With Preliminary Treatment Of Feed Patents (Class 585/518)
  • Patent number: 9573861
    Abstract: The invention relates to an olefin oligomerization process comprising the steps of: i) contacting a feed comprising olefins and nitriles with a guard bed comprising eta alumina; and ii) contacting the feed obtained in step i) with an oligomerization catalyst under conditions suitable to oligomerize the olefins in the feed. It also relates to the use of a guard bed comprising eta-alumina for reducing the content of basic organic compounds in a hydrocarbon feed.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 21, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. W. Mertens, Geraldine Tosin, Jean W. Beeckman, Hans K. T. Goris, Georges M. K. Mathys
  • Patent number: 9505685
    Abstract: The invention provides an olefin oligomerization process comprising the steps of: i) reducing the level of nitriles in an olefin feed by contacting the feed with a guard bed comprising gamma alumina having a surface area greater than 250 m2/g; and ii) contacting the olefin feed obtained in step i) with an oligomerization catalyst under conditions suitable to oligomerize the olefins in the feed; wherein the gamma alumina used in step i) has been obtained from needle shaped boehmite.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 29, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. W. Mertens, Geraldine Tosin
  • Patent number: 9427694
    Abstract: A process for component separation in a polymer production system comprising: (a) separating a polymerization product into a gas stream and a polymer stream; (b) processing the gas stream in distillation columns to yield a light hydrocarbon stream (LHS) comprising ethylene and ethane; (c) contacting LHS with a purged hydrocarbon adsorber to yield a loaded hydrocarbon adsorber and a non-adsorbed gas stream, wherein ethane is adsorbed by the purged hydrocarbon adsorber at a first pressure to yield adsorbed ethane, and wherein the non-adsorbed gas stream comprises recovered ethylene; (d) contacting the loaded hydrocarbon adsorber with a sweeping gas stream at a second pressure to yield an unloaded hydrocarbon adsorber and a recovered adsorbed gas stream comprising the sweeping gas stream and desorbed ethane; and (e) contacting the unloaded hydrocarbon adsorber with the sweeping gas stream at the first pressure to yield the purged hydrocarbon adsorber and a spent sweeping gas.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: August 30, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Lei Ji, Ai-Fu Chang
  • Publication number: 20150073193
    Abstract: A process is described, such process comprising i) contacting a hydrocarbon feed with a heterogeneous catalyst under conditions suitable to hydrolyze nitriles present in the feed to form a nitrile hydrolysis product comprising ammonia, carboxylic acid and carboxylate salts or a mixture thereof; and ii) removing the nitrile hydrolysis product from the feed. In an embodiment, the hydrocarbon feed comprises olefins and is intended for use in an olefin oligomerization process.
    Type: Application
    Filed: June 14, 2012
    Publication date: March 12, 2015
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Hans K. T. Goris, Machteld M. W. Mertens, Luc R. M. Martens
  • Publication number: 20150065773
    Abstract: The inventing relates to hydrocarbon conversion, and more particularly to catalytically converting alkane in the presence of oxygen released from an oxygen storage material. Conversion products include C2 hydrocarbon, such as C2+ olefin. The hydrocarbon conversion process can be an oxidative coupling reaction, which refers to the catalytic conversion of methane in the presence of oxidant to produce the olefin product. Flow-through reactors can be used to carry out oxygen storage and the oxidative coupling reaction. Reverse-flow reactors are examples of flow-through reactors, which can be used to carry out oxygen storage and the oxidative coupling reaction.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Inventors: Juan D. Henao, Paul F. Keusenkothen
