Purification Or Recovery Patents (Class 568/913)
  • Patent number: 4977285
    Abstract: A heavy distillation fraction comprising tertiary butyl hydroperoxide, tertiary butyl alcohol, impurities and dissolved molybdenum catalyst resulting from the removel of propylene, propylene oxide and tertiary butyl alcohol from an epoxidation reaction product is mixed with about 5 to about 10 wt. %, based on the weight of the heavy liquid distilation fraction, of a lower aliphatic alcohol containing from 1 to 3 carbon atoms to provide a charge mixture, and the charge mixture is:charged to a falling film evaporator and separator therein, under evaporator operating conditions including a temperature within the range of about 20.degree. to about 150.degree. C. and a pressure of about 1 to about 200 mm Hg., into an overhead vaporized fraction comprising substantially all of the aliphatic alcohol and from about 80 to about 95 wt. % of the heavy distillation fraction charged to the falling film evaporator.
    Type: Grant
    Filed: December 8, 1989
    Date of Patent: December 11, 1990
    Assignee: Texaco Chemical Company
    Inventors: Edward T. Marquis, Kenneth P. Keating, Robert A. Meyer, John R. Sanderson
  • Patent number: 4969977
    Abstract: 2-Methyl butanol-1 cannot be completely removed from 2-methyl butanol-1-pentanol-1 mixtures by distillation because of the proximity of their boiling points. 2-methyl butanol-1 can be readily removed from mixtures of these alcohols by using extractive distillation in which the extractive agent is a mixture of aromatic carboxylic acids or aromatic carboxylic esters. Typical examples of effective agents are: benzoic acid, ethyl salicylate and salicylic acid; methyl benzoate, methyl p-hydroxy benzoate and phenyl salicylate.
    Type: Grant
    Filed: January 30, 1989
    Date of Patent: November 13, 1990
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 4961918
    Abstract: The present invention relates to a process for production of chlorine dioxide by reacting in a reaction vessel an alkali metal chlorate, sulfuric acid and methanol as a reducing agent. A reaction medium is maintained at a temperature from about 50.degree. C. to about 100.degree. C. and is subjected to a subatmospheric pressure sufficient to effect evaporation of water whereby a mixture of chlorine dioxide and water vapor is withdrawn from an evaporation region in the reaction vessel and alkali metal sulfate is precipitated in a crystallization region in the reaction vessel. Raw methanol purified by separation and adsorption is used as reducing agent. The raw methanol is purified by dilution with water whereby an unpolar phase is separated and and the remaining methanol-water phase is contacted by an adsorbing agent. The adsorbing agents used can be zeolites, active carbon or polymer adsorbing agents.
    Type: Grant
    Filed: February 15, 1989
    Date of Patent: October 9, 1990
    Assignee: Eka Nobel AB
    Inventors: Maria Norell, Anders Dahl, Ursula Soderberg
  • Patent number: 4935103
    Abstract: n-Propanol and t-amyl alcohol cannot be separated from each other by distillation because of the proximity of their boiling points. n-Propanol can be readily separated from t-amyl alcohol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl salicylate; benzyl benzoate and hexahydrophthalic anhydride; methyl salicylate, benzoic acid and hexahydrophthalic anhydride.
    Type: Grant
    Filed: October 10, 1989
    Date of Patent: June 19, 1990
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Robert W. Christensen
  • Patent number: 4910344
    Abstract: Aqueous compositions containing organic oxygenates such as methyl isobutyl ketone are treated by pervaporation through a polyvinyl alcohol/polyacrylic acid membrane to yield retentate containing increased concentration of oxygenate.
    Type: Grant
    Filed: February 1, 1989
    Date of Patent: March 20, 1990
    Assignee: Texaco Inc.
    Inventors: Mordechai Pasternak, Craig R. Bartels, John Reale, Jr.
  • Patent number: 4908477
    Abstract: Organic iodine compounds are separated from carbonylation products of methanol, methyl acetate and dimethyl ether and from mixtures of such carbonylation products by a process wherein the iodine compounds are removed by liquid phase extraction with a non-aromatic hydrocarbon.
