Using Acceptor, E.g., Hydrogen-exchange Disproportionation, Etc. Patents (Class 585/656)
  • Patent number: 5406017
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700.degree. to 1200.degree. C. A preferred catalyst comprises an alkali component associated with a support material. Results obtained over alkali-promoted solids are enhanced when the contacting is conducted in the presence of halogen promoters.
    Type: Grant
    Filed: October 25, 1990
    Date of Patent: April 11, 1995
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers, Jr.
  • Patent number: 5354936
    Abstract: A method for preparing ethane and ethylene by reacting methane or a methane-containing natural gas in the presence of oxygen or an oxygen-containing gas, i.e., by partially oxidizing, at a temperature of 500.degree. through 1000.degree. C. using shellfishes or shells as a catalyst is disclosed. The oxidation coupling reaction of methane is controlled so as to remarkably increase the conversion ratio of methane and the selectivity of C.sub.2.sup.+ compounds. The waste matter abundantly released from food industries as well as easily accessible natural resources is used as a raw material of a catalyst for the reaction. The present method is extremely useful from the viewpoint of the recycling of waste as well.
    Type: Grant
    Filed: March 26, 1993
    Date of Patent: October 11, 1994
    Assignee: Sekiyushigen Kaihatsu Kabushiki Kaisha
    Inventors: Masami Yamamura, Hideo Okado, Naohide Tsuzuki, Kazutoshi Chaki, Toshiya Wakatsuki
  • Patent number: 5336825
    Abstract: This invention discloses an improved integrated two step process for conversion of methane to liquid hydrocarbons of gasoline range. The invention particularly comprises catalytic oxidative conversion of methane with free oxygen to ethylene and higher olefins containing gaseous product in the first step and catalytic conversion of the olefins from the product stream of the first step without separating them to liquid hydrocarbons of gasoline range in the second step, for the conversion of methane to liquid hydrocarbons. The process of the present invention could be used in the petroleum industry for the production of gasoline and liquid hydrocarbon fuels and aromatic hydrocarbons.
    Type: Grant
    Filed: July 10, 1992
    Date of Patent: August 9, 1994
    Assignee: Council of Scientific & Industrial Research
    Inventors: Vasant R. Choudhary, Subhash D. Sansare, Sopan T. Chaudhari
  • Patent number: 5321188
    Abstract: Methane is converted into higher hydrocarbon products, and especially into ethane and ethylene, by oxidative coupling, by bringing a gaseous mixture containing methane and oxygen into contact at high temperature for a short contact time with a solid catalyst formed from lithium oxide, an alkaline earth metal oxide (preferably of magnesium) and a lanthanide oxide (preferably of neodymium or lanthanum), in which the lithium content is less than 0.20% by weight and the atomic ratio of the alkaline earth metal to the lanthanide varies from 0.8/1 to 8/1, said catalyst being obtained by:preparing a mixture of lithium, alkaline earth metal and lanthanide oxides in which the lithium content exceeds 1% by weight; andreducing the lithium content of the mixture to less than 0.20% by weight by high temperature thermal treatment conducted at least partly in an oxidizing atmosphere.
    Type: Grant
    Filed: March 1, 1993
    Date of Patent: June 14, 1994
    Assignees: Eniricerche S.p.A., Snamprogetti S.p.A.
    Inventors: Giuseppe Fornasari, Stefano Palmery, Giampiero Piro, Giuseppe Bellussi
  • Patent number: 5321186
    Abstract: A method for preparing an unsaturated compound mainly comprising monoolefins, or a mixture of .alpha., .beta.-unsaturated nitriles and monoolefins comprises coming a mixed gas which comprises paraffins and oxygen, or paraffins, oxygen and ammonia in contact with a catalyst which comprises (1) an oxide of phosphorus and (2) at least one oxide selected from the group consisting of indium oxide and tin oxide or comprises, in addition to the foregoing catalytic components, (3) at least one oxide selected from the group consisting of vanadium oxide, tungsten oxide and molybdenum oxide. The method makes it possible to prepare monoolefins, or a mixture of .alpha., .beta.-unsaturated nitriles and monoolefins in high yield and high selectivity from cheap starting materials, parafins.
