Using Metal, Metal Oxide, Or Hydroxide Catalyst Patents (Class 585/467)
  • Publication number: 20110245563
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out alkylation processes.
    Type: Application
    Filed: June 9, 2011
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20110245558
    Abstract: Cumene production methods are disclosed, based on the alkylation of benzene with propylene, in which byproducts of the alkylation reaction are advantageously reduced to achieve a high cumene selectivity. This may be attained by (i) reducing the portion of the total alkylation effluent that is recycled, after cooling, to the alkylation reaction zone for quenching or direct heat exchange and/or (ii) reducing the benzene:propylene molar ratio of the alkylation feedstock. To manage the temperature differential across catalyst bed(s) in the alkylation reaction zone, indirect heat exchange may be used to remove heat.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventor: Robert J. SCHMIDT
  • Publication number: 20110245564
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out various hydrocarbon conversion processes.
    Type: Application
    Filed: June 9, 2011
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Jaime G. Moscoso, Deng-Yang Jan
  • Patent number: 8030238
    Abstract: The present invention relates to a new zeolite having a beta-type crystalline structure, characterized by a distribution of the Lewis acid sites and Brønsted acid sites corresponding to a molar ratio [Lewis sites] [Brønsted sites] equal to or higher than 1.5. This new zeolite is useful in preparation processes of alkylated aromatic hydrocarbons through the alkylation and/or transalkylation of aromatic compounds. The preparation method of the new zeolite is also object of the present invention.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: October 4, 2011
    Assignees: Polimeri Europa S.p.A., Eni S.p.A.
    Inventors: Guido Spano′, Stefano Ramello, Gianni Girotti, Franco Rivetti, Angela Carati
  • Patent number: 8022261
    Abstract: A catalyst composition comprises a crystalline MCM-22 family molecular sieve and a binder, wherein the catalyst composition is characterized by an extra-molecular sieve porosity greater than or equal to 0.122 ml/g for pores having a pore diameter ranging from about 2 nm to about 8 nm, wherein the porosity is measured by N2 porosimetry. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent. The molecular sieve may have a Constraint Index of less than 12, e.g., less than 2. Examples of molecular sieve useful for this disclosure are a MCM-22 family molecular sieve, zeolite Y, and zeolite Beta.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: September 20, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mohan Kalyanaraman, Christine N. Elia, Darryl D. Lacy, Jean W. Beeckman, Michael C. Clark
  • Patent number: 8017824
    Abstract: This invention relates to hydrocarbon conversion processes using UZM-29 and UZM-29HS zeolitic compositions. The UZM-29 zeolites are represented by the empirical formula: Mmn+R+rAl1?xExSiyOz UZM-29 has the PHI structure type topology but is thermally stable up to a temperature of at least 350° C. UZM-29HS is a high silica version of UZM-29 and is represented by the empirical formula: M1?n+aAl(1?x)ExSiyOz. Examples of the hydrocarbon conversion processes are isomerization of alkanes, especially butane and the conversion of oxygenates to olefins.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: September 13, 2011
    Assignee: UOP LLC
    Inventors: Susan C. Koster, Jaime G. Moscoso
  • Patent number: 8013199
    Abstract: This invention provides for a process for the alkylation of an aromatic hydrocarbon stream having impurities in which a hydrocarbon feedstock is contacted with a first molecular sieve comprising Linde type X molecular sieve and having a Si/Al molar ratio of less than about 5 to remove at least a portion of said impurities and to produce a partially treated aromatic hydrocarbon stream; and then contacting said partially treated hydrocarbons stream with a second molecular sieve comprising a zeolite Y and having a Si/Al molar ratio of greater than about 5 to remove substantially all of the remaining portion of said impurities to produce a fully treated hydrocarbon feedstock having a reduced amount of impurities. The fully treated hydrocarbon feedstock is contacted with an alkylating agent in the presence of an alkylation catalyst having a cycle length and under alkylation conditions to produce an alkylated aromatic hydrocarbon stream.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: September 6, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Charles Morris Smith
  • Publication number: 20110207982
    Abstract: A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can be regenerated and the regenerated H-beta zeolite catalyst can have a deactivation rate that is no more than 120% of the deactivation rate of a fresh H-beta zeolite catalyst.