    Type: Grant
    Filed: March 9, 1987
    Date of Patent: March 13, 1990
    Assignee: BASF Aktiengesellschaft
    Inventors: Horst Hartmann, Waldhelm Hochstein, Gerd Kaibel, Franz-Josef Mueller
  • Patent number: 4902385
    Abstract: Practically anhydrous crude sec-butyl alcohol produced by catalytic direct hydration of n-butenes is freed by means of water from the azeotropically boiling and low-boiling by-products by continuous azeotropic distillation in a separation column, the prepurified anhydrous sec-butyl alcohol obtained is withdrawn and the high-boiling by-products are subsequently separated in a separate column.
    Type: Grant
    Filed: August 19, 1988
    Date of Patent: February 20, 1990
    Assignee: Deutsche Texaco Aktiengesellschaft
    Inventor: Gunther Osterburg
  • Patent number: 4876403
    Abstract: According to the process of this invention, alcohols are recovered from aqueous acid solution by permeation of the alcohol through a perfluorinated ionomer membrane. An improved process for the manufacture of alcohols by acid absorption of olefins is also disclosed, the improvement residing in the use of a perfluorinated ionomer membrane to selectively permeate alcohols from the concentrated aqueous strong acid solution thereof co-produced in their synthesis from olefins.
    Type: Grant
    Filed: March 7, 1989
    Date of Patent: October 24, 1989
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Abraham D. Cohen, William D. Diana, James J. Baiel
  • Patent number: 4874474
    Abstract: A process is disclosed for the dehydration of a mixture of methanol and higher alcohols, containing 20 to 80% by weight of methanol, 1 to 60% by weight of at least a higher alcohol selected from those containing from 2 to 10 carbon atoms, 1 to 50% by weight of water and 0.
    Type: Grant
    Filed: April 1, 1988
    Date of Patent: October 17, 1989
    Assignee: Snamprogetti S.p.A.
    Inventors: Carlo Rescalli, Riziero Ricci, Adriano Scazzosi, Flavio Cianci
  • Patent number: 4849551
    Abstract: An industrially excellent method for separating cyclohexanol which comprises carrying out the hydration of cyclohexane in the presence of an acid, and bringing the reaction solution into contact with a mixed solution of a hydrocarbon and phenol to extraction-separate cyclohexanol from the reaction solution.
    Type: Grant
    Filed: March 24, 1988
    Date of Patent: July 18, 1989
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tamio Shirafuji, Itaru Kawata
  • Patent number: 4826576
    Abstract: Isopropyl acetate cannot be completely removed from isopropyl acetate--isopropanol--water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropyl acetate can be readily removed from mixtures containing it, isopropanol and water by using extractive distillation in which the extractive agent is a mixture of a polyol and one or higher boiling oxygenated, nitrogenous and/or sulfur containing organic compounds. Typical examples of effective agents are 1,3-butanediol and dimethylsulfoxide; 1,2,6-hexanetriol, dimethylsulfoxide and dimethylformamide.
    Type: Grant
    Filed: June 2, 1986
    Date of Patent: May 2, 1989
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4808270
    Abstract: For the preparation of an ether, e.g., tertiary amyl methyl ether, an olefin-containing feed stream is catalytically etherified with an alcohol, e.g., methyl alcohol. The etherification product is fractionally distilled into an overhead fraction containing essentially unreacted, light hydrocarbons and unreacted alcohol and into a bottoms fraction containing essentially the desired ether. The overhead fraction is condensed and cooled to resultant immiscible phases, of which one contains essentially the alcohol and the other contains essentially the hydrocarbons, are removed separately from each other. Water may be added to the overhead stream to facilitate the formation of the two liquid phases.
    Type: Grant
    Filed: January 21, 1987
    Date of Patent: February 28, 1989
    Assignee: Linde Aktiengesellschaft
    Inventors: Hans-Juergen Wernicke, Reinhard Glatthaar, Nikolaus Buckl
  • Patent number: 4806210
    Abstract: A process for the recovery of alcohols and hydrogen sulfide from a thiophosphate containing mixture is disclosed.
