Using P-containing Catalyst Patents (Class 585/509)
  • Patent number: 11459509
    Abstract: The present disclosure relates to a device that includes a filter element and a catalyst, where the filter element is configured to remove particulate from a stream that includes at least one of a gas and/or a vapor to form a filtered stream of the gas and/or the vapor, the catalyst is configured to receive the filtered stream and react a compound in the filtered stream to form an upgraded stream of the gas and/or the vapor, further including an upgraded compound, and both the filter element and the catalyst are configured to be substantially stable at temperatures up to about 500° C.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: October 4, 2022
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Kimberly A. Magrini, Braden Hamilton Peterson, Chaiwat Engtrakul, Andrew Nolan Wilson
  • Patent number: 8962903
    Abstract: An ethylene oligomerization catalyst which contains a bridged diphosphine ligand having the formula (R1)m(X1)nP1-bridge-P2(R2)X2 wherein R1 and R2 are independently selected from the group consisting of hydrocarbyl and heterohydrocarbyl; X1 is selected from the group consisting of halogen, hydrocarbyl and heterohydrocarbyl; m is 1 or 2; n is 0 or 1; m+n=2; bridge is a divalent bridging group bonded to P1 and P2; and X2 is halogen. The present ligands differ from prior diphosphine ligands used in olefin oligomerization processes in that at least one halide substituent is directly bonded to at least one P atom of the ligand.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 24, 2015
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Charles Ashton Garret Carter, Xiaoliang Gao
  • Publication number: 20140213834
    Abstract: Provided is a polyalphaolefin (PAO) fluid including a polymer of one or more C8 to C12 alphaolefin monomers. The PAO has a viscosity (Kv100) from 300 to 900 cSt at 100° C.; a viscosity index (VI) greater than 250; a pour point (PP) less than ?25° C.; a molecular weight distribution (Mw/Mn) less than 2.0 as synthesized; a residual unsaturation (Bromine Number) less than 2.0; and a glass transition temperature Tg less than ?60° C. The PAO also has no crystallization peak as measured by differential scanning calorimetry and high thermal stability. A process to make and use the PAOs, including those having any combination of characteristics above is also provided. The PAOs are useful as synthetic base stocks and co-base stocks in lubricating oils, e.g., industrial lubes.
    Type: Application
    Filed: January 28, 2013
    Publication date: July 31, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: ABHIMANYU O. PATIL, SATISH BODIGE, SHUJI LUO, JOHN W. CHU, KEVIN STAVENS, BRUCE A. HARRINGTON
  • Patent number: 8524930
    Abstract: This invention relates to a metathesis catalyst comprising a Group 8 metal complex represented by the formula: wherein: M is a Group 8 metal; each X is independently an anionic ligand; R1 and R2 are independently selected from the group consisting of hydrogen, a C1 to C30 hydrocarbyl, and a C1 to C30 substituted hydrocarbyl; R3 and R4 are independently selected from the group consisting of hydrogen, C1 to C12 hydrocarbyl groups, substituted C1 to C12 hydrocarbyl groups, and halides; and L is a neutral donor ligand. This invention also relates to processes for performing a metathesis reaction, in particular ring opening cross metathesis reactions and ring opening metathesis polymerization reactions, using the Group 8 metal complexes.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya
  • Publication number: 20130131410
    Abstract: This disclosure relates to a liquid syndiotactic polyalphaolefin, sPAO, comprising one or more C4 to C24 monomers, said sPAO having: a) an rr triad content of 5 to 50% as measured by 13C NMR; b) an mr triad content of 25 to 60% as measured by 13C NMR, where the mr to mm triad ratio is at least 1.0; c) a pour point of Z ° C. or less, where Z=0.0648X?51.2, where X=kinematic viscosity at 100° C. as reported in centistokes (cSt); d) a kinematic viscosity at 100° C. of 100 cSt or more (alternatively 200 cSt or more); e) a ratio of mr triads to rr triad (as determined by 13C NMR) of less than 9; f) a ratio of vinylidene to 1,2-disubstituted olefins (as determined by 1H NMR) of less than 8; g) a viscosity index of 120 or more; and h) an Mn of 40,000 or less. This disclosure further relates to processes to make and use sPAOs, including those having any combination of characterics a) to h).
