Using Extraneous Nonreactant, E.g., Diluent, Catalyst, Etc. Patents (Class 585/541)
  • Patent number: 4665259
    Abstract: A process is disclosed for converting methane to a higher order hydrocarbon comprising contacting a gaseous reactant comprising methane with a phosphate-containing catalyst for a sufficient period of time and at an effective temperature to provide said higher order hydrocarbon, said catalyst being represented by the formulaM.sub.x PO.sub.ywhereinM is selected from the group consisting of Pb, Bi, Sb, Sn, Tl, In, Mn, Cd, Ge or a mixture of two or more thereof,x is from about 0.1 to about 10, andy is the number of oxygens needed to fulfill the valence requirements of the other elements.
    Type: Grant
    Filed: August 28, 1985
    Date of Patent: May 12, 1987
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Raymond G. Teller, Joseph P. Bartek, Robert K. Grasselli
  • Patent number: 4665260
    Abstract: A continuous method for synthesizing hydrocarbons from a methane source which comprises contacting methane with moving beds of particles comprising an oxidative synthesizing agent under synthesis conditions wherein particles recirculate between two physically separate zones: a methane contact zone and an oxygen contact zone.
    Type: Grant
    Filed: December 19, 1985
    Date of Patent: May 12, 1987
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4658077
    Abstract: A solid composition of matter is disclosed consisting essentially of sodium, potassium, a Group IA metal or a Group IA metal and a Group IIA metal, titanium, oxygen and, optionally, at least one of a halogen and tin, in which at least one of the sodium, the potassium, the Group IA metal or the Group IIA metal is present in an amount in excess of any amount present in electrically neutral compounds of the metal, the titanium and oxygen.The above compositions are particularly useful as solid contact materials for the oxidative conversion of feed organic compounds to product organic compounds, particularly in the presence of a free oxygen containing gas. A method for such conversion is also disclosed.
    Type: Grant
    Filed: June 7, 1985
    Date of Patent: April 14, 1987
    Assignee: Phillips Petroleum Company
    Inventors: John H. Kolts, James B. Kimble
  • Patent number: 4654459
    Abstract: Compositions comprising Mn-containing oxides, alkali metals or compounds thereof and barium carbonate. The composition preferably comprises a major amount of the barium carbonate and minor amounts of the other components. The compositions are useful for hydrocarbon conversion, methane conversion, and oxidative dehydrogenation processes characterized by formation of coproduct water.
    Type: Grant
    Filed: January 2, 1986
    Date of Patent: March 31, 1987
    Assignee: Atlantic Richfield Company
    Inventor: John A. Sofranko
  • Patent number: 4620057
    Abstract: A method for the oxidative conversion of a feed material comprising methane, such as natural gas, to higher hydrocarbons, particularly ethylene and ethane and desirably ethylene, in which feed is contacted with a solid contact material comprising cobalt; at least one metal selected from the group consisting of zirconium, zinc, niobium, indium, lead and bismuth, preferably, zirconium; phosphorous; at least one Group IA metal; and oxygen under oxidative conversion conditions sufficient to convert the methane to the higher hydrocarbons. Substantial improvement in the conversion of methane and selectivity to ethylene and ethane is obtained by adding chlorine to the contact material. The further addition of sulfur to the contact material also improves the conversion and selectivity and permits the method to be carried out in an essentially continuous manner in the presence of a free oxygen containing gas.
    Type: Grant
    Filed: June 7, 1985
    Date of Patent: October 28, 1986
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 4613718
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting at a selected temperature at least one reducible oxide of at least one metal, associated with a hydroxylated magnesia support (that is, magnesia derived from magnesium hydroxide or a magnesium-containing component contacted with hydroxyl-containing material).