    Type: Grant
    Filed: September 11, 1987
    Date of Patent: February 21, 1989
    Assignee: The Lubrizol Corporation
    Inventor: Frank M. Van Lier
  • Patent number: 4798674
    Abstract: Mixtures containing methanol and dimethyl carbonate or methanol and methyl t-butyl ether may be treated by pervaporation to recover product containing decreased quantity of methanol.
    Type: Grant
    Filed: March 10, 1988
    Date of Patent: January 17, 1989
    Assignee: Texaco Inc.
    Inventors: Mordechai Pasternak, Craig R. Bartels, John Reale, Jr.
  • Patent number: 4769502
    Abstract: Alkynol type compounds of the following formula (I): ##STR1## [wherein R.sub.1 -R.sub.5 and R.sub.6 -R.sub.10 each represent hydrogen atoms or lower alkyl group and R.sub.11 represents a lower alkyl group or a group of the formula: ##STR2## (wherein R.sub.1 -R.sub.5 and R.sub.6 -R.sub.10 are as hereinbefore defined); at least one of R.sub.1 -R.sub.5 and at least one of R.sub.6 -R.sub.10 being lower alkyl grops.] These compounds are capable of forming and precipitating crystalline complexes with alcohols when added to an aqueous solution of alcohol. Thus, these compounds are useful for separating alcohols from aqueous solutions of alcohols.
    Type: Grant
    Filed: May 8, 1987
    Date of Patent: September 6, 1988
    Inventors: Fumio Toda, Koichi Tanaka
  • Patent number: 4756803
    Abstract: 2-Butanol cannot be completely removed from 2-butanol - t-amyl alcohol mixtures by distillation because of the proximitry of their boiling points. 2-Butanol can be readily removed from mixtures containing it and t-amyl alcohol by using extractive distillation in which the extractive agent is a higher boiling benzoate. Typical examples are methyl benzoate; methyl benzoate and salicylic acid; methyl benzoate, cinnamic acid and hexahydrophthalic anhydride.
    Type: Grant
    Filed: October 18, 1985
    Date of Patent: July 12, 1988
    Inventor: Lloyd Berg
  • Patent number: 4744869
    Abstract: A process for purifying methanol which comprises introducing crude synthetic methanol obtained by catalytic reaction of carbon oxide and hydrogen into a rectifying column either as such or after it is first introduced into a topping column and distilled with or without the addition of water to remove low-boiling components from the top of the topping column, and distilling it in the rectifying column to withdraw purified methanol from the top of the column and mainly water from the bottom of the column; wherein an auxiliary distillation column is provided side by side with the rectifying column, and the rectifying column and the auxiliary distillation column are operated under particular conditions.
    Type: Grant
    Filed: August 18, 1986
    Date of Patent: May 17, 1988
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Yoshihiko Saito, Osamu Hashimoto
  • Patent number: 4742179
    Abstract: Motor-fuel grade tertiary butyl alcohol contaminated with residual amounts of tertiary butyl hydroperoxide and ditertiary butyl peroxide (which is prepared, for example, by reacting propylene with tertiary butyl hydroperoxide to form propylene oxide and a motor fuel grade tertiary butyl alcohol reaction product) can be effectively catalytically treated under mild conversion conditions including a temperature of about 80.degree. to 180.degree. C. with a base-treated hydrogenation catalyst from groups VIB or VIIIB of the Periodic Table in order to substantially selectively convert the two peroxide contaminants to tertiary butyl alcohol and to thereby provide a treated tertiary butyl alcohol product substantially free from contaminating quantities of such peroxides.
    Type: Grant
    Filed: November 3, 1986
    Date of Patent: May 3, 1988
    Assignee: Texaco Inc.
    Inventors: John R. Sanderson, Robert M. Gipson, Kenneth P. Keating, Edward T. Marquis
  • Patent number: 4732653
    Abstract: Ethanol and t-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. Ethanol can be readily separated from t-butanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; benzyl benzoate and benzoic acid; methyl salicylate, hexahydrophthalic anhydride and salicylic acid.