    Type: Application
    Filed: January 2, 2013
    Publication date: May 23, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Steven P. Rucker, Jo Ann M. Canich
  • Publication number: 20120309998
    Abstract: This invention relates to a metathesis catalyst comprising a Group 8 metal complex represented by the formula: wherein: M is a Group 8 metal; each X is independently an anionic ligand; R1 and R2 are independently selected from the group consisting of hydrogen, a C1 to C30 hydrocarbyl, and a C1 to C30 substituted hydrocarbyl; R3 and R4 are independently selected from the group consisting of hydrogen, C1 to C12 hydrocarbyl groups, substituted C1 to C12 hydrocarbyl groups, and halides; and L is a neutral donor ligand. This invention also relates to processes for performing a metathesis reaction, in particular ring opening cross metathesis reactions and ring opening metathesis polymerization reactions, using the Group 8 metal complexes.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Inventors: Matthew W. HOLTCAMP, Matthew S. BEDOYA
  • Publication number: 20120078022
    Abstract: The process for producing an olefin dimer of the present invention includes a first step of carrying out a dimerization reaction of an olefin in the presence of a solid phosphoric acid catalyst in which phosphoric acid is supported on inorganic support particles at a reaction temperature of 55 to 300° C. by introducing into a reactor an olefin-containing raw material containing water in an amount of 10 ppm by mass or more and less than the saturated water content at the reaction temperature, thereby preparing a reaction product containing an olefin dimer, a second step of washing the reaction product prepared in the first step at a temperature of 50° C. or higher using an alkaline substance-containing water adjusted to pH 8 to 13 and a third step of washing the reaction product after the alkaline washing in the second step with water at a temperature of 0 to 110° C., thereby preparing an olefin dimer.
    Type: Application
    Filed: January 21, 2010
    Publication date: March 29, 2012
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Nobuhiro Kimura, Tatsuo Hamamatsu
  • Publication number: 20090287032
    Abstract: The invention relates to a process for preparing substituted or unsubstituted 1,7-diolefins by hydrodimerizing non-cyclic olefins having at least two conjugated double bonds in the presence of a reducing agent and of a catalyst, wherein the catalyst used is a metal-carbene complex.
    Type: Application
    Filed: June 6, 2007
    Publication date: November 19, 2009
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Volker Brehme, Manfred Neumann, Frank Bauer, Elke Fiebig-Bauer, Franz Rudolf Bauer, Johanna Elisabeth Bauer, Dirk Roettger
  • Patent number: 7453019
    Abstract: The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the feedstock is free of or substantially free of metal salts.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: November 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Teng Xu, Cor F. Van Egmond, Keith F. Kuechler, Stephen N. Vaughn
  • Patent number: 7250510
    Abstract: The present invention relates to catalysts of transition metal complexes of N-heterocyclic carbenes, their methods of preparation and their use in chemical synthesis. The synthesis, ease-of-use, and activity of the compounds of the present invention are substantial improvements over in situ catalyst generation. Further, the transition metal complexes of N-heterocyclic carbenes of the present invention may be used as precatalysts in metal-catalyzed cross-coupling reactions.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: July 31, 2007
    Assignee: Total Synthesis, Ltd.
    Inventors: Michael G. Organ, Christopher J. O'Brien, Assam (Eric) B. Kantchev
  • Patent number: 7179946
    Abstract: The invention relates to copper complexes of phosphorus compounds, to a process for their preparation and to their use in catalytic coupling reactions.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: February 20, 2007
    Assignee: Lanxess Deutschland GmbH
    Inventors: Ulrich Scholz, Klaus Kunz, Oliver Gaertzen, Jordi Benet-Buchholz, Joachim Wesener
  • Patent number: 7057082
