Electrostatic Patents (Class 57/402)
  • Patent number: 10441550
    Abstract: The present invention is a bioactive, nanofibrous material construct which is manufactured using a unique electrospinning perfusion methodology. One embodiment provides a nanofibrous biocomposite material formed as a discrete textile fabric from a prepared liquid admixture of (i) a non-biodegradable durable synthetic polymer; (ii) a biologically active agent; and (iii) a liquid organic carrier. These biologically-active agents are chemical compounds which retain their recognized biological activity both before and after becoming non-permanently bound to the formed textile material; and will become subsequently released in-situ as discrete freely mobile agents front the fabric upon uptake of water from the ambient environment.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: October 15, 2019
    Assignees: BIOSURFACES, INC., RHODE ISLAND BOARD OF EDUCATION, CLEMSON UNIVERSITY
    Inventors: Matthew D. Phaneuf, Philip J. Brown, Martin J. Bide
  • Patent number: 10221504
    Abstract: An apparatus for blending a polyethylene terephthalate (PET) and a kapok fiber using static electricity is provided, along with a method for blending the PET fiber and the kapok fiber using the apparatus. The fiber blending apparatus includes a fiber blending chamber having an inlet in which the PET fiber and the kapok fiber are introduced and an outlet from which a nonwoven fabric is discharged. A discharge plate is positioned at an upper side and a lower side based on a center line passing through the center of a cross section of the fiber blending chamber to accumulate the static electricity. The PET fiber and the kapok fiber contacting the discharge plate are electrically charged and are thus uniformly distributed and blended around the center line and stacked around an outlet.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: March 5, 2019
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Oh Deok Kwon, Kie Youn Jeong, Seong Je Kim, Bong Hyun Park, Won Jin Seo, Dong Uk Lee
  • Patent number: 8809212
    Abstract: Methods and apparatus for forming non-woven fiber mats from polymers and monomers that are traditionally difficult to use for fiber formation are shown and described. Applicable techniques include electrospinning and other traditional fiber formation methods. Suitable polymers and monomers include those having low molecular weight, a low melting point, and/or a low glass transition temperature.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: August 19, 2014
    Assignee: STC.UNM
    Inventors: Elizabeth Dirk, Shawn Dirk, Kirsten Cicotte
  • Patent number: 8501919
    Abstract: The configuration of a feedstock material is controlled by bringing it into contact with at least a first gas moving against it at a location with an area and thickness of the feedstock liquid that forms drops or fibers of a selected size. In one embodiment, drops of agricultural input materials are formed for spraying on agricultural fields. In another embodiment, nanofibers of materials such as chitosan or metals are formed. In another embodiment seeds are planted with gel.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: August 6, 2013
    Assignee: Kamterer Products, LLC
    Inventors: John Alvin Eastin, David Vu
  • Patent number: 7935209
    Abstract: A protective covering constructed from an electrostatically charged sheet having a top and bottom surface and an absorbent layer. The absorbent layer has top and bottom surfaces, the bottom surface of the absorbent layer being bonded to the top surface of the electrostatically charged sheet. The absorbent layer is divided into a plurality of cells for containing liquid spilled on the absorbent layer. The absorbent layer can be constructed from paper, open cell foam, fibrous mat, or any other absorbent material. In the preferred embodiment of the present invention, the cells are constructed by providing hydrophobic barriers in the absorbent layer. The barriers can be constructed from paraffin, plastic, or any other material that can penetrate the absorbent layer. In one embodiment of the present invention, a hydrophobic layer is bonded to the top surface of the absorbent layer.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: May 3, 2011