    Type: Grant
    Filed: October 7, 1985
    Date of Patent: March 22, 1988
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4720327
    Abstract: Distillative separation of liquid mixtures of one or more water-insoluble substances which have boiling points higher than that of water and one or more substances which have boiling points lower than that of water or which form azeotropes having boiling points lower than that of water, wherein the mixture to be distilled is mixed with a quantity of water such that the boiling point of the water under the pressure applied limits the bottom temperature of the mixture of substances to be separated.
    Type: Grant
    Filed: September 20, 1982
    Date of Patent: January 19, 1988
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Aquila, Axel Nissen, Gerd Kaibel, Michael Horner, Walter Rebafka
  • Patent number: 4718987
    Abstract: Isopropanol cannot be completely removed from isopropanol--isopropyl acetate--water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropanol can be readily removed from mixtures containing it, isopropyl acetate and water by using extractive distillation in which the extractive agent is a higher boiling benzoate mixed with certain oxygenated or nitrogeneous organic compounds. Typical examples are butyl benzoate and ethylene carbonate; methyl benzoate, 2-nitropropane and n-decanol.
    Type: Grant
    Filed: February 12, 1987
    Date of Patent: January 12, 1988
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4715933
    Abstract: n-Propanol and 2-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. n-Propanol can be readily separated from 2-butanol using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; benzoic acid and methyl benzoate; cinnamic acid, phthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: September 16, 1985
    Date of Patent: December 29, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4714791
    Abstract: Primary normal aliphatic higher alcohols are selectively recovered with a high efficiency by contacting sugarcanes, or products obtained from the sugarcanes, or processed products from production of sugar as an extraction raw material with a fluid in a subcritical or supercritical state as an extractant, thereby extracting a trace amount of primary normal aliphatic higher alcohols contained in the extraction raw materials as an extract and separating the extracted alcohols from the extract.
    Type: Grant
    Filed: May 19, 1986
    Date of Patent: December 22, 1987
    Assignees: Seitetsu Kagaku Co., Ltd., Shinko Seito Co., Ltd., Shinko Sugar Production Co., Ltd.
    Inventors: Shoshichiro Inada, Kurune Furukawa, Takachika Masui, Keijiro Honda, Joji Ogasawara, Giichi Tsubakimoto
  • Patent number: 4710274
    Abstract: Ethanol and isopropanol cannot be separated from each other by distillation because of the proximity of their boiling points. Ethanol can be readily separated from isopropanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl salicylate; salicylic acid and hexahydrophthalic anhydride; salicylic acid, hexahydrophthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: August 4, 1986
    Date of Patent: December 1, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4710275
    Abstract: Isopropanol and t-butanol cannot be separated from each other by distillation because of the proximity of their boiling points. Isopropanol can be readily separated from t-butanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl benzoate; methyl benzoate and hexahydrophthalic anhydride; phthalic anhydride, hexahydrophthalic anhydride and methyl benzoate.
    Type: Grant
    Filed: September 20, 1985
    Date of Patent: December 1, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4701542
    Abstract: A process for the resolution of hemiacetal compounds of the formula ##STR1## wherein A is a hydrocarbon chain containing 1 to 16 groups, the said chain optionally containing at least one heteroatom, at least one unsaturation, the assembly of the group constituting the chain may be a mono- or polycyclic system including a spiro or endosystem and the assembly of chain A and the carbon atoms attached thereto can contain at least one chiral atom or the hemiacetal moiety thereto which can present a chirality due to the dissymetric spatial configuration of the molecule and Y is selected from the group consisting of hydrogen, alkyl of 1 to 18 carbon atoms optionally substituted, --CY.sub.3 ' and the .beta.,.gamma.
    Type: Grant
    Filed: March 31, 1986
    Date of Patent: October 20, 1987
    Assignee: Roussel Uclaf
    Inventors: Jean Tessier, Jean-Pierre Demoute
  • Patent number: 4693787
    Abstract: t-Amyl alcohol and isobutanol cannot be separated from each other by distillation because of the proximity of their boiling points. t-Amyl alcohol can be readily separated form isobutanol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: dimethylsulfoxide; dimethylsulfoxide and N,N-dimethylacetamide; dimethylsulfoxide, dimethylformamide and phthalic anhydride.