  • Patent number: 8865955
    Abstract: One exemplary embodiment is a process for oligomerizing one or more hydrocarbons. The process includes providing a feed including one or more C3 and C4 hydrocarbons to a separation zone, separating a first stream including an effective amount of C3 olefins for oligomerizing, separating a second stream including an effective amount of one or more C4 olefins for oligomerizing, providing at least a portion of the first stream to a first oligomerization zone for producing at least one of a C9 and a C12 hydrocarbon, and providing at least a portion of the second stream to a second oligomerization zone for producing at least one of a C8 and a C12 hydrocarbon.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 21, 2014
    Assignee: UOP LLC
    Inventors: Steven Lee Krupa, Christian D. Freet, Mohamed Shakur
  • Patent number: 8809611
    Abstract: A method for removal and recovery of an organic amine from a hydrocarbon stream containing the amine, including: i) mixing the hydrocarbon stream containing the amine with an aqueous inorganic acid in a volumetric ratio of hydrocarbon stream:aqueous inorganic acid of greater than 1:1-5:1, preferably 1.5:1-4:1, more preferably 3:1, ii) phase separating of hydrocarbon and aqueous phase; iii) removing the hydrocarbon phase and optionally further purifying thereof, iv) optionally recycling at least a part of the hydrocarbon phase obtained in step (iii) into mixing step (i), v) mixing the aqueous phase obtained in step (iii) with an aqueous alkaline solution, vi) phase separating of an aqueous phase and an organic phase formed, vii) removing the organic phase obtained in step (vi) and optionally further purifying thereof.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: August 19, 2014
    Assignee: Saudi Basic Industries Corporation
    Inventors: Fuad M. Mosa, Shahid Majeed Azam, Sultan Eid Al-Otaibi
  • Publication number: 20130267742
    Abstract: The invention deals with a method for preparing a nitrogen-depleted hydrocarbon feedstock (315, 412, 514, 614, 714, 718, 814, 822) having (i) an initial boiling point comprised between 0° C. and +180° C. and a final boiling point comprised between 30° C. and 250° C., and (ii) an olefin content higher than 5 weight %, by contacting a hydrocarbon feedstock starting material (310, 313, 410, 411, 510, 512, 610, 612, 710, 712, 713, 810, 812, 813) with a clay sorbent material in a reaction vessel (33,43,53,63,73,73,83,83), wherein the nitrogen-depleted hydrocarbon feedstock (315, 412, 514, 614, 714, 718, 814, 822) has a total nitrogen/nitrile ratio (ppm/ppm) comprised between 1 and 5. Additional purification section allows improved units working time and lower maintenance.
    Type: Application
    Filed: December 27, 2011
    Publication date: October 10, 2013
    Applicant: TOTAL RAFFINAGE MARKETING
    Inventors: Delphine Minoux, Cyril Revault, Valentina De Grandi
  • Patent number: 8536398
    Abstract: Processes suitable for purifying aromatic-containing feed streams, and processes using such purified streams are described, wherein the purification processes comprise: (a) providing a process feedstream comprising an aromatic component; and (b) bringing the process feedstream into contact with a first zeolite and a second zeolite; wherein the first zeolite has a mean pore size of 0.3 to 0.5 nm, and wherein the second zeolite has a mean pore size of 0.6 to 0.8 nm.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: September 17, 2013
    Assignee: Styrolution GmbH
    Inventors: Rolf Henn, Ulrich Müller, Ferdinand Straub, Jürgen Dosch
  • Publication number: 20130237717
    Abstract: A method and system for producing dispersed waxes, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of wax globules in a carrier liquid in a high shear device prior to implementation in a waxy product. In another instance the system for producing waxy products comprises a high shear device for dispersing wax in a carrier liquid.