    Inventor: Calvin B. Ward
  • Patent number: 7785699
    Abstract: A protective covering constructed from an electrostatically charged sheet having a top and bottom surface and an absorbent layer. The absorbent layer has top and bottom surfaces, the bottom surface of the absorbent layer being bonded to the top surface of the electrostatically charged sheet. The absorbent layer is divided into a plurality of cells for containing liquid spilled on the absorbent layer. The absorbent layer can be constructed from paper, open cell foam, fibrous mat, or any other absorbent material. In the preferred embodiment of the present invention, the cells are constructed by providing hydrophobic barriers in the absorbent layer. The barriers can be constructed from paraffin, plastic, or any other material that can penetrate the absorbent layer. In one embodiment of the present invention, a hydrophobic layer is bonded to the top surface of the absorbent layer.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: August 31, 2010
    Inventor: Calvin B. Ward
  • Publication number: 20100175362
    Abstract: Production method of layered sound absorptive non-woven fabric, which comprises a resonance membrane which is positioned between two layers of the card fibrous web, while both layers of the card fibrous web are produced simultaneously in carding machine, from which each layer of the card fibrous web is separately brought into the device for production of nanofibres through electrostatic spinning, in which to the side of at least one layer of the card fibrous web adjacent to the remaining layer of the card fibrous web a layer of nanofibres is applied, after then both layers of the card fibrous web near to one another until their adjacent sides sit down one on another, they are laid one on another in a selected quantity of layers and the layers join mutually.
    Type: Application
    Filed: January 11, 2008
    Publication date: July 15, 2010
    Inventors: Denisa Stránská, Ladislav Mares, Oldrich Jirsák, Klára Kalinová
  • Publication number: 20100015895
    Abstract: Chemical mechanical polishing pads having an electrospun polishing layer are provided, wherein the electrospun polishing layer has a polishing surface that is adapted for polishing a semiconductor substrate. Also provided are methods of making such chemical mechanical polishing pads and for using them to polish semiconductor substrates.
    Type: Application
    Filed: July 15, 2008
    Publication date: January 21, 2010
    Inventors: Jeffrey J. Hendron, Mary Jo Kulp, Craig Sungail, Fengii Yeh
  • Publication number: 20090126333
    Abstract: Electrostatic fine fiber generation equipment such as for forming nano-fibers from polymer solution is provided. The fine fiber generation equipment includes a strand that may take the form of a stainless steel beaded chain. The beaded chain can be an endless chain entrained upon two guide wheels and driven about an endless path perpendicularly relative to the collection media.
    Type: Application
    Filed: November 20, 2007
    Publication date: May 21, 2009
    Applicant: CLARCOR Inc.
    Inventors: Thomas B. Green, Scotty L. King, Lei Li
  • Publication number: 20080307766
    Abstract: Production method of nanofibres from the polymeric solution through electrostatic spinning in electric field created by a difference of potentials between the collecting electrode (4) and pivoted spinning electrode (1) of an oblong shape touching by a part of its circuit the polymeric solution (3), while by rotation of the spinning electrode (1) the polymeric solution (3), at least by a portion of its surface, is carried out into the electric field in which on the surface of the collecting electrode (4) the nanofibres are created which are carried to the collecting electrode (4) and deposited on the surface of a basic material (5) guided between the spinning electrode (1) and the collecting electrode (4) in vicinity of the collecting electrode (4).
