Plural Stages Each Having Hydroformylation Patents (Class 568/453)
  • Publication number: 20150133695
    Abstract: A process comprising contacting a reaction fluid, which contains at least one phosphorus acidic compound, with a buffer solution to neutralize at least some amount of the phosphorus acidic compound, wherein the buffer solution comprises at least one salt of an unsaturated aliphatic carboxylic acid.
    Type: Application
    Filed: May 22, 2013
    Publication date: May 14, 2015
    Applicant: The Dow Chemical Company
    Inventors: Michael A. Brammer, Rick B. Watson, Avery L. Watkins
  • Patent number: 8389775
    Abstract: The invention relates to a process for preparing polyether alcohols, which comprises the steps a) reaction of an unsaturated natural oil or fat with a mixture of carbon monoxide and hydrogen, b) reaction of the mixture from step a) with hydrogen, c) reaction of the product from step b) with an alkylene oxide in the presence of a catalyst.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: March 5, 2013
    Assignee: BASF SE
    Inventors: Darijo Mijolovic, Andrea Haunert, Andreas Kunst, Stephan Bauer, Qiang Miao, Berend Eling
  • Patent number: 7615645
    Abstract: The invention relates to a method for the continuous production of aldehydes by the isomerising hydroformylation in a homogenous phase of olefin compositions by means of a synthesis gas, in the presence of a homogeneous rhodium catalyst that is complexed with an organophosphorus ligand containing oxygen atoms and/or nitrogen atoms and a free ligand. The production is carried out at high temperature and high pressure in a multi-stage reaction system consisting of at least two reaction zones. According to the method, the olefin composition is first reacted in a first reaction zone or a group of several first reaction zones at a total pressure of between 10 and 40 bar, using a synthesis gas with a CO/H2 molar ratio of between 4:1 and 1:2 until a 40 to 95% conversion of the ?-olefins is obtained.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: November 10, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Volland, Thomas Mackewitz, Wolfgang Ahlers, Ansgar Schäfer, Wolfgang Richter, Rocco Paciello
  • Patent number: 7179947
    Abstract: A process for the catalytic hydroformylation of olefins having from 6 to 24 carbon atoms, in which the hydroformylation is carried out in one or more stage(s) and a mixture comprising at least one olefin and an aldehyde in a molar ratio of aldehyde to olefin of from 0.005:1 to 0.2:1 is used as feed in at least one of these stages which is carried out in the presence of an unmodified cobalt complex as catalyst.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: February 20, 2007
    Assignee: Oxeno Olefinchemie GmbH
    Inventors: Hans-Gerd Lueken, Alfred Kaizik, Stefan Drees, Wilfried Bueschken, Wilhelm Droste
  • Patent number: 6723884
    Abstract: Olefins having from 6 to 20 carbon atoms are hydroformylated by means of a continuous process in which a) an aqueous cobalt(II) salt solution is brought into intimate contact with hydrogen and carbon monoxide to form a hydroformylation-active cobalt catalyst, and the aqueous phase comprising the cobalt catalyst is brought into intimate contact with the olefins and, if desired, an organic solvent and also hydrogen and carbon monoxide in at least one reaction zone where the cobalt catalyst is extracted into the organic phase and the olefins are hydroformylated, b) the output from the reaction zone is treated with oxygen in the presence of acidic aqueous cobalt(II) salt solution, with the cobalt catalyst being decomposed to form cobalt(II) salts and these being backextracted into the aqueous phase; and the phases are subsequently separated, c) the aqueous cobalt(II) salt solution is recirculated in unchanged form to step a), wherein the cobalt(II) salt solution has a concentration of from 1.1 to 1.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: April 20, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Armin Volker Grenacher, Hans Stepp
  • Patent number: 6492564
    Abstract: The invention relates to a catalytic process for carrying out multiphase reactions in a tubular reactor, with the catalyst being present in the continuous phase and at least one starting material in a disperse phase and the loading factor B of the tubular reactor being equal to or greater than 0.8. The process is especially suitable in particular for the hydroformylation of olefins. The aldehydes thus prepared can ideally be used for the preparation of alcohols, carboxylic acids or in aldol condensations.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: December 10, 2002
    Assignee: OXENO Olefinchemie GmbH
    Inventors: Klaus-Diether Wiese, Guido Protzmann, Juergen Koch, Dirk Roettger, Martin Trocha
  • Patent number: 6310260
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more polar solvents and one or more nonpolar solvents by phase separation wherein (i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 30, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher
  • Patent number: 6307110
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more nonpolar solvents and one or more polar solvents by phase separation wherein (i) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1which is a value greater than about 2.5, (ii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 23, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher