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: September 23, 1986
    Assignee: Atlantic Richfield Company
    Inventors: John A. Jaecker, Marvin F. L. Johnson
  • Patent number: 4608449
    Abstract: Process and device for the production of ethane and/or ethylene by heterogeneous catalytic reaction of methane and oxygen using a catalyst suitable for the formation of C.sub.2 hydrocarbons at increased temperatures, whereby in continuous operation a mixture of methane and oxygen is reacted at temperatures between 500.degree. and 900.degree. C. and at an oxygen partial pressure of less than 0.5 bar at the reactor entrance, while the ratio of the methane partial pressure to the oxygen partial pressure is greater than 1.The conversion reaction takes place with or without gas recycling in a reactor containing a bed of solid catalyst or by the use of a fluidized bed of fluidized catalyst particles, or in a cross-flow reactor with distributed input of oxygen.
    Type: Grant
    Filed: June 2, 1983
    Date of Patent: August 26, 1986
    Assignee: Manfred Baerns
    Inventors: Manfred Baerns, Wilhelm Hinsen
  • Patent number: 4593139
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of Ru. The oxide is reduced by the contact which is carried at about 500.degree. to 1000.degree. C. Reducible oxides of Ru are regenerated by oxidizing the reduced composition with oxygen.
    Type: Grant
    Filed: October 31, 1984
    Date of Patent: June 3, 1986
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers
  • Patent number: 4568785
    Abstract: An improved support for a contact agent, useful for converting methane to higher hydrocarbon products by contacting a gas comprising methane with a contact agent at a selected temperature, is formed by sintering the surface of the support.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: February 4, 1986
    Assignee: Atlantic Richfield Company
    Inventor: John A. Jaecker
  • Patent number: 4560821
    Abstract: A continuous method for synthesizing hydrocarbons from a methane source which comprises contacting methane with particles comprising an oxidative synthesizing agent under synthesis conditions wherein particles recirculate between two physically separate zones: a methane contact zone and an oxygen contact zone. Preferably, particles are maintained in each of the two zones as fluidized beds of solids. Particularly effective oxidative synthesizing agents are reducible oxides of metals selected from the group consisting of Mn, Sn, In, Ge, Pb, Sb, and Bi.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: December 24, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4554395
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxidative synthesizing agent under elevated pressures, preferably at pressures within the range of about 5 to 30 atmospheres. Particularly effective oxidative synthesizing agents are reducible oxides of metals selected from the group consisting of Mn,Sn,In,Ge,Pb,Sb, and Bi.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: November 19, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4547607
    Abstract: A method is disclosed for converting methane to higher hydrocarbon product by contacting the methane with a solid which comprises a reducible metal oxide which when contacted with methane at a temperature within the range of about 500.degree. to 1000.degree. C. is reduced and produces higher hydrocarbon products and water, the improvement comprising recycling C.sub.2 + alkanes recovered during subsequent processing of the effluent produced by the contacting to the contacting step.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: October 15, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4547610
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a gas comprising methane and a reducible metal oxide under synthesis conditions, the improvement which comprises performing the contacting in the presence of oxides of nitrogen. Nitrous oxide is a preferred nitrogen oxide.
    Type: Grant
    Filed: November 8, 1984
    Date of Patent: October 15, 1985
    Assignee: Atlantic Richfield Company
    Inventors: John A. Sofranko, Howard P. Withers, Jr.
  • Patent number: 4547611
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a gas comprising methane and an oxidative synthesizing agent at synthesizing conditions, the improvement which comprises contacting methane with a solid comprising a promoting amount of alkali metal and/or compounds thereof, said solid being associated with a support selected from the group consisting of alkaline earth metals and compounds thereof. Magnesia is a particularly preferred support.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: October 15, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John A. Sofranko
  • Patent number: 4547608
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a gas comprising methane with a contact agent at a selected temperature, the agent comprising a reducible metal oxide, a support of at least two oxides, and an alkali metal.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: October 15, 1985
    Assignee: Atlantic Richfield Company
    Inventor: Marvin F. L. Johnson
  • Patent number: 4544786
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a gas comprising methane with a contact agent at a selected temperature, the agent comprising a reducibile metal oxide, a support of at least two oxides, and an alkali metal.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: October 1, 1985
    Assignee: Atlantic Richfield Company
    Inventors: E. William Breder, Jr., John A. Jaecker, Marvin F. L. Johnson
  • Patent number: 4544787
    Abstract: An improved process for the production of a contact agent comprising digesting a reducible oxide of at least one metal, the oxide of which forms a reduced metal oxide, and a support in the presence of a silicon component, drying the precipitate of the reducible oxide and calcining the precipitate to form the contact agent.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: October 1, 1985
    Assignee: Atlantic Richfield Company
    Inventor: E. William Breder, Jr.