    Type: Application
    Filed: April 24, 2013
    Publication date: September 12, 2013
    Applicant: H R D Corporation
    Inventors: Abbas HASSAN, Aziz Hassan, Gregory G. Borsinger
  • Patent number: 8471084
    Abstract: The process converts FCC olefins to heavier compounds. The heavier compounds are more easily separated from the unconverted paraffins. The heavier compounds can be recycled to an FCC unit or delivered to a separate FCC unit. Suitable conversion zones are oligomerization and aromatic alkylation zones.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: June 25, 2013
    Assignee: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, James E. Rekoske, Christopher P. Nicholas
  • Patent number: 8440872
    Abstract: A process for preparing poly alpha olefins from a Fisher-Tropsch product. The process comprising the steps of contacting a C5-C18 fraction of an alpha-olefinic hydrocarbon mixture produced from thermal cracking a C16-C40 Fisher-Tropsch product with an oligomerization catalyst under conditions to produce an oligomerized product; and fractionating the oligomerized product to obtain a fractionated product having an average carbon number greater than 30. A process for preparing lubricant base stocks from a Fisher-Tropsch product is also provided.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: May 14, 2013
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: John S. Buchanan, Margaret M. Wu, Lorenzo DeCaul
  • Patent number: 8395007
    Abstract: A renewable biofuel based on a highly efficient batch catalysis methodology for conversion of 1-butene to a new class of potential jet fuel blends. By tuning the catalyst and then using the dimer produced, the carbon use is about 95% or greater.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: March 12, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael E. Wright, Benjamin G. Harvey, Roxanne L. Quintana
  • Publication number: 20120209045
    Abstract: A renewable biofuel based on a highly efficient batch catalysis methodology for conversion of 1-butene to a new class of potential jet fuel blends. By tuning the catalyst and then using the dimer produced, the carbon use is about 95% or greater. This latter point will be particularly important in the future, where the source of raw materials (i.e., biomass/biofeedstock) is limited. Also noteworthy, the batch catalysis approach disclosed requires a minimal input of energy and hydrogen to make fuels that possess useful flash points, coldflow properties, and solution density/energy content. This new process affords a saturated hydrocarbon fuel that has a high solution density and thus possesses a higher calculated power density (per volume) than similar fuels made by the GTL Fischer-Tropsch processes. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
    Type: Application
    Filed: July 29, 2009
    Publication date: August 16, 2012
    Inventors: Michael E. Wright, Benjamin G. Harvey, Roxanne L. Quintana
  • Patent number: 8188327
    Abstract: This invention covers a process for dimerizing of isobutylene to Iso-octene and unique configuration is being disclosed, where the Feed is diluted to low level with recycle which has essentially no Iso-octene, dual catalyst system, new selectivator (IPA) and successive catalyst stages if needed to enhance the conversion. The process is very selective and provides higher isobutylene conversion. Additionally the invention also covers the hydrogenation of olefins to Paraffin, Iso-octene to Iso-octane product under moderate conditions and with dual or single catalyst system.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: May 29, 2012
    Inventor: Amarjit S. Bakshi
  • Patent number: 8128879
    Abstract: The apparatus converts FCC olefins to heavier compounds. The heavier compounds are more easily separated from the unconverted paraffins. The heavier compounds can be recycled to an FCC unit or delivered to a separate FCC unit. Suitable conversion zones are oligomerization and aromatic alkylation zones.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, James E. Rekoske, Christopher P. Nicholas
  • Patent number: 8129485
    Abstract: Systems and methods for removing a volatile catalyst poison from a liquid hydrocarbon are provided. In one embodiment, a process vent (106) can be introduced to a vent recovery system (108) to provide a recycle gas (110). A first portion of the recycle gas (112) and a liquid hydrocarbon (102) can be introduced to a stripper column (104) to provide a stripper vent gas (114) and a degassed liquid hydrocarbon (116) that can be introduced to a polymerization process.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: March 6, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Randall L. Force, James L. Swecker, Kevin D. Roy
  • Patent number: 8119848
    Abstract: A process for treating an alkylation feedstock comprising olefins, n-alkanes, iso-alkanes, and impurities including one or more of butadiene, oxygenates, nitrogen-containing compounds, and sulfur-containing compounds, the process including: contacting an alkylation feedstock containing at least one of oxygenates and nitrogen-containing compounds with water to produce a hydrocarbon fraction having a reduced concentration of the at least one of oxygenates and nitrogen-containing compounds and an aqueous fraction comprising at least a portion of the at least one of oxygenates and nitrogen-containing compounds; separating water from the hydrocarbon fraction having a reduced concentration to produce a hydrocarbon fraction having a reduced water content; contacting the hydrocarbon fraction having a reduced water content with an oligomerization catalyst in a first oligomerization reaction zone under oligomerization conditions to react at least a portion of the olefins to form a reactor effluent comprising olefin oli
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: February 21, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: William M. Cross, Jr., Lawrence A. Smith, Jr., Gary G. Podrebarac
  • Patent number: 8084557
    Abstract: A continuous gas-phase process for the polymerization of alpha-olefins, in particular ethylene, comprising passing an alpha-olefin monomer stream through an oil filter in order to reduce the amount of oil to less than 8 ppm, and polymerizing the thus purified monomer feed in gas-phase reactor; the reduction of the amount of oil improves the operability of the plant over time.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 27, 2011
    Assignee: Basell Polyolefine GmbH
    Inventors: Manfred Hecker, Markus Schopf, Axel Hamann, Paulus-Petrus Maria de Lange
  • Publication number: 20110282092
    Abstract: Nitrogen-containing Lewis bases act as poisons for molecular sieve catalysts used in oligomerisation reactions. Lowering their presence in the feed prior to the contacting thereof with the molecular sieve brings a significant extension of catalyst life. Thus, processes that are directed to the lowering of these poisons are provided.