    Type: Grant
    Filed: March 2, 1987
    Date of Patent: September 15, 1987
    Inventors: Lloyd Berg, Michael J. Shanahan
  • Patent number: 4693788
    Abstract: t-Amyl alcohol and isobutanol cannot be separated from each other by distillation because of the proximity of their boiling points. t-Amyl alcohol can be readily separated from isobutanol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: dimethylformamide; N,N-dimethylacetamide; N,N-dimethylacetamide and dimethylsulfoxide; dimethylformamide, N,N-dimethylacetamide and phthalic anhydride.
    Type: Grant
    Filed: March 17, 1987
    Date of Patent: September 15, 1987
    Inventors: Lloyd Berg, Michael J. Shanahan
  • Patent number: 4675080
    Abstract: Isopropanol cannot be completely removed from isopropanol-isopropyl acetate-water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropanol can be readily removed from mixtures containing it, isopropyl acetate and water by using extractive distillation in which the extractive agent is a higher boiling ester of phthalic acid. Typical examples of effective agents are diethyl phthalate, diisooctyl phthalate and methyl benzoate, dibutyl phthalate, methyl benzoate and nitromethane.
    Type: Grant
    Filed: September 30, 1985
    Date of Patent: June 23, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4673466
    Abstract: n-Hexyl alcohol cannot be completely removed from n-hexyl acetate- n-hexyl alcohol - water mixtures by distillation because of the presence of the minimum ternary azeotrope. n-Hexyl alcohol can be readily removed from mixtures containing it, n-hexyl acetate and water by using extractive distillation in which the extractive distillation agent is a benzoate or a mixture of benzoates with higher boiling organic compounds. Typical examples of effective agents are benzyl benzoate; methyl benzoate and adiponitrile; ethyl benzoate, benzyl benzoate and methyl salicylate.
    Type: Grant
    Filed: January 27, 1986
    Date of Patent: June 16, 1987
    Inventor: Lloyd Berg
  • Patent number: 4670106
    Abstract: n-Amyl acetate cannot be completely removed from n-amyl acetate - n-amyl alcohol - water mixtures by distillation because of the presence of the minimum ternary azeotrope. n-Amyl acetate can be readily removed from mixtures containing it, n-amyl alcohol and water by using extractive distillation in which the extractive distillation agent is a higher boiling organic compound or a mixture of these. Typical examples of effective agents are dimethylsulfoxide; N,N-dimethylacetamide and dimethylsulfoxide; dimethylformamide, N,N-dimethylacetamide and acetamide.
    Type: Grant
    Filed: December 2, 1985
    Date of Patent: June 2, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4666563
    Abstract: Isopropyl ether cannot be completely removed from isopropyl ether--isopropanol--water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropyl ether can be readily removed from mixtures containing it, isopropanol and water by using extractive distillation in which the extractive distillation agent is a higher boiling glycol, glycol ether or a mixture of them. Typical examples of effective agents are ethylene glycol, propylene glycol, diethylene glycol diethyl ether plus propylene glycol ethyl ether.
    Type: Grant
    Filed: November 20, 1985
    Date of Patent: May 19, 1987
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4666560
    Abstract: Isopropanol cannot be completely removed from isopropanol - isopropyl acetate - water mixtures by distillation because of the presence of the minimum ternary azeoptrope. Isopropanol can be readily removed from mixtures containing it, isopropyl acetate and water by using extractive distillation in which the extractive agent is a higher boiling benzoate or nitro paraffin. Typical examples are methyl benzoate; methyl benzoate and nitromethane; butyl benzoate, nitromethane and nitroethane.
    Type: Grant
    Filed: October 11, 1985
    Date of Patent: May 19, 1987
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4652343
    Abstract: The separation of homozeotropic mixtures of a paraffin or paraffins of 6-14 carbon atoms and an alcohol or alcohols of 4-8 carbon atoms is conducted in two rectification steps. In a first step, rectification is carried out in the presence of water as the azeotropic agent, and the resultant distillate, after condensation, is separated into two liquid phases. The thus-obtained organic phase is rectified in a further step without the addition of water, and the head product consisting of an alcohol/paraffin mixture is recycled into the first step. The paraffin or paraffins and the alcohol or alcohols are obtained in the lower section of the individual rectifying step or steps. The water which may be present in the starting mixture is removed from the cycle. Low-boiling paraffins and/or low-boiling alcohols are suitable as additional azeotropic agents.