    Type: Application
    Filed: May 2, 2011
    Publication date: August 25, 2011
    Applicant: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20110190561
    Abstract: The present invention relates to a process for making a crystalline metallosilicate composition comprising crystallites having an inner part (the core) and an outer part (the outer layer or shell) such that: the ratio Si/metal is higher in the outer part than in the inner part, the crystallites have a continuous distribution of metal and silicon over the crystalline cross-section, said process comprising: a) providing an aqueous medium comprising OH— anions and a metal source, b) providing an aqueous medium comprising an inorganic source of silicon and optionally a templating agent, c) optionally providing a non aqueous liquid medium comprising optionally an organic source of silica, d) mixing the medium a), b) and the optional c) at conditions effective to crystallyze the desired metallosilicate, e) recovering the desired metallosilicate, wherein in the mixture a)+b)+c), before crystallization, the ratio Si org/Si inorganic is <0.3, advantageously <0.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 4, 2011
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Metin Bulut, Pierre Jacobs, Delphine Minoux, Nikolai Nesternko, Jean-Pierre Dath, Sander Van Donk
  • Publication number: 20110190560
    Abstract: In a process for producing xylene by transalkylation of a C9+ aromatic hydrocarbon feedstock, the feedstock, at least one C6-C7 aromatic hydrocarbon and hydrogen are supplied to at least one reaction zone containing at least first and second catalyst beds located such that the feedstock and hydrogen contact the first bed before contacting the second bed. The first catalyst bed comprises a first catalyst composition comprising a molecular sieve having a Constraint Index in the range of about 3 to about 12 and at least one metal or compound thereof of Groups 6-10 of the Periodic Table of the Elements, and the second catalyst bed comprises a second catalyst composition comprising a molecular sieve having a Constraint Index less than 3.
    Type: Application
    Filed: December 20, 2010
    Publication date: August 4, 2011
    Inventors: Chunshe Cao, Michel Molinier
  • Patent number: 7985886
    Abstract: A new family of crystalline aluminosilicate zeolites has been synthesized. These zeolites are represented by the empirical formula. Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the propyltrimethylammonium cation and E is a framework element such as gallium. These zeolites are similar to MWW but are characterized by unique x-ray diffraction patterns and compositions and have catalytic properties for carrying out alkylation processes.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 26, 2011
    Assignee: UOP LLC
    Inventors: Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20110178354
    Abstract: One exemplary embodiment can be a process using an aromatic methylating agent. Generally, the process includes reacting an effective amount of the aromatic methylating agent having at least one of an alkane, a cycloalkane, an alkane radical, and a cycloalkane radical with one or more aromatic compounds. As such, at least one of the one or more aromatic compounds may be converted to one or more higher methyl substituted aromatic compounds to provide a product having a greater mole ratio of methyl to phenyl than a feed.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Inventors: Antoine Negiz, Edwin Paul Boldingh, Gregory J. Gajda, Dean E. Rende, James E. Rekoske, David E. Mackowiak, Paul Barger, Paula L. Bogdan
  • Patent number: 7982081
    Abstract: Alkylation processes such as the alkylation of aromatics, are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1?x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in alkylation processes.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Patent number: 7982082