    Abstract: Process for the telomerization of a conjugated diene, wherein the conjugated diene is reacted with a compound containing an active hydrogen atom and having a formula R?—H in the presence of a telomerization catalyst based on: (a) a source of group VIII metal, (b) a bidentate ligand wherein the bidentate ligand has the general formula I R1R2M1—R—M2R3R4??(I) wherein M1 and M2 are independently P, As or Sb; R1, R2, R3 and R4 independently represent a monovalent aliphatic group; or R1, R2 and M1 together and/or R3, R4 and M2 together independently represent an optionally substituted aliphatic cyclic group with at least 5 ring atoms, of which one is the M1 or M2 atom, respectively; R represents a bivalent organic bridging group; and novel bidentate diphosphines which can be used in this process.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: June 6, 2006
    Assignee: Shell Oil Company
    Inventors: Eit Drent, Michael Rolf Eberhard, Paul Gerald Pringle, Renata Helena van der Made
  • Patent number: 6433237
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) (i) a halogen-containing iron compound or (ii) an iron-containing compound and a halogen-containing compound, (b) a silyl phosphonate, and (c) an organoaluminum compound.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: August 13, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6080826
    Abstract: Functionalized cyclic olefins and methods for making the same are disclosed. Methods include template-directed ring-closing metathesis ("RCM") of functionalized acyclic dienes and template-directed depolymerization of functionalized polymers possessing regularly spaced sites of unsaturation. Although the template species may be any anion, cation, or dipolar compound, cationic species, especially alkali metals, are preferred. Functionalized polymers with regularly spaced sites of unsaturation and methods for making the same are also disclosed. One method for synthesizing these polymers is by ring-opening metathesis polymerization ("ROMP") of functionalized cyclic olefins. The metathesis catalysts for both RCM and ROMP reaction are ruthenium or osmium carbene complex catalysts of the formula ##STR1## where M is Os or Ru; R and R.sup.1 each may be hydrogen, C.sub.2 -C.sub.20 alkenyl, C.sub.2 -C.sub.20 alkynyl, C.sub.1 -C.sub.20 alkyl, aryl, C.sub.1 -C.sub.20 carboxylate, C.sub.1 -C.sub.20 alkoxy, C.sub.2 -C.sub.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: June 27, 2000
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Michael J. Marsella, Heather D. Maynard
  • Patent number: 6005151
    Abstract: The invention relates to a process for preparing monofunctional, bifunctional or polyfunctional aromatic olefins of the formula (I) ##STR1## wherein a palladium compound of the formula (IV) ##STR2## is used as a catalyst in the preparation of the compounds of the formula (I).
    Type: Grant
    Filed: January 30, 1996
    Date of Patent: December 21, 1999
    Assignee: Aventis
    Inventors: Wolfgang Anton Herrmann, Matthias Beller, Ahmed Tafesh
  • Patent number: 5990367
    Abstract: A process for the production of C.sub.8 and higher olefins by the oligomerization of light olefins to heavier olefins is improved by the addition of heavy paraffins to the oligomerization zone. The recycle of the heavy paraffins extends the catalyst activity and improves the catalyst life.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: November 23, 1999
    Assignee: UOP LLC
    Inventors: Laurence O. Stine, Brian S. Muldoon, Steven C. Gimre, Robert R. Frame
  • Patent number: 5895830
    Abstract: A process for the production of C.sub.8 alkene isomers by the oligomerization of light olefins to heavier olefins is improved by the addition of heavy paraffins to the oligomerization zone. The recycle of the heavy paraffins improves the selectivity of the oligomerization for C.sub.8 olefin isomers that have a high octane number when saturated and reduces catalyst fouling. The saturated octane number of the resulting C.sub.8 isomers is particularly improved when the oligomerization zone is operated at reduced temperature conditions.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: April 20, 1999
    Assignee: UOP LLC
    Inventors: Laurence O. Stine, Brian S. Muldoon, Steven C. Gimre, Robert R. Frame
  • Patent number: 5728917
    Abstract: Disclosed are ruthenium and osmium carbene compounds which are stable in the presence of a variety of functional groups and which can be used to catalyze olefin metathesis reactions on unstrained cyclic and acyclic olefins. Specifically, the present invention relates to carbene compounds of the formula ##STR1## wherein: M is Os or Ru; R and R.sup.1 are independently selected from hydrogen and functional groups C.sub.2 -C.sub.20 alkenyl, C.sub.2 -C.sub.20 alkynyl, C.sub.1 -C.sub.20 alkyl, aryl, C.sub.1 -C.sub.20 carboxylate, C.sub.2 -C.sub.20 alkoxy, C.sub.2 -C.sub.20 alkenyloxy, C.sub.2 -C.sub.20 alkynyloxy, aryloxy, C.sub.2 -C.sub.20 alkoxycarbonyl, C.sub.1 -C.sub.20 alkylthio, C.sub.1 -C.sub.20 alkylsulfonyl or C.sub.1 -C.sub.20 alkylsulfinyl; each optionally substituted with C.sub.1 -C.sub.5 alkyl, a halogen, C.sub.1 -C.sub.5 alkoxy or with a phenyl group optionally substituted with a halogen, C.sub.1 -C.sub.5 alkyl or C.sub.1 -C.sub.5 alkoxy; X and X.sup.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: March 17, 1998