    Type: Application
    Filed: June 24, 2011
    Publication date: November 17, 2011
    Inventors: John Stephen Godsmark, George Marie Karel Mathys, Hubertus Joseph Beckers, Charles Morris Yarbrough, Stephen Harold Brown, Yeo-Meng Lim
  • Publication number: 20110245567
    Abstract: The process converts ethylene in a dilute ethylene stream that may be derived from an FCC product to heavier hydrocarbons. The oligomerization reactor is in communication between a primary absorber column and a secondary absorber column in an FCC product recovery section. The oligomerization catalyst may have a low silica base with a Group VIIIB metal and operate at low pressure without excessive deactivation. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, hydrogen and ammonia. At least 40 wt-% of the ethylene in the dilute ethylene stream can be converted to heavier hydrocarbons.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Joao Jorge da Silva Ferreira Alves, Christopher P. Nicholas
  • Patent number: 7989669
    Abstract: This invention is directed to a process for producing one or more olefins from an oxygenate feed. According to the invention, an oxygenate stream is provided and a recycle stream is added to the oxygenate stream to form a feed stream to an oxygenate-to-olefin conversion system. The recycle stream comprises (i.e., contains) propane and dimethyl ether.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: August 2, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gerald G. McGlamery, Jr., James H. Beech, Jr., Michael P. Nicoletti, Cornelis F. Van Egmond
  • Patent number: 7989668
    Abstract: Nitrogen-containing Lewis bases act as poisons for molecular sieve catalysts used in oligomerisation reactions. A lowering of their presence in the feed prior to the contacting thereof with the molecular sieve brings a significant extension of catalyst life. Excessive elimination of these poisons may be disadvantageous. Lowering the levels of these catalyst poisons to more manageable concentrations is therefore preferred.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: August 2, 2011
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: John Stephen Godsmark, Georges Marie Karel Mathys, Hubertus Joseph Beckers, Charles Morris Yarbrough, Stephen Harold Brown, Yeo-Meng Lim
  • Patent number: 7956227
    Abstract: Methods of oligomerizing hydrocarbons are disclosed. These methods include contacting olefins with an oligomerization catalyst in an oligomerization zone under oligomerization reaction conditions.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: June 7, 2011
    Assignee: ConocoPhillips Company
    Inventors: Bruce B. Randolph, Jason J. Gislason, M. Bruce Welch, Richard L. Anderson, Dhananjay B. Ghonasgi, Robert W. Morton, Roland Schmidt
  • Patent number: 7880046
    Abstract: Water reacts on molecular sieve catalysts used in oligomerization reactions and forms oxygenated compounds, in particular organic acids that may cause corrosion problems downstream of the reactor, in particular in distillation tower overhead systems and downstream thereof. A lowering of the presence of water in the feed prior to contacting thereof with the molecular sieve brings a significant reduction in corrosion downstream. At the same time, it has a significant beneficial effect on catalyst activity and brings a significant extension of catalyst life. Lowering water in the feed is particularly effective when organic nitrogen-containing Lewis bases are present in the feed, even at low levels.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: February 1, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Godsmark, Georges M. K. Mathys, Hubertus J. Beckers, Raphael F. Caers, Roger Eijkhoudt, Stephen H. Brown
  • Patent number: 7847141
    Abstract: The invention relates to a process for converting a hydrocarbon charge of linear and branched olefins, comprises the following stages: a) a stage of membrane separation of the hydrocarbon charge under conditions making it possible to produce a cut ? containing the majority of the linear olefins present in said charge, and a cut ? containing the majority of the branched olefins, b) a stage of treatment of the linear olefins contained in the effluents originating from the membrane separation stage (cut ?) under moderate oligomerization conditions, c) a stage of distillation separation of the effluents originating from the oligomerization stage into at least two cuts, d) a stage of hydrogenation of the cut ? under conditions for obtaining a gas oil with a high cetane number.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: December 7, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Briot, Arnaud Baudot, Vincent Coupard, Alain Methivier