    Abstract: Alkylation processes such as the alkylation of aromatics, are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolitic compositions represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolitic compositions are active and selective in alkylation processes.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: Christopher P Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20110166403
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Application
    Filed: March 10, 2011
    Publication date: July 7, 2011
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Patent number: 7973206
    Abstract: A process is presented for the production of linear alkylbenzenes. The process includes contacting an aromatic compound with an olefin in the presence of a selective zeolite catalyst. The catalyst includes two zeolites combined to improve the linearity, and to produce detergent grade LAB. The two zeolites are selected to limit skeletal isomerization while producing a desired 2-phenyl content for the LAB.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: July 5, 2011
    Assignee: UOP LLC
    Inventors: Mark G. Riley, Deng-Yang Jan, Stephen W. Sohn, Jaime G. Moscoso
  • Publication number: 20110144403
    Abstract: A process is disclosed using a new catalyst for use in the alkylation of benzene with a substantially linear olefin. The catalyst allows for cation exchange with a rare earth element to increase the alkylation of benzene, while reducing the amount of isomerization of the alkyl group. This is important for increasing the quality of the alkylbenzene by increasing the linearity of the alkylbenzene.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 16, 2011
    Applicant: UOP LLC
    Inventors: Deng-Yang Jan, Mark G. Riley, Stephen W. Sohn, Jaime G. Moscoso, Raelynn M. Miller
  • Publication number: 20110144401
    Abstract: This disclosure relates to a process for manufacturing a mono-alkylaromatic aromatic compound, said process comprising contacting a feedstock comprising an alkylatable aromatic compound and an alkylating agent under alkylation reaction conditions with a catalyst comprising EMM-13, wherein said EMM-13 is a molecular sieve comprising a framework of tetrahedral atoms bridged by oxygen atoms, the tetrahedral atom framework being defined by a unit cell with atomic coordinates in nanometers shown in Table 3.
    Type: Application
    Filed: July 15, 2009
    Publication date: June 16, 2011
    Inventors: Terry E. Helton, Matthew J. Vincent
  • Publication number: 20110137099
    Abstract: In a process for the alkylation of aromatic compounds an aromatic compound; an alkylating agent; hydrogen, an inert gas or a mixture there; and steam is contacted with a shape-selective zeolite catalyst in a reactor. Hydrogen, an inert gas or a mixture thereof is introduced into the reactor which is at a temperature of about 200° C., the alkylating agent is introduced into the reactor which is at a temperature of about 480° C. and the aromatic compound may be introduced into the reactor which is at a temperature of about 200° C. or about 480° C. and steam may be introduced into the reactor which is at a temperature of about 200° C. or about 480° C. This process is applicable for toluene methylation with a shape-selective catalyst of an aluminosilicate zeolite, such as ZSM-5 which has been modified with phosphorus, to produce para-xylene (p-xylene).
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Applicant: Saudi Basic Industries Corporation
    Inventors: Ashim Kumar Ghosh, Pamela Harvey, Neeta Kulkarni
  • Publication number: 20110130609
    Abstract: Methods of forming ethylbenzene are described herein. In one embodiment, the method includes contacting dilute ethylene with benzene in the presence of an alkylation catalyst to form ethylbenzene, wherein such contact occurs in a liquid phase reaction zone and recovering ethylbenzene from the reaction zone.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 2, 2011
    Applicant: FINA TECHNOLOGY, Inc.