  • Patent number: 6307108
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more formylester products from a reaction product fluid comprising one or more unreacted unsaturated ester reactants, a metal-organophoshorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, a nonpolar solvent and a polar solvent by phase separation wherein (i) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5 (ii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 23, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant
  • Patent number: 6307109
    Abstract: This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more nonpolar reaction solvents and one or more polar reaction solvents, in which said reaction product fluid exhibits phase behavior depicted by FIG. 1, wherein said process comprises (1) supplying said reaction product fluid from a reaction zone to a separation zone, (2) controlling concentration of said one or more nonpolar reaction solvents and said one or more polar reaction solvents, temperature and pressure in said separation zone sufficient to obtain by phase separation two immiscible liquid phases depicted by regions 2, 4 and 6 of FIG. 1 comprising a polar phase and a nonpolar phase and to prevent or minimize formation of three immiscible liquid phases depicted by region 5 of FIG. 1 and one homogeneous liquid phase depicted by regions 1, 3 and 7 of FIG.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 23, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jeffrey Scott Kanel, David Robert Bryant, Brian Michael Roesch, Ailene Gardner Phillips
  • Patent number: 6303829
    Abstract: This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more nonpolar reaction solvents and one or more polar reaction solvents, wherein said process comprises (1) subjecting said reaction product fluid to fractional countercurrent extraction with at least two immiscible extraction solvents, said at least two immiscible extraction solvents comprising at least one nonpolar extraction solvent and at least one polar extraction solvent, to obtain a nonpolar phase comprising said metal-organophosphorus ligand complex catalyst, said optionally free organophosphorus ligand, said one or more nonpolar reaction solvents and said at least one nonpolar extraction solvent and a polar phase comprising said one or more products, said one or more polar reaction solvents and said at least one polar extraction solvent, and (2) recovering said polar
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 16, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jeffrey Scott Kanel, John Nicholas Argyropoulos, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher, David Robert Bryant
  • Patent number: 6303830
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more formylester products from a reaction product fluid comprising one or more unreacted unsaturated ester reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, a polar solvent and a nonpolar solvent by phase separation wherein(i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 16, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant
  • Patent number: 6294700
    Abstract: This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more polar reaction solvents and one or more nonpolar reaction solvents, wherein said process comprises (1) subjecting said reaction product fluid to fractional countercurrent extraction with at least two immiscible extraction solvents, said at least two immiscible extraction solvents comprising at least one polar extraction solvent and at least one nonpolar extraction solvent, to obtain a polar phase comprising said metal-organophosphorus ligand complex catalyst, said optionally free organophosphorus ligand, said one or more polar reaction solvents and said at least one polar extraction solvent and a nonpolar phase comprising said one or more products, said one or more nonpolar reaction solvents and said at least one nonpolar extraction solvent, and (2) recovering said nonpo
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: September 25, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jeffrey Scott Kanel, John Nicholas Argyropoulos, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher, David Robert Bryant
  • Patent number: 5481044
    Abstract: .alpha.-alkyl aldehydes having 8 to 17 carbon atoms are obtained from terminal olefins containing one less carbon atom. The olefins are first isomerized in the presence of iron carbonyl and then, without separating out the iron compound, hydroformylated in the presence of rhodium as catalyst.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: January 2, 1996
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Jurgen Weber, Helmut Springer
  • Patent number: 5476968
    Abstract: A N,N'-bis(p-hydroxymethylphenyl)benzidine compound having the following formula (I): ##STR1## wherein R.sub.1 represents a hydrogen atom, a methyl group or a methoxy group; R.sub.2 represents an alkyl group having one to four carbon atoms, a methoxy group or an ethoxy group; and R.sub.3 represents a hydrogen atom or a methyl group, is intended to be used as a charge transporting material of an electrophotographic photoreceptor. A method for preparing the compound includes formylating a N,N'-diphenylbenzidine derivative having the following formula (II): ##STR2## by the conventional Viismeier reaction to obtain a N,N'-bis(p-formylphenyl) benzidine derivative of the following formula (III): ##STR3## and reducing the derivative with a boron hydride salt or an aluminum hydride salt.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: December 19, 1995