  • Publication number: 20100249480
    Abstract: The process and apparatus converts ethylene in a dilute ethylene stream that may be derived from an FCC product to heavier hydrocarbons. The catalyst may be an amorphous silica-alumina base with a Group VIII and/or VIB metal. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, hydrogen and ammonia. At least 40 wt-% of the ethylene in the dilute ethylene stream can be converted to heavier hydrocarbons.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya, David E. Mackowiak
  • Patent number: 7705193
    Abstract: The invention relates to a process for conversion of a gasoline-range hydrocarbon feed into a gasoline fraction with a higher octane rating than that of the feedstream, and a gasoil fraction with a cetane number higher than 45, including the following steps: a) a membrane separation step (B) applied to the hydrocarbon feed under conditions enabling selective separation of the majority of the linear olefins present in said feed and constituting the ? fraction, the fraction containing the majority of the branched olefins, termed the ? fraction, constituting a gasoline with a high octane rating, greater than that of the feed; b) an oligomerisation step (C) applied to the linear olefins (? fraction) contained in the effluent stream from the membrane separation step (B) under moderate oligomerisation conditions; c) a distillation separation step (D) applied to the effluent stream arising from the oligomerisation step in at least two fractions; d) a hydrogenation step (E) applied to one of the fractions obtained at
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: April 27, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Briot, Arnaud Baudot, Vincent Coupard, Stéphane Morin, Alain Methivier
  • Patent number: 7678954
    Abstract: In a process for producing a hydrocarbon composition, a feed comprising at least one C3 to C8 olefin and an olefinic recycle stream rich in C9? hydrocarbons is contacted with a crystalline molecular sieve catalyst having an average crystal size no greater than 0.05 micron and an alpha value between about 100 and about 600 in at least one reaction zone under olefin oligomerization conditions including an inlet temperature between about 150° C. and about 350° C., a pressure of at least 2,860 kPa and a recycle to feed weight ratio of about 0.1 to about 3.0. The contacting produces an oligomerization effluent stream, which is separated into at least a hydrocarbon product stream rich in C9+ hydrocarbons and the olefinic recycle stream.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: March 16, 2010
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Keith H. Kuechler, Stephen Harold Brown, Helge Jaensch, Georges M. Mathys, Shifang Luo, Jane C. Cheng
  • Publication number: 20100063338
    Abstract: Provided are processes for feeding ethylene into a polymerization system operating in a liquid phase or supercritical phase.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 11, 2010
    Inventors: GABOR KISS, ROBERT PATRICK REYNOLDS, JR., JOHN W. CHU, JAMES RICHARDSON LATTNER, GARY MOHR
  • Patent number: 7632976
    Abstract: This invention covers a process for making Octene from nix C4 Feed by a low cost highly selective multistage process. The multi staging of reactors essentially provides lower cost than conventional processes. Two options are provided in FIGS. 1 and 2 as regards to configuration based on the same catalyst but as can be seen that FIG. 1 configuration is low cost option with very high selectivity. The process provides conversion of butene to Octene >95% and product purity >96%. Product can be fractionated and can have a high purity Octene product by removing the trimers/polymers from the octene product. As mentioned due to the nature of the process configuration, one achieves high yield and selectivity with low cost.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 15, 2009
    Inventor: Amarjit Singh Bakshi
  • Patent number: 7601309