    Inventor: James R. Butler
  • Patent number: 7951986
    Abstract: Disclosed herein is a process and catalyst for producing an ethylbenzene feed from a polyethylbenzene feed, comprising the step of contacting a benzene feed with a polyethylbenzene feed under at least partial liquid phase conditions in the presence of a zeolite beta catalyst having a phosphorus content in the range of 0.01 wt. % to 0.5 wt. % of said catalyst, to provide a product which comprises ethylbenzene.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: May 31, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Jane C. Cheng, Ajit B. Dandekar
  • Patent number: 7951984
    Abstract: The present invention provides a reactor system having: (1) a first reactor receiving an oxygenate component and a hydrocarbon component and capable of converting the oxygenate component into a light olefin and the hydrocarbon component into alkyl aromatic compounds; (2) a separator system for providing a first product stream containing a C3 olefin, a second stream containing a C7 aromatic, and a third stream containing C8 aromatic compounds; (3) a first line connecting the separator to the inlet of the first reactor for conveying the second stream to the first reactor; (4) a second line in fluid communication with the separator system for conveying the C3 olefin to a propylene recovery unit, and (4) a third line in fluid communication with the separator system for conveying the C8 aromatic compounds to a xylene recovery unit.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: May 31, 2011
    Assignee: UOP LLC
    Inventors: Andrea G. Bozzano, Timur V. Voskoboynikov, Tom N. Kalnes, Paul T. Barger, Gavin P. Towler, Bryan K. Glover
  • Patent number: 7939700
    Abstract: The present invention provides an improved process for conversion of feedstock comprising an alkylatable aromatic compound and an alkylating agent to desired alkylaromatic conversion product under at least partial liquid phase conversion conditions in the presence of specific catalyst comprising a porous crystalline material, e.g., a crystalline aluminosilicate, and binder in the ratio of crystal/binder of from about 20/80 to about 60/40. The porous crystalline material of the catalyst may comprise a crystalline molecular sieve having the structure of Beta, an MCM-22 family material, e.g., MCM-49, or a mixture thereof.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: May 10, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Frederick Y. Lo, Christine N. Elia, Matthew J. Vincent
  • Patent number: 7939704
    Abstract: Disclosed are ethylbenzene processes in which a series-arranged or combined vapor phase alkylation/transalkylation reaction zone is retrofitted to have a vapor phase alkylation reactor and a liquid phase transalkylation reactor, and in which a parallel-arranged vapor phase alkylation reactor and vapor phase transalkylation reactor is retrofitted to have a vapor phase alkylation reactor and liquid phase transalkylation reactor, wherein the xylenes content of the ethylbenzene product is less than 700 wppm.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: May 10, 2011
    Assignees: ExxonMobil Chemical Patents Inc., Stone & Webster, Inc.
    Inventors: Michael C. Clark, Vijay Nanda, Carlos N. Lopez, Brian Maerz, Maruti Bhandarkar
  • Patent number: 7939693
    Abstract: A process for producing sec-butylbenzene comprises feeding reactants comprising benzene and a C4 olefin to a distillation column reactor having a first reaction zone containing an alkylation catalyst and a second distillation zone, which is located below said first reaction zone and which is substantially free of alkylation catalyst, wherein the ratio of the number of distillation stages in said first reaction zone to the number of distillation stages in said second distillation zone is less than 1:1. Concurrently in the distillation reactor, the reactants are contacted with the alkylation catalyst in the first reaction zone under conditions such that the C4 olefin reacts with the benzene to produce sec-butylbenzene and the sec-butylbenzene is fractioned from the unreacted C4 olefin. The sec-butylbenzene thereby passes as a liquid phase stream from the first reaction zone to the second distillation zone and the liquid phase steam is withdrawn from the distillation column reactor as bottoms.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 10, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane C. Cheng, Jihad M. Dakka, Travis A. Reine, Jon E. Stanat
  • Publication number: 20110092745
    Abstract: The invention provides an efficient process for producing alkylated aromatic compounds by directly reacting an aromatic compound with a ketone and hydrogen in a compact reactor. The invention further provides a process for producing phenol which includes a step of producing cumene by the above alkylation process. The process for producing alkylated aromatic compounds includes feeding raw materials including an aromatic compound, a ketone and hydrogen in a gas-liquid downward concurrent flow mode to a fixed-bed reactor packed with a catalyst thereby to produce an alkylated aromatic compound, wherein the catalyst includes a solid acid component and a metal component, the catalyst is loaded in the fixed-bed reactor such that the catalyst forms a catalyst layer, and the reaction gas flow rate defined by Equation (1) below is not less than 0.