    Type: Grant
    Filed: April 17, 1985
    Date of Patent: March 24, 1987
    Assignee: Chemische Werke Huls Aktiengesellschaft
    Inventor: Srinivasan Sridhar
  • Patent number: 4647707
    Abstract: The higher alcohol yield of a hydroformylation process including hydroformylation, catalyst removal, hydrogenation and higher alcohol separation stages is improved by subjecting the Heavy Oxo Fraction (HOF) obtained following higher alcohol separation to steam cracking in the presence of a catalyst system comprising a dehydration-catalytic metal on an acidic support. The resultant cracked HOF mixture comprising a major proportion of olefin and saturated hydrocarbon is recycled to the hydroformylation stage.
    Type: Grant
    Filed: November 27, 1985
    Date of Patent: March 3, 1987
    Assignee: Exxon Research & Engineering Co.
    Inventor: Arie van Vliet
  • Patent number: 4645570
    Abstract: For the distillation of a stream consisting essentially of alcohols of 6-20 carbon atoms, water and methanol, the methanol is first separated from the homogeneous, aqueous solution as the overhead product by distillation under a head pressure of 500-1,000 mbar. The bottoms discharge is mechanically separated under normal pressure and at a temperature of 5.degree.-95.degree. C. in a phase separator to obtain a discrete water phase preferably containing at least two thirds of the feedstream water. The remaining organic phase is then transferred from the phase separator into a second distillation column and the organic phase is dewatered in the latter at 100-500 mbar. The head product from the second column is conducted to a second phase separator; the aqueous phase is separated therein at a temperature of 5.degree.-95.degree. C. and optionally returned into the first phase separator. The bottom product from the second distillation column is passed into a downstream distillation stage wherein the C.sub.6 to C.
    Type: Grant
    Filed: October 19, 1984
    Date of Patent: February 24, 1987
    Assignee: Huels Aktiengesellschaft
    Inventors: Srinivasan Sridhar, Manfred Hartmann
  • Patent number: 4601791
    Abstract: N-propanol and allyl alcohol cannot be separated from each other by distillation because of the proximity of their boiling points. N-propanol can be readily separated from allyl alcohol by using extractive distillation in which the extractive agent is a higher boiling oxygenated, nitrogenous and/or sulfur containing organic compound or a mixture of two or more of these compound. Examples of effective agents are: dimethylsulfoxide; acetamide and ethylene glycol phenylether; adiponitrile; N,N-dimethylacetamide; dimethylformamide; and sulfolane.
    Type: Grant
    Filed: July 15, 1985
    Date of Patent: July 22, 1986
    Inventors: Lloyd Berg, Mark G. Vosburgh
  • Patent number: 4599459
    Abstract: A method for the ultrasonic treatment of dilute alcoholic solution in which a vibrator member placed in a dilute alcoholic solution is subjected to ultrasonic vibrations to produce cavitation in the solution in such a way that alcohol in the solution is vaporized and collected in a high concentration. The alcohol may be readily converted into a corresponding aldehyde.
    Type: Grant
    Filed: August 31, 1984
    Date of Patent: July 8, 1986
    Inventor: Masanao Hirose
  • Patent number: 4594439
    Abstract: Methods and compositions are provided for asymmetrically donating an oxygen atom to a pair of electrons to produce an asymmetric product. Specifically, a metal alkoxide is used as a catalyst, where the metal has a coordination number of at least four, and at least one, usually two, of the alkoxide groups bonded to the metal are bonded to asymmetric carbon atoms. The metal catalyst is employed in conjunction with a hydroperoxide and an alkanol having a functionality with a pair of electrons capable of accepting an oxygen atom. The resulting product is enriched in one enantiomer due to the enantioselective introduction of an asymmetric center or an enhanced rate of reaction of one of the enantiomers of a chiral alkanol.