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Akira Imai, Katsumi Nukada
  • Patent number: 5462986
    Abstract: Mixtures of isomeric decyl alcohols prepared by hydroformylation of mixtures of butene-1 and butene-2 in two stages to give aldehyde mixtures, and condensation of the aldehyde mixtures to form an aldol mixture, followed by separation and hydrogenation. The first stage of the hydroformylation proceeds in the presence of rhodium catalysts dissolved in water, the second stage in the presence of cobalt catalysts homogeneously dissolved in the reaction medium. The mixture of isomeric decyl alcohols, when esterified with phthalic acid, yields a mixture of isomeric decyl phthalates which are useful as plasticizers.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: October 31, 1995
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Helmut Bahrmann, Wolfgana Greb, Peter Heymanns, Peter Lappe, Thomas Muller, Jurgen Szameitat, Ernst Wiebus
  • Patent number: 5463147
    Abstract: Mixtures of isomeric decyl alcohols prepared by hydroformylation of mixtures of butene-1 and butene-2 in two stages to give aldehyde mixtures, and condensation of the aldehyde mixtures to form an aldol mixture, followed by separation and hydrogenation. The first stage of the hydroformylation proceeds in the presence of rhodium catalysts dissolved in water, the second stage in the presence of cobalt catalysts homogeneously dissolved in the reaction medium. The mixture of isomeric decyl alcohols, when esterified with phthalic acid, yields a mixture of isomeric decyl phthalates which are useful as plasticizers.
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: October 31, 1995
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Helmut Bahrmann, Wolfgang Greb, Peter Heymanns, Peter Lappe, Thomas Muller, Jurgen Szameitat, Ernst Wiebus
  • Patent number: 5426238
    Abstract: A method for producing an aldehyde, which comprises reacting an olefin with carbon monoxide and hydrogen in a hydroformylation reaction zone in the presence of a rhodium catalyst having an organophosphorus compound as a ligand, wherein a reaction solution withdrawn from the hydroformylation reaction zone, which contains an unreacted olefin, an aldehyde product and the catalyst, is countercurrently contacted with carbon monoxide and hydrogen in a contact tower to separate and recover the unreacted olefin without substantially deactivating the rhodium catalyst and supplying the recovered unreacted olefin together with the carbon monoxide and the hydrogen to the hydroformylation reaction zone.
    Type: Grant
    Filed: May 26, 1994
    Date of Patent: June 20, 1995
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Tomoyuki Mori, Akio Ueda, Kouichi Fujita
  • Patent number: 5410091
    Abstract: An improved process for the hydroformylation of olefins with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst in a continuous tubular reactor, the improvement comprising:a. employing an rhodium hydroformylation catalyst;b. maintaining the reaction temperature at less than about 145.degree. C.; andc. maintaining the pressure at less than 450 psig and the partial pressure therein attributable to carbon monoxide no greater than about 90% of the total pressure;whereby the hydroformylated olefin product is rich in normal aldehydes.
    Type: Grant
    Filed: June 2, 1994
    Date of Patent: April 25, 1995
    Assignee: Quimica Oxal C.A.
    Inventor: Charles S. Nall
  • Patent number: 5367106
    Abstract: In a primary process for hydroformylating olefins in the presence of a rhodium-containing catalyst solution to produce aldehydes and a gaseous effluent comprising unreacted olefin is vented, the improvement which comprises employing the effluent as a reactant feed for a coupled secondary hydroformylation process conducted jointly therewith in which the catalyst solution is cycled back and forth between the primary and secondary hydroformylation processes.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: November 22, 1994
    Assignee: Hoechst Celanese Corporation
    Inventors: Jerry D. Unruh, Wendell L. Pieper, Milo C. Pass
  • Patent number: 5362917
    Abstract: A method for controlling a hydroformylation reaction for producing an aldehyde by subjecting an olefin, a feed oxo gas containing hydrogen and carbon monoxide, and a recycled gas withdrawn from a reactor and returned to the reactor, to a hydroformylation reaction in the reactor in the presence of a catalyst, which comprises:setting out a target value for the partial pressure of carbon monoxide in the reaction system to control the hydroformylation reaction;detecting the partial pressure of carbon monoxide corresponding to the target value; andcomparing the detected partial pressure of carbon monoxide with the target value to adjust a flow rate of a discharged gas from the reactor; orcomparing the detected partial pressure of carbon monoxide with the target value to adjust a flow rate of the feed oxo gas.