    Type: Grant
    Filed: November 17, 1992
    Date of Patent: June 14, 1994
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Tadatoshi Honda, Kazuhiro Terada
  • Patent number: 5321187
    Abstract: A method for preparing a catalyst for conversion of methane to higher hydrocarbons, discloses the steps of: forming a mixture of a manganese aqueous solution and an oxidative agent aqueous solution in an inorganic oxide support material; varying a pH value of the mixture between acidic and basic values to obtain a precipitate of manganese oxide; drying the manganese oxide precipitate; impregnating the dried manganese oxide precipitate with a promoter to obtain an impregnated solid; drying the impregnated solid; and calcining the impregnated solid until a surface atomic ratio of promoter to manganese is at least 5. The catalyst so acquired may be contacted with a methane gas to obtain stable conversion values over extended reaction times.
    Type: Grant
    Filed: January 25, 1993
    Date of Patent: June 14, 1994
    Assignee: Intevep, S.A.
    Inventors: Cesar Ovalles, Nora Urbano, Francisco Rosa
  • Patent number: 5306858
    Abstract: Disclosed is a process for oxidizing a paraffin hydrocarbon containing 2 to 5 carbon atoms and no quaternary carbon atom to an olefin having the same number of carbon atoms as said paraffin by contacting said paraffin in a reaction zone with molecular oxygen and a VAPO-5 microporous molecular sieve as catalyst.
    Type: Grant
    Filed: November 20, 1992
    Date of Patent: April 26, 1994
    Assignee: The Standard Oil Company
    Inventors: George F. Salem, Charles J. Besecker, Susan M. Kenzig, Walter J. Kowlaski, Larry M. Cirjak
  • Patent number: 5276237
    Abstract: A membrane of an oxidative conversion contact material of a mixed oxide of aluminum and at least one multivalent activator metal with the membrane permitting selective conveyance of a form of oxygen therethrough, as well as methods for the oxidative conversion of a gaseous hydrocarbon reactant using such membranes are provided.
    Type: Grant
    Filed: December 20, 1991
    Date of Patent: January 4, 1994
    Assignee: Amoco Corporation
    Inventor: Rodney L. Mieville
  • Patent number: 5268525
    Abstract: The invention relates to the conversion of saturated hydrocarbons.According to the invention a first gas containing chlorine and a second gas containing hydrogen are introduced into a chamber (3) so as to mix them. At the exit (4) of this chamber (3) the mixture of chlorine and hydrogen is ignited and the products originating from this flame are then mixed in a chamber (7) with a third gas containing the hydrocarbons to be converted, with a mean weight content of hydrogen element of at least 18%. The effluents from the chamber (7) are collected, quenched and fractionated. The hydrochloric acid is reformed into chlorine which is recycled in the first gas, the hydrogen is recycled in the second gas, and the alkanes in the third gas. The unsaturated hydrocarbons are recovered.The invention applies in particular to the conversion of natural gases into unsaturated hydrocarbons, such as ethylene.
    Type: Grant
    Filed: March 18, 1991
    Date of Patent: December 7, 1993
    Assignee: Gaz de France
    Inventor: Guy-Marie Come
  • Patent number: 5254778
    Abstract: An improved method for preparing a catalyst which is superior for converting methane to ethane and ethylene is described. The method involves mixing a solution of a magnesium alkoxide in alcohol with a solution of a lithium compound in alcohol. Preferably, chlorine is introduced into the mixture. A solution of an aluminum alkoxide in an alcohol may also be added to the mixture. The magnesium alkoxide is hydrolyzed to produce a gel, and the gel is then calcined to produce the catalyst. Catalysts prepared by this method are superior for converting methane to ethane and ethylene, and have superior selectivities for ethylene and ethane over conventional lithium carbonate/magnesium oxide catalysts.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: October 19, 1993
    Assignee: The Texas A & M University System
    Inventors: Jack H. Lunsford, Paul G. Hinson
  • Patent number: 5245109
    Abstract: A contact material composition of an intimately mixed halogencontaining mixed oxide of at least one cationic species of a naturally occurring Group IIIB element, at least one cationic species of a Group IIA metal of magnesium, calcium, strontium and barium and at least one cationic species of germanium and gallium, as well as methods for hydrocarbon conversion using such contact material compositions are provided.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: September 14, 1993
    Assignee: Amoco Corporation
    Inventors: Mark P. Kaminsky, Mark S. Kleefisch, George A. Huff, Jr., Don M. Washecheck, Mark K. Barr
  • Patent number: 5227565
    Abstract: Barium peroxide oxidizer, together with a transition metal from Group I, III, IV, V, VII or VIII or compound thereof is used as stoichiometric reagent in the oxidative dimerization of hydrocarbons having three or four carbon atoms. Barium peroxide oxidizer, together with a transition metal from Group I, III, IV, V, VI, VII or VIII or compound thereof is used as stoichiometric reagent in the dehydrogenation of hydrocarbons having three or four carbon atoms.