    Type: Grant
    Filed: August 23, 1984
    Date of Patent: June 10, 1986
    Assignee: The Board of Trustees of the Leland Stanford Jr. University
    Inventors: Tsutomu Katsuki, Karl B. Sharpless
  • Patent number: 4592806
    Abstract: The invention relates to a process for the production of grade AA methanol by distilling raw methanol in several distillation stages, for separating grade AA methanol, tail gas, and fusel oil from the raw methanol and further processing the fusel oil to produce additional methanol of grade AA quality at a return ratio of 5:1 or higher.
    Type: Grant
    Filed: March 28, 1984
    Date of Patent: June 3, 1986
    Assignee: Uhde GmbH
    Inventors: Hartmut Ilgner, Natarajan Thiagarajan, Gunter Heck, Aladar Lienerth
  • Patent number: 4584063
    Abstract: Acetone cannot be completely removed from acetone-methanol mixtures by distillation because of the presence of the minimum boiling azeotrope. Acetone can be readily separated from methanol by using extractive distillation in which the extractive agent is a higher boiling oxygenated, nitrogenous and/or sulfur-containing organic compound or a mixture of two or more of these. Typical examples of effective agents are: Glycerine, 1,5-Pentanediol, Dimethylsulfoxide, n-Hexanol, Dioctyl phthalate and N,N-Dimethylacetamide.
    Type: Grant
    Filed: June 28, 1982
    Date of Patent: April 22, 1986
    Inventors: Lloyd Berg, Karl J. Warren
  • Patent number: 4569726
    Abstract: Ethyl acetate cannot be completely removed from ethanol and water mixtures by distillation because of the presence of the minimum ternary azeotrope. Ethyl acetate can be readily removed from mixtures containing it, ethanol and water by using extractive distillation in which the extractive distillation agent is a higher boiling oxygenated, sulfur containing or nitrogenous organic compound or a mixture of these. Typical examples of effective agents are: 1,4-butanediol; ethylene glycol-1,5-pentanediol; propylene glycol-tetraethylene glycol-polyethylene glycol; glycerine-propylene glycol-tetraethylene glycol-1,4-butanediol.
    Type: Grant
    Filed: July 19, 1984
    Date of Patent: February 11, 1986
    Inventors: Lloyd Berg, Pisant Ratanapupech
  • Patent number: 4565646
    Abstract: An emulsifier for oil-in-water emulsions consisting essentially of a substantially steroid-free wool-wax alcohol free of .alpha.,.omega.-diols prepared by subjecting(a) wool-wax esters of mono- or multi-valent alcohols of 1 to 6 carbon atoms or(b) wool-wax alcohols optionally containing monovalent aliphatic alcohols of 1 to 6 carbon atoms to catalytic hydrogenation at a pressure of 170 to 300 bars and a temperature of 200.degree. to 300.degree. C. in the presence of a high pressure hydrogenation catalyst to obtain substantially steroid-free wool wax alcohols and removing therefrom .alpha.,.omega.-diols useful as emulsifiers.
    Type: Grant
    Filed: February 29, 1984
    Date of Patent: January 21, 1986
    Assignee: Beiersdorf Aktiengesellschaft
    Inventor: Wolfgang Hofeditz
  • Patent number: 4549938
    Abstract: Methanol cannot be completely removed from methanol-methyl acetate mixtures by distillation because of the presence of the minimum binary azeotrope. Methanol can be readily removed from mixtures containing it and methyl acetate by using extractive distillation in which the extractive distillation agent is a higher boiling oxygenated or nitrogenous organic compound or a mixture of these. Typical examples of effective agents are: ethylene glycol phenyl ether, ethylene carbonate, nitromethane, 2-nitrotoluene, 1-nitropropane plus propylene carbonate.
    Type: Grant
    Filed: March 23, 1984
    Date of Patent: October 29, 1985
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4544776
    Abstract: The reaction product from etherification of C.sub.4 -C.sub.7 isoolefins with methanol in the presence of an acidic catalyst is washed with water in the presence of inert hydrocarbons thereby removing methanol and a part of the tertiary alcohol. The aqueous extract solution bottoms is distilled to separate methanol as overhead. Tertiary alcohols are withdrawn as a side stream from a tray of the distillation column with a high concentration thereof and fed into the washing column.