  • Patent number: 4544784
    Abstract: A method is disclosed for converting methane to higher hydrocarbon product by contacting methane with a contact solid which comprises a reducible metal oxide which when contacted with methane at a temperature within the range of about 500.degree. to 1000.degree. C. is reduced and produces higher hydrocarbon products and water; and a promoting amount of at least one halogen component.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: October 1, 1985
    Assignee: Atlantic Richfield Company
    Inventors: John A. Sofranko, C. Andrew Jones
  • Patent number: 4544785
    Abstract: A method is disclosed for converting methane to higher hydrocarbon product by contacting methane with a solid which comprises a reducible metal oxide which when contacted with methane at a temperature within the range of about 500.degree. to 1000.degree. C. is reduced and produces higher hydrocarbon products and a promoting amount of at least one chalcogen component. The preferred chalcogen components are selected from a group consisting of sulfur, selenium, tellurium, and compounds thereof.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: October 1, 1985
    Assignee: Atlantic Richfield Company
    Inventors: Howard P. Withers, John A. Sofranko
  • Patent number: 4523049
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a hydrocarbon gas comprising methane, an oxygen-containing gas and a reducible metal oxide under synthesis conditions, the improvement which comprises contacting methane and oxygen with a contact solid which also contains a promoting amount of alkali metal, alkaline earth metal, and/or compounds thereof. Sodium is a particularly effective promoter. Stability of the promoted contact agent is enhanced by the presence of minor amounts of phosphorus.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: June 11, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko, Howard P. Withers
  • Patent number: 4523050
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a hydrocarbon gas comprising methane, an oxygen-containing gas and a reducible metal oxide under synthesis conditions, the improvement which comprises contacting methane and oxygen with a contact solid which comprises at least one manganese silicate.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: June 11, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John A. Sofranko
  • Patent number: 4517398
    Abstract: A method for converting methane to higher hydrocarbon products by contacting, at conditions to convert said hydrocarbons, at least one reducible oxide of at least one metal, associated with a hydroxylated magnesia support (that is, magnesia derived from magnesium hydroxide or a magnesium-containing component contacted with hydroxyl-containing material), which support is calcined prior to the addition of the reducible oxide.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: May 14, 1985
    Assignee: Atlantic Richfield Company
    Inventor: John A. Sofranko
  • Patent number: 4499323
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of Pr having combined therewith an amount of alkali and/or alkaline earth metal which is sufficient to improve the selectivity to higher hydrocarbon products. The oxide is reduced by the contact which is carried at about 500.degree. to 1000.degree. C. Reducible oxides of Pr are regenerated by oxidizing the reduced composition with oxygen. The oxide Pr.sub.6 O.sub.11 is particularly effective in the process.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: February 12, 1985
    Assignee: Atlantic Richfield Company
    Inventor: Anne M. Gaffney
  • Patent number: 4499322
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a gas comprising methane and an oxidative synthesizing agent at synthesizing conditions, the improvement which comprises contacting methane with an oxidative synthesizing agent containing a promoting amount of alkali metal and/or compounds thereof. Sodium is a particularly effective promoter. Stability of the promoted contact agent is enhanced by the presence of phosphorus.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: February 12, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John A. Sofranko
  • Patent number: 4499324
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of Ce having combined therewith an amount of alkali and/or alkaline earth metal which is sufficient to improve the selectivity to higher hydrocarbon products. The oxide is reduced by the contact which is carried at about 500.degree. to 1000.degree. C. Reducible oxides of Ce are regenerated by oxidizing the reduced composition with molecular oxygen. The oxide CeO.sub.2 is particularly effective in the process.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: February 12, 1985
    Assignee: Atlantic Richfield Company
    Inventor: Anne M. Gaffney
  • Patent number: 4495374