    Type: Application
    Filed: June 3, 2009
    Publication date: April 21, 2011
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Shinji Senoo, Kazuhiko Kato, Kenji Doi, Katsunari Higashi
  • Patent number: 7928274
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: April 19, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Patent number: 7923589
    Abstract: A process for producing an alkylated aromatic product in a reactor by reacting an alkylatable aromatic compound feedstock with another feedstock comprising alkene component and alkane component in a reaction zone containing an alkylation catalyst. The reaction zone is operated in predominantly liquid phase without inter-zone alkane removal. The polyalkylated aromatic compounds can be separated as feed stream for transalkylation reaction in a transalkylation reaction zone.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: April 12, 2011
    Assignees: ExxonMobil Chemical Patents Inc., Stone & Webster, Inc.
    Inventors: Michael C. Clark, Brian Maerz
  • Patent number: 7923590
    Abstract: A process for producing a monoalkylation aromatic product, such as ethylbenzene and cumene, utilizing an alkylation reactor zone and a transalkylation zone in series or a combined alkylation and transalkylation reactor zone. This process requires significantly less total aromatics distillation and recycle as compared to the prior art.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 12, 2011
    Assignees: ExxonMobil Chemical Patents Inc, Stone & Webster, Inc.
    Inventors: Shiou-Shan Chen, Shyh-Yuan H. Hwang
  • Publication number: 20110077443
    Abstract: A method of producing an alkylaromatic by the alkylation of an aromatic with an alkylating agent, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed. The method includes using an H-beta catalyst to minimize process upsets due to alkylation catalyst deactivation and the resulting catalyst regeneration or replacement. The H-beta catalyst can be used in a preliminary alkylation reactor that is located upstream of the primary alkylation reactor. The H-beta catalyst used in a preliminary alkylation reactor can lead to the reactivation of the catalyst in the primary alkylation reactor.
    Type: Application
    Filed: April 22, 2010
    Publication date: March 31, 2011
    Applicant: Fina Technology, Inc.
    Inventor: James R. Butler
  • Publication number: 20110077442
    Abstract: A aromatic alkylation catalyst, processes for producing the catalyst, and aromatic alkylation processes employing the catalysts are disclosed. The catalyst comprises a UZM-8 zeolite and nitrogen, and the catalyst has a nitrogen to zeolite aluminum molar ratio of at least about 0.015. In an exemplary alkylation process, the catalyst provides improved product yield.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 31, 2011
    Applicant: UOP LLC
    Inventors: Deng-Yang Jan, James A. Johnson, Robert J. Schmidt, Mathias P. Koljack
  • Patent number: 7915469
    Abstract: This invention relates to hydrocarbon conversion processes using crystalline zeolitic compositions designated the UZM-26 and UZM-26X. UZM-26 is a microporous three-dimensional zeolitic composition that is derived from UZM-26P (an as synthesized layered composition) by calcination. UZM-26X is a microporous three-dimensional zeolitic composition that is derived from UZM-26PX by calcination, where UZM-26PX is an ion-exchanged form of UZM-26P.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: March 29, 2011
    Assignee: UOP LLC
    Inventors: Mark A. Miller, Gregory J. Lewis
  • Patent number: 7910785
    Abstract: This disclosure relates to a process for hydrocarbon conversion comprising contacting, under conversion conditions, a feedstock suitable for hydrocarbon conversion with a catalyst comprising an EMM-10 family molecular sieve.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: March 22, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Wieslaw J. Roth, Jane C. Cheng, Mohan Kalyanaraman, Michael C. Kerby, Terry E. Helton
  • Patent number: 7910779
    Abstract: In a process for producing cyclohexylbenzene, benzene and hydrogen are fed to at least one reaction zone. The benzene and hydrogen are then contacted in the at least one reaction zone under hydroalkylation conditions with a catalyst system comprising a molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom, and at least one hydrogenation metal to produce an effluent containing cyclohexylbenzene. The catalyst system has an acid-to-metal molar ratio of from about 75 to about 750.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: March 22, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Jane C. Cheng, Terry E. Helton, John Scott Buchanan
  • Patent number: 7910778
    Abstract: In a process for producing cyclohexylbenzene, benzene and hydrogen are contacted with a catalyst under hydroalkylation conditions to produce an effluent containing cyclohexylbenzene. The catalyst comprises a composite of a molecular sieve, an inorganic oxide different from said molecular sieve and at least one hydrogenation metal, wherein at least 50 wt % of said hydrogenation metal is supported on the inorganic oxide.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: March 22, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, John Scott Buchanan, Jane Chi-ya Cheng, Terry E. Helton
  • Publication number: 20110065972
    Abstract: The present disclosure provides a process for selectively producing a desired monoalkylated aromatic compound comprising the step of contacting in a reaction zone an alkylatable aromatic compound with an alkylating agent in the presence of catalyst comprising a porous crystalline material under at least partial liquid phase conditions, said catalyst manufactured from extrudate to comprise catalytic particulate material of from about 125 microns to about 790 microns in size, having an Effectiveness Factor increased from about 25% to about 750% from that of the original extrudate, and having an external surface area to volume ratio of greater than about 79 cm?1.