    Type: Grant
    Filed: December 20, 1982
    Date of Patent: October 1, 1985
    Assignee: Deutsche Texaco Aktiengesellschaft
    Inventors: Gunther Osterburg, Milan Prezelj
  • Patent number: 4520213
    Abstract: A process for the separation of ethanol from water using solvent extraction at elevated pressures is disclosed. Separation is effected by contacting aqueous ethanol with either propylene (propene), allene (propadiene), methyl acetylene (propyne), or methyl allene (1,2-butadiene). This produces two liquid layers which separate because of the difference in their densities, and are easily drawn off as separate streams. The solvent is recovered by reverse osmosis means in a liquid state. The ethanol and water remain in a liquid state and are substantially recovered.
    Type: Grant
    Filed: July 14, 1983
    Date of Patent: May 28, 1985
    Assignee: Institute of Gas Technology
    Inventor: John G. Victor
  • Patent number: 4501645
    Abstract: Methanol cannot be completely removed from its mixture with acetone by distillation because of the presence of the minimum binary azeotrope. Methanol can be readily removed from mixtures containing it and acetone by using extractive distillation to bring off the methanol as overhead product in a rectification column by using extractive distillation in which the extractive distillation agent is an effective higher boiling organic compound or a mixture of these. Typical examples of effective agents are acetophenone, 3-pentanone, 2,4-pentanedione, ethylacetoacetate, 2-butanone plus benzil.
    Type: Grant
    Filed: November 1, 1983
    Date of Patent: February 26, 1985
    Inventors: Lloyd Berg, An-I Yeh
  • Patent number: 4492613
    Abstract: Methanol and cyclohexane are recovered from a condensed methanol-cyclohexane azeotrope by allowing the condensed azeotrope to separate in a vessel into an upper phase rich in cyclohexane and a lower phase rich in methanol, fractionating the upper phase in a first column whereby the methanol-cyclohexane azeotrope is taken off the top and returned to the vessel while cyclohexane is removed from the lower portion of the first column, and fractionating the lower phase in a second column whereby the methanol-cyclohexane azeotrope is taken off the top and returned to the vessel while methanol is removed from the lower portion of the second column.
    Type: Grant
    Filed: August 2, 1982
    Date of Patent: January 8, 1985
    Assignee: The B. F. Goodrich Company
    Inventor: Gerald V. Wootton
  • Patent number: 4492808
    Abstract: A process is disclosed for the separation of ethanol from an ethanol containing water solution, wherein the ethanol containing solution is extracted by means of a solvent which is in the liquid or supercritical state, the ethanol containing solvent phase is separated into its components by being conducted over an adsorption medium without changing the pressure or temperature, and the ethanol is recovered by treating the ethanol containing adsorption medium with the solvent used for the extraction at a pressure from 1 to 30 bar and at a temperature from 150.degree. to 300.degree. C.
    Type: Grant
    Filed: April 13, 1984
    Date of Patent: January 8, 1985
    Assignee: Fried. Krupp Gesellschaft mit beschrankter Haftung
    Inventors: Rainer Hagen, Jurgen Hartwig
  • Patent number: 4482766
    Abstract: In a process of recovering and cleaning catalysts in the continuous production of fat alcohols by a catalytic hydrogenation of fatty acids or fatty acid derivatives at temperatures of 240.degree. to 330.degree. C. and pressures of 200 to 700 bar in the presence of copper-chromium oxide catalysts, wherein the reaction is carried out in the presence of material which has been already reacted, the resulting dispersion is circulated through the filter which is due for cleaning until the contents of the stirring vessel is free of solids and the filter cake is substantially free of product, the liquid from which solids have been removed is separated into cleaning liquor and recovered product by a simple sedimentation in a liquid-liquid separator or by a distillation, the recovered product is fed to the main product, the catalyst which is moistened with the cleaning liquor and substantially free of product is withdrawn and, if required, is dryed.
    Type: Grant
    Filed: May 23, 1983
    Date of Patent: November 13, 1984
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventor: Hans-Martin Stonner