    Abstract: Disclosed is a process for integrating a butene dimerization process with a metathesis process to remove isobutene from the feed stream to the metathesis reactor. The isobutene is preferentially dimerized in the dimerization process to leave n-butenes for metathesis with ethylene. An upstream selective hydrogenation process also isomerizes 1-butenes to 2-butenes which is the preferred butene reagent in the metathesis process. A common fractionator column for the dimerization and hydrogenation processes is also described.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventors: Steven L. Krupa, Jill M. Meister
  • Patent number: 7459593
    Abstract: Disclosed is a process for integrating a butene dimerization process with a metathesis process to remove isobutene from the feed stream to the metathesis reactor. The isobutene is preferentially dimerized in the dimerization process to leave n-butenes for metathesis with ethylene. An upstream selective hydrogenation process also isomerizes 1-butenes to 2-butenes which is the preferred butene reagent in the metathesis process. A common fractionator column for the dimerization and hydrogenation processes is also described.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: December 2, 2008
    Assignee: UOP LLC
    Inventors: Steven L. Krupa, Jill M. Meister
  • Patent number: 7453019
    Abstract: The invention relates to a conversion process for making olefin(s) using a molecular sieve catalyst composition. More specifically, the invention is directed to a process for converting a feedstock comprising an oxygenate in the presence of a molecular sieve catalyst composition, wherein the feedstock is free of or substantially free of metal salts.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: November 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Teng Xu, Cor F. Van Egmond, Keith F. Kuechler, Stephen N. Vaughn
  • Publication number: 20080242908
    Abstract: This invention is directed to a process for producing one or more olefins from an oxygenate feed. According to the invention, an oxygenate stream is provided and a recycle stream is added to the oxygenate stream to form a feed stream to an oxygenate-to-olefin conversion system. The recycle stream comprises (i.e., contains) propane and dimethyl ether.
    Type: Application
    Filed: February 20, 2008
    Publication date: October 2, 2008
    Applicant: ExxonMobil Chemical Company Law Technology
    Inventors: Gerald G. McGlamery, James H. Beech, Michael P. Nicoletti, Cornelis F. Van Egmond
  • Patent number: 7420096
    Abstract: Limiting the sulphur level in olefin feedstocks to zeolite-catalysed oligomerization enhances selectivity to trimer and catalyst life and activity.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: September 2, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, Georges M. K. Mathys, Marc P. H. Puttemans
  • Patent number: 7414165
    Abstract: In a process for oligomerizing an olefinic hydrocarbon feedstock comprising sulfur-containing molecules, the feedstock is contacted in the absence of hydrogen with a first metal oxide catalyst at a temperature in excess of 150° C. and then is contacted under olefin oligomerization conditions with a second catalyst comprising a crystalline molecular sieve, such as ZSM-22 or ZSM-57.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, Hans K. T. Goris, Georges M. K. Mathys, Stephen Harold Brown, Bruce R. Cook
  • Patent number: 7329788
    Abstract: Process for producing gasoline components. The process comprises feeding a fresh olefinic hydrocarbon feedstock to a reaction zone, in which its structure is first isomerized. The isomerized hydrocarbon is drawn out of the first reaction zone and conducted to a second reaction zone, where the isomerized hydrocarbon is dimerized. The dimerized reaction product is drawn out of the second reaction zone and separated from the flow in a separation zone. Because there are more isoolefins present in the dimerization unit feed, more isoolefin dimers useful as fuel components can be produced.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: February 12, 2008
    Assignee: Neste Oil Oyj
    Inventors: Marja Tiitta, Elina Harlin, Antti Pyhälahti
  • Patent number: 7309805
    Abstract: In an embodiment, a method is disclosed to increase the activity of an ionic liquid catalyst comprising contacting an ionic liquid catalyst with oxygen. In another embodiment, a method is disclosed comprising introducing into a reaction zone a monomer feed and an ionic liquid catalyst and controlling the amount of oxygen present in the reaction zone to maintain a conversion reaction of the monomer. In another embodiment, a polyalphaolefin oligomerization system is disclosed comprising a reactor configured to receive and mix monomer, ionic liquid catalyst, and oxygen; and a controller coupled to an oxygen source and configured to control the amount of oxygen present in a catalyzed reaction zone to maintain a conversion reaction of the monomer.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: December 18, 2007