    Type: Application
    Filed: September 16, 2010
    Publication date: March 17, 2011
    Inventors: Michael C. Clark, Christine N. Elia, Frederick Y. Lo, Matthew J. Vincent
  • Patent number: 7906685
    Abstract: In a process for producing cyclohexylbenzene, benzene and hydrogen are fed to at least one reaction zone. The benzene and hydrogen are then contacted in the at least one reaction zone under hydroalkylation conditions with a catalyst system comprising a molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom, and at least one hydrogenation metal to produce an effluent containing cyclohexylbenzene. The ratio of the total number of moles of hydrogen fed to said at least one reaction zone to the number of moles of benzene fed to said at least one reaction zone is between 0.4 and 0.9:1.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: March 15, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Francisco M. Benitez, Jane C. Cheng, Jon E. Stanat, John Scott Buchanan
  • Patent number: 7902414
    Abstract: A catalytic process for the selective production of para-xylene comprises the step of reacting an aromatic hydrocarbon selected from the group consisting of toluene, benzene and mixtures thereof with a feed comprising carbon monoxide and hydrogen in the presence of a selectivated catalyst. The process includes a catalyst selectivation phase and a para-xylene production phase. In the catalyst selectivation phase, the aromatic hydrocarbon and the feed are contacted with the catalyst under a first set of conditions effective to increase the para-selectivity of said catalyst. In the para-xylene production phase, the aromatic hydrocarbon and said feed are contacted with the catalyst under a second set of conditions different from the first set of conditions effective to selectively produce para-xylene.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: March 8, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Zongxuan Hong, Songsheng Tan, Timothy E. McMinn
  • Publication number: 20110044891
    Abstract: A process for manufacturing a synthetic porous crystalline molecular sieve requires an aqueous reaction mixture comprising a source of X2O3 (X is a trivalent element), a source of YO2 (Y is a tetravalent element) and a source of MOH (M is an alkali metal). The H2O/MOH molar ratio is within the range of 70 to 126 and the source of X2O3 and YO2 is an amorphous material containing both X2O3 and YO2 and having YO2/X2O3 molar ratio of 15 or less. The molecular sieve products are useful as catalysts and/or absorbents. Such molecular sieves having MFI structure type, TON structure type or the structure type of zeolite beta and a composition involving the molar relationship (n) YO2:X2O3 wherein n is from 2 to less than 15 are novel compositions of matter.