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, SonBinh T. Nguyen
  • Patent number: 5698751
    Abstract: A branched polyene compound represented by the formula ##STR1## wherein f is an integer of 1-5; R.sup.1 and R.sup.2 represent hydrogen atoms or alkyl groups of 1-5 carbons; R.sup.3 represents a hydrogen atom or an alkyl group of 1-5 carbons or an alkenyl group represented by the formula ##STR2## wherein n is an integer of 1-5; R.sup.4, R.sup.5 and R.sup.6 represent hydrogen atoms or alkyl groups of 1-5 carbons; all of R.sup.1, R.sup.2, R.sup.3 are not simultaneously hydrogen atoms; and all of R.sup.4, R.sup.5 and R.sup.6 are not simultaneously hydrogen atoms.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: December 16, 1997
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Tatsuyoshi Ishida, Masaaki Yasuda, Hitoshi Ohnishi, Noriaki Kihara, Toshihiro Sagane, Toshiyuki Tsutsui
  • Patent number: 5633418
    Abstract: A method for dimerizing an olefin, which comprises dimerizing an olefin in the presence of a catalyst, wherein a nickel compound, an organic aluminum compound and a phosphite compound of the formula (I): ##STR1## wherein each of R.sup.1 and R.sup.2 which may be the same or different, is a hydrocarbon group, each of R.sup.3 to R.sup.8 which may be the same or different, is a substituent containing no oxygen atom, or a hydrogen atom, W is a substituted or unsubstituted aromatic hydrocarbon group, and x is 0 or 1, are used as the catalyst.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: May 27, 1997
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Keiichi Sato, Yuji Kawaragi, Yasuko Higashino
  • Patent number: 5403904
    Abstract: A process is disclosed for preparation of telechelic difunctional unsaturated oligomers and polymers having at least one internal carbon-to-carbon double bond wherein the functional groups are terminal reactive groups. The reactants are acyclic polyenes with terminal carbon-to-carbon double bonds and olefins with at least one functional group. The polymerization process is substantially free of side reactions comprising double bond migration and cyclization. The telechelic difunctional unsaturated oligomers and polymers have a functionality of about 2 and are suitable for preparation of block copolymers, ion exchange resins, adhesives, and flocculants and for further functionalization.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: April 4, 1995
    Assignee: Amoco Corporation
    Inventors: Philip O. Nubel, Robert B. Morland, Howard B. Yokelson
  • Patent number: 5254782
    Abstract: Continuous process for the telomerization of conjugated dienes comprising reacting a conjugated diene with a compound containing an active hydrogen atom in the liquid phase in the presence of a Group VIII transition metal catalyst, a ligand compound of a tertiary phosphorous, arsenic or antimony, and a catalyst promoter compound having basic properties.
    Type: Grant
    Filed: August 16, 1991
    Date of Patent: October 19, 1993
    Assignee: The Dow Chemical Company
    Inventors: Barend J. Schaart, Hendrik L. Pelt, Grant B. Jacobsen
  • Patent number: 5124136
    Abstract: Crystalline metalloaluminophosphate compositions having pore windows formed by 18 tetrahedral members are prepared from a forming mixture containing sources of aluminum, phosphorus and a non-aluminum, non-phosphorus element, e.g. boron or boron and silicon. The forming mixture further contains a directing agent comprising a mixture of quaternary nitrogen compound and amine in a molar ratio of 0.01 to 0.025.
    Type: Grant
    Filed: June 26, 1990
    Date of Patent: June 23, 1992
    Assignee: Mobil Oil Corporation
    Inventor: Mark E. Davis
  • Patent number: 5104495
    Abstract: This invention relates to a new crystalline composition MCM-40, to a method for synthesizing said crystalline composition using diaminocyclohexane as a directing agent and to use of said crystalline composition as a catalyst component for organic compound, e.g. hydrocarbon compound, conversion.
    Type: Grant
    Filed: December 11, 1990
    Date of Patent: April 14, 1992
    Assignee: Mobil Oil Corp.