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kenneth D. Hope, Donald A. Stern, Elizabeth A. Benham
  • Patent number: 7273542
    Abstract: The present invention relates to a process and apparatus for recovering product from reactor effluent of a reactor for a hydrocarbon feedstream. An indigenous C4 stream is used as lean oil in a demethanizer, which facilitates significant cost and operational savings. C4 bottoms from a downstream depropanizer is used as lean oil recycle.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: September 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David J. Duhon, John E. Asplin
  • Publication number: 20070213575
    Abstract: Nitrogen-containing Lewis bases act as poisons for molecular sieve catalysts used in oligomerisation reactions. A lowering of their presence in the feed prior to the contacting thereof with the molecular sieve brings a significant extension of catalyst life. Excessive elimination of these poisons may be disadvantageous. Lowering the levels of these catalyst poisons to more manageable concentrations is therefore preferred.
    Type: Application
    Filed: February 1, 2007
    Publication date: September 13, 2007
    Inventors: John Stephen Godsmark, Georges Marie Karel Mathys, Hubertus Joseph Beckers, Charles Morris Yarbrough, Stephen Harold Brown, Yeo-Meng Lim
  • Patent number: 7253330
    Abstract: In a process for oligomerizing an olefinic hydrocarbon feedstock comprising sulfur-containing molecules, the feedstock is contacted in the absence of hydrogen with a first metal oxide catalyst at a temperature in excess of 150° C. and then is contacted under olefin oligomerization conditions with a second catalyst comprising a crystalline molecular sieve, such as ZSM-22 or ZSM-57.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: August 7, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad Mohammed Dakka, Hans K. T. Goris, Georges M. K. Mathys, Stephen Harold Brown, Bruce R. Cook
  • Patent number: 7238844
    Abstract: This invention is to a method of oligomerizing an olefin feed stream. The olefin feed stream contains at least one C2 to C12 olefin to obtain an olefin feed stream and has less than 1,000 ppm by weight oxygenated hydrocarbon. The olefin is oligomerized by contacting with an acid based oligomerization catalyst.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: July 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georges M. K. Mathys, Stephen H. Brown, Hubertus Joseph Beckers, Raphael Frans Caers, John Stephen Godsmark, Luc R. M. Martens, John Richard Shutt, Eddy T. Van Driessche
  • Patent number: 7183450
    Abstract: This invention is to a method of oligomerizing an olefin feed stream. The olefin feed stream contains at least one C2 to C12 olefin to obtain an olefin feed stream and has from about 1,000 ppm to about 10 percent by weight oxygenated hydrocarbon. The olefin is oligomerized by contacting with an acid based oligomerization catalyst.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: February 27, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Georges M. K. Mathys
  • Patent number: 7153432
    Abstract: A process for the production of highly purified water 38 from Fischer-Tropsch reaction water 12, includes at least the steps of a primary treatment stage comprising an equilibrium staged separation process 14 having at least one stage for removing at least a fraction of non-acid oxygenated hydrocarbons from the Fischer-Tropsch reaction water 12 to produce a primary water-enriched stream 16, a secondary treatment stage comprising at least one membrane separation process 28 for removing at least some suspended solids and acidic oxygenated hydrocarbons from at least a portion of the primary water-enriched stream 16 to produce a secondary water-enriched stream 34 and a tertiary treatment stage comprising a dissolved salt and organic removal stage 36 for removing at least some dissolved salts and organic constituents from at least a portion of the secondary water-enriched stream 34.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: December 26, 2006
    Assignee: Sasol Technology (Pty) Ltd.
