered essentially inert for subsequent chemical reaction through its unbonded electron pair by substituting an electron-withdrawing group on it. [Ct]+ may be selected from anilinium and ammonium cations, trityl carbenium cations, Group-11 metal cations, silylium cations, the cations of the hydrated salts of Group-1 or -2 metals, and derivatives of the foregoing anilinium, ammonium, trityl carbenium, and silylium cations containing C1-C20 hydrocarbyl, hydrocarbylsilyl, or hydrocarbylamine substituents for one or more hydrogen atoms of said cations.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: October 26, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: George Rodriguez
  • Patent number: 6800707
    Abstract: Use of metallocene catalyst component for the preparation of a syndiotactic polyolefin having a monomer length of up to C10, which component has the general formula: R″(CpR1R2)(Cp′R1′R2′)MQ2 wherein Cp is a cyclopentadienyl ring; Cp′ is a 3,6 disubstituted fluorenyl ring; R1 and R2 are each independently H or a substituent on the cyclopentadienyl ring which is proximal to the bridge, which proximal substituent is linear hydrocarbyl of from 1 to 20 carbon atoms or a group of the formula XR*3 containing up to 7 carbon atoms in which X is chosen from Group IVA, and R* is the same or different and chosen from hydrogen or alkyl; R1′ and R2′ are each independently substituent groups on the fluorenyl ring, each of which is a group of the formula AR′″3, in which A is chosen from Group IVA, and each R′″ is independently hydrogen or a hydrocarbyl having 1 to 20 carbon atoms; M is a Group IVB transition metal or vanadium; each Q is hydrocarbyl having 1 to
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: October 5, 2004
    Assignee: Fina Technology, Inc.
    Inventor: Abbas Razavi