    Inventors: Clarence D. Chang, John D. Lutner, John L. Schlenker
  • Patent number: 5091073
    Abstract: This invention relates to a novel synthetic crystalline molecular sieve composition, MCM-37, which may contain framework +3 valence element, e.g. aluminum, and +5 valence element, e.g. phosphorus or with an addition +4 valence element, e.g. silicon, and to use thereof as a support and in catalytic conversion of organic compounds. The crystalline composition of this invention can easily be converted to catalytically active material.
    Type: Grant
    Filed: July 13, 1990
    Date of Patent: February 25, 1992
    Assignee: Mobil Oil Corp.
    Inventors: Clarence D. Chang, Cynthia T. W. Chu, Ralph M. Dessau, John B. Higgins, John D. Lutner, John D. Schlenker
  • Patent number: 4992609
    Abstract: Novel phosphonium salts of the general formula ##STR1## wherein R.sup.1 and R.sup.2 each is a hydrogen atom or a hydrocarbon group of 1 to 12 carbon atoms which may optionally be substituted; R.sup.3 is a hydrogen atom or a hydrocarbon group of 1 to 5 carbon atoms which may optionally be substituted; R.sup.4, R.sup.5 and R.sup.6 each is a hydrocarbon group of 1 to 8 carbon atoms which may optionally be substituted; X is a hydroxyl group, a hydroxycarbonyloxy group or a lower alkylcarbonyloxy group, and processes for production of the salts are described. Telomerization catalysts containing said phosphonium salts and processes for production of straight-chain alkadienyl compounds using the same catalysts are also provided.
    Type: Grant
    Filed: March 13, 1990
    Date of Patent: February 12, 1991
    Assignee: Kuraray Co., Ltd.
    Inventors: Toshihiko Maeda, Yasuo Tokitoh, Noriaki Yoshimura
  • Patent number: 4687876
    Abstract: In the process for preparing 1,7-octadiene by hydrodimerizing butadiene in the presence of a solubilized palladium or palladium compound, a tertiary phosphine, formic acid, a base and optionally a solvent, improved rates of conversions of butadiene to 1,7-octadiene are obtained by carrying out the process in the presence of supported palladium, platinum or rhodium.
    Type: Grant
    Filed: March 16, 1984
    Date of Patent: August 18, 1987
    Assignee: Shell Oil Company
    Inventor: Kenzie Nozaki
  • Patent number: 4593140
    Abstract: The process according to the invention consists in dimerizing a conjugated diene in the presence of a catalyst obtained by bringing together (A) at least one nickel complex of formula NiZ.sub.q in which q is the coordination number of the nickel and Z is at least one ligand capable of complexing nickel and (B) at least one phosphorus-containing ligand of general formula ##STR1## in which: R.sub.1 is chosen from a hydrogen atom and hydrocarbon radicals,R.sub.2 and R.sub.3, which may be identical or different, are chosen from a hydrogen atom and hydrocarbon radicals optionally bearing at least one group chosen from alcohol, thiol, thioether, amine, imine, acid, ester, amide and ether groups, andm is greater than or equal to 1.
    Type: Grant
    Filed: May 10, 1985
    Date of Patent: June 3, 1986
    Assignee: Societe Chimique des Charbonnages S.A.
    Inventors: Andre Mortreux, Francis Petit, Philippe Denis, Gerard Buono, Gilbert Peiffer
  • Patent number: 4413118
    Abstract: Organic sulfur compounds containing a carbon-sulfur double bond are used to remove homogeneous catalyst group VIII metals from chemical process streams.
    Type: Grant
    Filed: March 2, 1981
    Date of Patent: November 1, 1983
    Assignee: Merck & Co., Inc.
    Inventors: F. Edward Roberts, Victor J. Grenda
  • Patent number: 4377719
    Abstract: A process for preparing 1,7-octadiene by dimerizing butadiene in the presence of a catalytic amount of palladium acetate and a tertiary phosphine, a solvent in an amount sufficient to dissolve the catalyst, a strong base and formic acid, wherein: (a) the molar ratio of the strong base to the formic acid is 1:1-2, (b) the mole ratio of tertiary phosphine to palladium is at least 1, (c) the amount of strong base present is such that the pH of the reaction medium is from 7.5 to 10.5 and (d) the solvent is at least one member selected from the group consisting of aromatic hydrocarbons, lower alkyl substituted aromatic hydrocarbon, halogenated aromatic hydrocarbons, halogenated lower aliphatic hydrocarbons, nitriles, amides, dilower alkyl ethers, lower alkyl phenyl ethers, lower alkyl esters of lower alkanoic acids, ketones and lower alkanols.