    Type: Grant
    Filed: September 24, 1993
    Date of Patent: November 8, 1994
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Morimasa Ogawa, Genichi Emoto, Akio Ueda, Takao Kibayashi, Keitaro Nakata, Tsuneo Inoue
  • Patent number: 5336473
    Abstract: An apparatus for removing cobalt values from the crude product of a cobalt-catalyzed hydroformylation reaction wherein an overhead stripper-reactor reflux product is recycled to a location on the stripper-reactor which is capable of forming a stripping zone in the upper portion of the stripper-reactor and a reaction zone in the lower portion of the stripper-reactor.
    Type: Grant
    Filed: May 11, 1993
    Date of Patent: August 9, 1994
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Kirk C. Nadler, Thomas R. Broussard, Joseph K. Pitre
  • Patent number: 5105018
    Abstract: A process for hydroformylation of an olefin, which comprises reacting an olefin with carbon monoxide and hydrogen in the presence of a rhodium catalyst having a trivalent organic phosphorus compound as a ligand, wherein the hydroformylation reaction is conducted by two stage reactor systems i.e., a first stage reactor system comprising a reactor or reactors having a mixing characteristic of the liquid phase being substantially of complete mixing type, and a second stage reactor system being a reaction system of a catalyst solution circulating type and comprising a reactor or reactors having a mixing characteristic of piston flow type wherein when the mixing characteristic of the liquid phase is represented by a diffusion model, a non-dimensional number U (hereafter referred to as a "flow mixing parameter") defined by the formula (I):U.tbd.uL/2E (I)wherein u is an average flow velocity (cm/sec), L is the length (cm) of the reaction layer, and E is an average diffusion coefficient (cm.sup.
    Type: Grant
    Filed: October 12, 1990
    Date of Patent: April 14, 1992
    Assignee: Mitsubishi Kasei Corporation
    Inventors: Chihiro Miyazawa, Hiroshi Mikami
  • Patent number: 4390729
    Abstract: Complexes of the formula[(R.sub.2 DQ).sub.b P.sup.+ R.sup.1.sub.4-b ].sub.g.(MX.sub.n).sub.sare disclosed in which R is selected from an alkyl group containing 1 to 30 carbon atoms and an aryl group containing from 6 to 10 carbon atoms; Q is a divalent organic radical selected from an alkylene group and an alkylene group the carbon chain of which is interrupted by an ether oxygen or phenylene group, wherein the alkylene group contains from 1 to 30 carbon atoms; R.sup.1 represents an alkyl group containing from 1 to 30 carbon atoms, wherein said R.sup.1 groups can be the same or different; D is a member selected from P and N; Z.sup.- is an anion; M is a Group VIII metal; X is an anion or organic ligand satisfying the coordination sites of the metal; b times g is 1 to 6; n is 2 to 6; and s is 1 to 3. Processes of using such complexes are also disclosed.
    Type: Grant
    Filed: November 3, 1980
    Date of Patent: June 28, 1983
    Assignee: Exxon Research and Engineering Co.
    Inventor: Alexis A. Oswald
  • Patent number: 4210426
    Abstract: A process for recovering propene and propene/propane mixtures from the off-gases obtained from the hydroformylation of propene involves contacting the off-gases with a liquid absorbent comprising at least one of the liquid substances formed during the hydroformylation of propene to absorb the propene and propane and thereafter desorbing these gases from said liquid substances.
    Type: Grant
    Filed: November 7, 1978
    Date of Patent: July 1, 1980
    Assignee: Chemische Werke Huls Aktiengesellschaft
    Inventor: Srinivasan Sridhar