    Type: Application
    Filed: June 1, 2006
    Publication date: December 18, 2008
    Applicant: El-Marco, s.r.o
    Inventors: David Petras, Ladislav Mares, Denisa Stranska
  • Patent number: 7086846
    Abstract: An electro spinning process yields uniform, nanometer diameter polymer filaments. A thread-forming polymer is extruded through an anodically biased die orifice and drawn through an anodically biased electrostatic field. A continuous polymer filament is collected on a grounded collector. The polymer filament is linearly oriented and highly uniform in quality. The filament is particularly useful for weaving body armor, for chemical/biological protective clothing, as a biomedical tissue growth support, for fabricating micro sieves and for microelectronics fabrication.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: August 8, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: James Kleinmeyer, Joseph Deitzel, James Hirvonen
  • Patent number: 6787230
    Abstract: The present invention relates to ultra-fine inorganic fibers and a method of producing the same. The method of producing ultra-fine inorganic fibers comprises the steps of: mixing sol or gel containing an inorganic material and thermoplastic resin solution and reacting them to produce a mixture solution thereof; electronically spinning the mixture solution under a high voltage to produce a composite fiber with the inorganic material embedded in the thermoplastic resin; and carbonating the thermoplastic resin in the composite fiber or dissolving the same in a solvent. Thereby an ultra-fine inorganic fiber is prepared which has a length 100 to 10,000 times larger than its diameter and a diameter of 10 to 1,000 nm. The ultra-fine inorganic fiber of the present invention has a very large specific surface area with respect to its volume. Thus it is very useful as catalyst supporting materials, reinforcing materials, coating materials or the like in every field of industry.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: September 7, 2004
    Inventor: Hag-Yong Kim
  • Publication number: 20030207638
    Abstract: Electroprocessed polymers are used to form specifically-shaped shoes, clothing or other related garments. A mandrel having a preselected shape is used as the target in the electroprocessing step. The resulting product has a polymer matrix of exactly the shape of the mandrel. In practice, a person's foot or other body part is used to create the predetermined shape.
    Type: Application
    Filed: April 7, 2003
    Publication date: November 6, 2003
    Inventors: Gary L. Bowlin, David G. Simpson, Gary Wnek
  • Patent number: 6308509
    Abstract: Nanofibers are produced having a diameter ranging from about 4 Å to 1 nm, and a nano denier of about 10−9. The use of the electro-spinning process permits production of the desired nanofibrils. These fibrils in combination with a carrier or strengthening fibers/filaments can be converted directly into nonwoven fibrous assemblies or converted into linear assemblies(yarns) before weaving, braiding or knitting into 2-dimensional and 3-dimensional fabrics. The electrospun fiber can be fed in an air vortex spinning apparatus developed to form a linear fibrous assembly. The process makes use of an air stream in a properly confined cavity. The vortex of air provides a gentle means to convert a mixture of the fibril fed directly or indirectly from the ESP unit and a fiber mass or filament into an integral assembly with proper level of orientation. Incorporation of thus produced woven products into tissue engineering is part of the present invention.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: October 30, 2001
    Assignee: Quantum Group, Inc
    Inventors: Frank L. Scardino, Richard J. Balonis
  • Patent number: 6106913
    Abstract: Nanofibers are produced having a diameter ranging from about 4 .ANG. to 1 nm, and a nano denier of about 10.sup.-9. The use of the electro-spinning process permits production of the desired nanofibrils. These fibrils in combination with a carrier or strengthening fibers/filaments can be converted directly into nonwoven fibrous assemblies or converted into linear assemblies(yarns) before weaving, braiding or knitting into 2-dimensional and 3-dimensional fabrics. The electrospun fiber can be fed in an air vortex spinning apparatus developed to form a linear fibrous assembly. The process makes use of an air stream in a properly confined cavity. The vortex of air provides a gentle means to convert a mixture of the fibril fed directly or indirectly from the ESP unit and a fiber mass or filament into an integral assembly with proper level of orientation. Incorporation of thus produced woven products into tissue engineering is part of the present invention.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: August 22, 2000
    Assignee: Quantum Group, Inc
    Inventors: Frank L. Scardino, Richard J. Balonis
  • Patent number: 4468922
    Abstract: An apparatus for electrostatic spinning of textile fibers is disclosed. The apparatus includes a twister electrode and a rapid spinning ground electrode, more particularly, a spinning ground electrode having an insulated tip which is tapered and fluted so as to positively drive or rotate the yarn tail extending from the twister electrode.
    Type: Grant
    Filed: August 29, 1983
    Date of Patent: September 4, 1984
    Assignee: Battelle Development Corporation
    Inventors: Paul E. McCrady, Robert B. Reif