    Inventors: Luis Pablo Fidel Dancuart Kohler, Gert Hendrik Du Plessis, Francois Jacobus Du Toit, Edward Ludovicus Koper, Trevor David Phillips, Janette Van Der Walt
  • Patent number: 7067597
    Abstract: This invention concerns using an intermediate grade propylene stream as feed to a polypropylene forming reaction system. The intermediate grade propylene stream is preferably recovered form the olefin product of an oxygenate to olefins reaction process, and low in dimethyl ether content.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: June 27, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Cor F. Van Egmond, Lawrence C. Smith
  • Patent number: 7060865
    Abstract: Disclosed is a process for removing DME from a stream containing C4 olefins. The process includes providing a first stream comprising C4 olefins, C5+ hydrocarbons, DME, and methanol. The first stream is separated into a second stream comprising the C4 olefins and the DME and a third stream comprising the C5+ hydrocarbons and the methanol. The second stream is directed to a DME absorption unit, wherein the second stream contacts water under conditions effective to separate the C4 olefins from the DME. Also disclosed is a process including contacting the first stream with water in a methanol removal unit under conditions effective to separate remove the methanol therefrom; distilling the methanol-depleted stream to remove C5+ hydrocarbon components, and contacting the stream with water in a DME removal unit under conditions effective to form an overhead stream comprising the C4 olefins and a bottoms stream comprising the DME.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: June 13, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Zhong Yi Ding, James Richardson Lattner
  • Patent number: 6987152
    Abstract: A method for olefin polymerization is provided. A feed stream comprising more than 0.1 ppm by volume of oxygen and 0.3 ppm by volume of water is passed through a first packed bed to selectively remove at least a portion of the oxygen. The feed stream is then passed through a second packed bed to selectively remove at least a portion of the water, providing a purified feed stream comprising less than 0.1 ppm by volume of oxygen and 0.3 ppm by volume of water. Both the first and second packed beds operate at a temperature of from about 0° C. to about 50° C. The purified feed stream is then passed to a polymerization reactor.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: January 17, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Ronald Steven Eisinger, Daniel Paul Zilker, Jr., James Leland Swecker, II
  • Patent number: 6963018
    Abstract: Novel processes for the production of polyolefins, other polymers, and oxygenated compounds, such as polypropylene, polyethylene, polybutene-1, poly(isobutylene), polystyrene, poly(1,3-butadiene), ethylene oxide, propylene oxide, acrylonitrile, acrolein and others, within gas phase and slurry phase type reactors, from olefins produced via the catalytic dehydrogenation of corresponding paraffins and other monomers inside permeable catalytic membrane reactors or non-permeable conventional reactors. The developed processes can produce both homopolymers and copolymers depending on the operating conditions of the preceding dehydrogenation permreactor. The invented processes utilize integrated separation, recycling and re-reaction operations of the unconverted olefins, paraffins and other utilized monomers and hydrocarbon molecules.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: November 8, 2005
    Inventors: Savvas Vasileiadis, Zoe Ziaka-Vasileiadou
  • Patent number: 6916448
    Abstract: For the selective production of propylene from an olefinic C4 fraction, a process is implemented that successively comprises: 1) the selective hydrogenation of butadiene with isomerization of butene-1 into butene-2; 2) the separation by distillation of a mixture that is rich in isobutene and butene-1 at the top and a fraction that is rich in butene-2 at the bottom; 3) the skeletal isomerization of isobutene into n-butenes on the top fraction, with recycling in stage 1; and 4) the metathesis of the butene-2-rich fraction with ethylene. The advantage of this process is to produce in a very selective way polymerization-quality propylene from all of the olefinic compounds of a C4 fraction, including isobutene.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: July 12, 2005
    Assignee: Institut Francais du Petrole
    Inventors: Dominique Commereuc, Christine Travers