    Type: Application
    Filed: January 19, 2009
    Publication date: February 24, 2011
    Inventors: Wieslaw Jerzy Roth, Mae Koenig Rubin
  • Patent number: 7888544
    Abstract: This invention relates to hydrocarbon conversion processes using a new family of crystalline aluminosilicate compositions designated the UZM-27 family. These include the UZM-27 and UZM-27HS which have unique structures. UZM-27 is a microporous composition which has a three-dimensional structure and is obtained by calcining the as synthesized form designated UZM-27P. UZM-27HS is a high silica version of UZM-27 and includes an essentially pure silica version of UZM-27.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: February 15, 2011
    Assignee: UOP LLC
    Inventors: Mark A. Miller, Gregory J. Lewis
  • Publication number: 20110034749
    Abstract: A process is described for synthesizing a porous, crystalline material having the framework structure of ZSM-12 of the formula: (n)YO2:X2O3 wherein X is a trivalent element, Y is a tetravalent element and n is between about 80 and about 250. In the process, a mixture capable of forming said material is prepared comprising sources of alkali or alkaline earth metal (M), an oxide of trivalent element (X), an oxide of tetravalent element (Y), hydroxyl ions (OFF), water and tetraethylammonium cations (R), wherein said mixture has a composition, in terms of mole ratios, within the following ranges: YO2/X2O3=100 to 300; H2O/YO2=5 to 15; OH?/YO2=0.10 to 0.30; M/YO2=0.05 to 0.30; and R/YO2=0.10 to 0.20. The mixture is reacted at a temperature of at least about 300° F. (149° C.) for a time of less than about 50 hours to form crystals of the crystalline material and the crystalline material is then recovered.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 10, 2011
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Wenyih Frank Lai, Jeffrey T. Elks, Robert E. Kay
  • Publication number: 20110028772
    Abstract: A catalyst composition comprises a crystalline MCM-22 family molecular sieve and a binder, wherein the catalyst composition is characterized by an extra-molecular sieve porosity greater than or equal to 0.122 ml/g for pores having a pore diameter ranging from about 2 nm to about 8 nm, wherein the porosity is measured by N2 porosimetry. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent. The molecular sieve may have a Constraint Index of less than 12, e.g., less than 2.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 3, 2011
    Inventors: Mohan Kalyanaraman, Christine N. Elia, Darryl D. Lacy, Jean W. Beeckman, Michael C. Clark
  • Publication number: 20110021855
    Abstract: A method of manufacturing a molecular sieve of the MCM-22 family, said method comprising the steps of (a) providing a mixture comprising at least one source of ions of tetravalent element, at least one source of alkali metal hydroxide, at least one directing-agent (R), water, and optionally at least one source of ions of trivalent element, said mixture having the following mole composition: Y:X2=10 to infinity H2O:Y=1 to 20 OH?:Y=0.001 to 2 M+:Y=0.001 to 2 R:Y=0.001 to 0.34 wherein Y is a tetravalent element, X is a trivalent element, M is an alkali metal; (b) treating said mixture at crystallization conditions for less than 72 hr to form a treated mixture having said molecular sieve, wherein said crystallization conditions comprise a temperature in the range of from about 160° C. to about 250° C.; and (c) recovering said molecular sieve.
    Type: Application
    Filed: August 13, 2010
    Publication date: January 27, 2011
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Publication number: 20110021856
    Abstract: A method of preparing a crystalline molecular sieve is provided, which method comprises (a) providing a reaction mixture comprising at least one source of ions of tetravalent element Y, at least one source of alkali metal hydroxide, water, optionally at least one seed crystal, and optionally at least one source of ions of trivalent element X, said reaction mixture having the following mole composition: Y:X2=10 to infinity OH?:Y=0.001 to 2 M+:Y=0.001 to 2 wherein M is an alkali metal and the amount of water is at least sufficient to permit extrusion of said reaction mixture; (b) extruding said reaction mixture to form a pre-formed extrudate; and (c) crystallizing said pre-formed extrudate under vapor phase conditions in a reactor to form said crystalline molecular sieve whereby excess alkali metal hydroxide is removed from the pre-formed extrudate during crystallization. The crystalline molecular sieve product is useful as catalyst in hydrocarbon conversion processes.