    Abstract: An improved method for converting methane to higher hydrocarbon products by contacting a gas comprising methane and an oxidative synthesizing agent under systhesis conditions, the improvement which comprises contacting methane with an oxidative synthesizing agent containing a promoting amount of alkaline earth metal and/or compounds thereof. Magnesium is a particularly effective promoter. Stability of the promoted contact agent is enhanced by the presence of phosphorus.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: January 22, 1985
    Assignee: Atlantic Richfield Company
    Inventors: C. A. Jones, John A. Sofranko
  • Patent number: 4489215
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of Ru having combined therewith an amount of alkali and/or alkaline earth metal which is sufficient to improve the selectivity to higher hydrocarbon products. The oxide is reduced by the contact which is carried at about 500.degree. to 1000.degree. C. Reducible oxides of Ru are regenerated by oxidizing the reduced composition with oxygen. Bulk ruthenium oxides promoted by sodium and/or compounds thereof are particularly preferred contact solids.
    Type: Grant
    Filed: April 16, 1984
    Date of Patent: December 18, 1984
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers
  • Patent number: 4444984
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of tin at a temperature of about 500.degree. to 1000.degree. C. The oxide is reduced by the contact and coproduct water is formed. A reducible oxide of tin is regenerated by oxidizing the reduced composition with molecular oxygen. The oxide SnO.sub.2 is a particularly effective synthesizing agent.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: April 24, 1984
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4443649
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of manganese at a temperature of about 500.degree. to 1000.degree. C. The oxide is reduced by the contact and coproduct water is formed. A reducible oxide of manganese is regenerated by oxidizing the reduced composition with molecular oxygen. The oxide Mn.sub.3 O.sub.4 is a particularly effective synthesizing agent.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: April 17, 1984
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4443644
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of antimony at a temperature of about 500.degree. to 1000.degree. C. The oxide is reduced by the contact and coproduct water is formed. A reducible oxide of antimony is regenerated by oxidizing the reduced composition with molecular oxygen. The oxide Sb.sub.2 O.sub.3 is a particularly effective synthesizing agent.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: April 17, 1984
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4443646
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of bismuth at a temperature of about 500.degree. to 850.degree. C. The oxide is reduced by the contact and coproduct water is formed. A reducible oxide of bismuth is regenerated by oxidizing the reduced composition with molecular oxygen. The oxide Bi.sub.2 O.sub.3 is a particularly effective solid synthesizing agent.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: April 17, 1984
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4443647
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of lead at a temperature of about 500.degree. to 1000.degree. C. The oxide is reduced by the contact and coproduct water is formed. A reducible oxide of lead is regenerated by oxidizing the reduced composition with molecular oxygen. The oxide PbO is a particularly effective synthesizing agent.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: April 17, 1984
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4443645
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of germanium at a temperature of 500.degree. to 800.degree. C. The oxide is reduced by the contact and coproduct water is formed. A reducible oxide of germanium is regenerated by oxidizing the reduced composition with molecular oxygen. The oxide GeO.sub.2 is a particularly effective synthesizing agent.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: April 17, 1984
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko
  • Patent number: 4443648
    Abstract: A method for synthesizing hydrocarbons from a methane source which comprises contacting methane with an oxide of indium at a temperature of about 500.degree. to 850.degree. C. The oxide is reduced by the contact and coproduct water is formed. A reducible oxide of indium is regenerated by oxidizing the reduced composition with molecular oxygen. The oxide In.sub.2 O.sub.3 is a particularly effective solid synthesizing agent.
    Type: Grant
    Filed: August 12, 1983
    Date of Patent: April 17, 1984
    Assignee: Atlantic Richfield Company
    Inventors: C. Andrew Jones, John J. Leonard, John A. Sofranko