    Type: Grant
    Filed: December 13, 1978
    Date of Patent: March 22, 1983
    Assignee: Charles U. Pittman, Jr.
    Inventors: Charles U. Pittman, Jr., Ronald Hanes
  • Patent number: 4334117
    Abstract: This invention provides an improved process for producing alkadienes which comprises (1) contacting butadiene or isoprene with a catalyst such as platinum or palladium or a compound of one of said metals in a sulfolane solution, in the presence of a tertiary lower alkylamine formate and at least one phosphine compound of the formula: ##STR1## wherein R.sup.1 is a substituted or unsubstituted C.sub.1-10 hydrocarbon group; R.sup.2 is H, a saturated aliphatic C.sub.1-5 hydrocarbon group, nitro or halogen; m is 1, 2 or 3; n is 0 or 1; x is 0, 1 or 2; y and z each is 0, 1, 2 or 3 (provided that y and z are not zero concurrently and x+y+z=3); A is --SO.sub.3 M wherein M is a cation selected from among H, alkali metals, alkaline earth metals and NH.sub.4 or the formate or an inorganic acid salt of ##STR2## wherein R.sup.3 and R.sup.4 each means a saturated aliphatic C.sub.
    Type: Grant
    Filed: September 4, 1980
    Date of Patent: June 8, 1982
    Assignee: Kuraray Co., Ltd.
    Inventors: Noriaki Yoshimura, Masuhiko Tamura
  • Patent number: 4229605
    Abstract: A process for preparing 1,7-octadiene by hydrodimerizing butadiene which comprises reacting the butadiene in the presence of formic acid or a salt thereof, optionally a solvent and a catalyst comprising palladium complexed with a tertiary phosphinite or phosphonite. More active catalysts are obtained with phosphinites and phosphonites than with phosphines or phosphites.
    Type: Grant
    Filed: December 13, 1978
    Date of Patent: October 21, 1980
    Assignee: Shell Oil Company
    Inventor: Kenzie Nozaki
  • Patent number: 4229606
    Abstract: A process for preparing 1,7-octadiene by hydrodimerizing butadiene which comprises reacting the butadiene in the presence of formic acid, or a salt thereof, optionally a solvent and a catalyst comprising palladium complexed with a sterically hindered phosphine, phosphinite or phosphonite and a different ligand selected from phosphine, phosphinite, phosphonite or phosphite. Enhanced catalytic activity is obtained.
    Type: Grant
    Filed: December 13, 1978
    Date of Patent: October 21, 1980
    Assignee: Shell Oil Company
    Inventor: Kenzie Nozaki
  • Patent number: 4196135
    Abstract: The palladium complex disclosed herein is bis[tri(orthotolyl)phosphine] palladium which is produced by reacting a palladium salt with tri(ortho-tolyl)phosphine and reducing the resultant bis[tri(ortho-tolyl)phosphine] palladium salt with an alcoholic alkali. This complex is useful as a catalyst for the production of 1,3-diene oligomers.
    Type: Grant
    Filed: May 10, 1978
    Date of Patent: April 1, 1980
    Assignee: Kureha Kagaku Kogyo Kabushiki Kaisha
    Inventors: Satoru Enomoto, Hisayuki Wada, Sadao Nishita, Yutaka Mukaida, Mikiro Yanaka, Hitoshi Takita
  • Patent number: 4176085
    Abstract: Solid .pi.-allyl complex catalysts comprising:(A) A palladium source;(B) A monotertiary phosphine electron donor ligand;(C) A combination of a reducing agent capable of reducing the palladium source to an oxidation state of less than 2 and a Lewis acid capable of forming a coordination bond with palladium; and(D) An acidic, solid, silica-based support material, are useful in the codimerization of a conjugated diene and a monoene. Preferably, the catalyst is activated by the additional presence of a conjugated diene. In a preferred embodiment, the solid .pi.-allyl palladium complex catalyst prepared from palladium acetylacetonate, triphenylphosphine, diethylaluminum chloride and a calcined silica-alumina support having a separate, distinct alumina phase is useful in the selective codimerization of 1,3-butadiene and ethylene to form trans-1,4-hexadiene.
    Type: Grant
    Filed: June 9, 1975
    Date of Patent: November 27, 1979
    Assignee: Atlantic Richfield Company
    Inventors: Jin S. Yoo, Ronald L. Milam