    Type: Application
    Filed: October 1, 2010
    Publication date: January 27, 2011
    Inventors: Wenyih Frank Lai, Robert Ellis Kay
  • Patent number: 7868215
    Abstract: A process for producing cumene is provided which comprises the step of contacting benzene and propylene under at least partial liquid phase alkylating conditions with a particulate molecular sieve alkylation catalyst, wherein the particles of said alkylation catalyst have a surface to volume ratio of about 80 to less than 200 inch?1.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ajit B. Dandekar, Michael Hryniszak, David Lawrence Stern
  • Patent number: 7868219
    Abstract: A process for producing an ethylbenzene product having a purity of at least 99.50 percent based on the weight of ethylbenzene present in the product by the ethylation of the benzene present in non-extracted feed, e.g., non-extracted hydrocarbon composition. The non-extracted feed is substantially free of both C4? hydrocarbons and the C7+ aromatic hydrocarbons and contains benzene and benzene coboilers. The process is carried out in the liquid phase, in the presence of an acid-active catalyst containing MCM-22 family molecular sieve, and under specified conditions.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: January 11, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, Nick A. Collins
  • Patent number: 7868218
    Abstract: A process is described for producing an alkylaromatic compound in a multistage reaction system comprising at least first and second series-connected alkylation reaction zones each containing an alkylation catalyst. A first feed comprising an alkylatable aromatic compound and a second feed comprising an alkene and one or more alkanes are introduced into said first alkylation reaction zone, having operating conditions, e.g., temperature and pressure, which are controlled effective to cause the alkylatable aromatic compound to be partly in the vapor phase and partly in the liquid phase with the ratio of liquid volume to vapor volume of the feed in each zone to be from about 0.5 to about 10.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: January 11, 2011
    Assignees: ExxonMobil Chemical Patents Inc., Badger Licensing, LLC
    Inventors: Michael C. Clark, Brian Maerz
  • Patent number: 7858832
    Abstract: A process for producing sec-butylbenzene comprises contacting a feed comprising benzene and a C4 alkylating agent under alkylation conditions comprising a temperature of about 110° C. to about 150° C. with a catalyst comprising at least one molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The sec-butylbenzene can be then oxidized to produce a hydroperoxide and the hydroperoxide decomposed to produce phenol and methyl ethyl ketone.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: December 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane C. Cheng, John S. Buchanan, Jon E. Stanat, Christine N. Elia, Jihad M. Dakka
  • Publication number: 20100317896
    Abstract: A process for producing sec-butylbenzene comprises feeding reactants comprising benzene and a C4 olefin to a distillation column reactor having a first reaction zone containing an alkylation catalyst and a second distillation zone, which is located below said first reaction zone and which is substantially free of alkylation catalyst, wherein the ratio of the number of distillation stages in said first reaction zone to the number of distillation stages in said second distillation zone is less than 1:1. Concurrently in the distillation column reactor, the reactants are contacted with the alkylation catalyst in the first reaction zone under conditions such that the C4 olefin reacts with the benzene to produce sec-butylbenzene and the sec-butylbenzene is fractionated from the unreacted C4 olefin. The sec-butylbenzene thereby passes as a liquid phase stream from the first reaction zone to the second distillation zone and the liquid phase stream is withdrawn from the distillation column reactor as bottoms.
    Type: Application
    Filed: July 11, 2008
    Publication date: December 16, 2010
    Inventors: Jane C. Cheng, Jihad M. Dakka, Travis A. Reine, Jon E. Stanat
  • Patent number: 7847128
    Abstract: In a process for producing cyclohexylbenzene, benzene and hydrogen are fed to at least one reaction zone. The benzene and hydrogen are then contacted in the at least one reaction zone under hydroalkylation conditions with a catalyst system comprising a molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom, and at least one hydrogenation metal to produce an effluent containing cyclohexylbenzene. The catalyst system has an acid-to-metal molar ratio of from about 75 to about 750.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: December 7, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Jane C. Cheng, Terry E. Helton, John Scott Buchanan