    Type: Grant
    Filed: June 29, 1992
    Date of Patent: July 13, 1993
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Vincent A. Durante, James E. Lyons
  • Patent number: 5227552
    Abstract: The present invention provides a process for producing a selected paraffin from a reaction mixture containing(i) an acceptor olefin having the carbon backbone structure of said selected paraffin;(ii) a donor paraffin having a carbon backbone structure different from that of said selected paraffin;(iii) less than about 10 mole percent molecular hydrogen; which process comprises the steps of contacting said reaction mixture with a heterogeneous catalyst comprising active carbon in the absence of an added catalytic metal or metal compound to convert at least a portion of said acceptor olefin to said selected paraffin and to dehydrogenate at least a portion of said donor paraffin.
    Type: Grant
    Filed: April 27, 1992
    Date of Patent: July 13, 1993
    Assignee: Mobil Oil Corporation
    Inventors: Clarence D. Chang, Stuart D. Hellring, Randy F. Striebel
  • Patent number: 5210357
    Abstract: A solid composition of matter selected from the group consisting of:(a) a component comprising: (1) an oxide of lanthanum and a component comprising: (2) at least one material selected from the group consisting of halogen ions, compounds containing halogen ions, tin and compounds containing tin; and(b) a component comprising: (1) at least one material selected from the group consisting of Group IA metals and compounds containing said metals, a component comprising: (2) at least one metal selected from the group consisting of lanthanum and compounds containing lanthanum and, optionally, a component comprising: (3) at least one material selected from the group consisting of halogen ions, compounds containing halogen ions, tin and compounds containing tin,and a method for the oxidative conversion of organic compounds to other organic compounds, particularly in the presence of a free oxygen containing gas.
    Type: Grant
    Filed: June 7, 1985
    Date of Patent: May 11, 1993
    Assignees: Phillips Petroleum Company, Atlantic Richfield Company
    Inventors: John H. Kolts, James B. Kimble
  • Patent number: 5198596
    Abstract: A contact material composition containing an intimately mixed, mixed oxide of at least one cationic species of a naturally occurring Group 111B elment, at least one cationic species of a Group IIA metal of magnesium, calcium, strontium, and barium and at least one additional metal cationic species of zirconium and hafnium, as well as methods for hydrocarbon conversion using such contact material compositions are provided.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: March 30, 1993
    Assignee: Amoco Corporation
    Inventors: Mark P. Kaminsky, Mark S. Kleefisch, George A. Huff, Jr., Don M. Washecheck, Mark K. Barr
  • Patent number: 5196634
    Abstract: A contact material composition containing an intimately mixed, mixed oxide of at least one cationic species of a naturally occurring Group IIIB element, at least one cationic species of a Group IIA metal of magnesium, calcium, strontium, and barium and a cationic species of aluminum, as well as methods for hydrocarbon conversion using such contact material compositions are provided.
    Type: Grant
    Filed: October 11, 1991
    Date of Patent: March 23, 1993
    Assignee: Amoco Corporation
    Inventors: Don M. Washecheck, Mark K. Barr, George A. Huff, Jr., Mark P. Kaminsky, Mark S. Kleefisch, Victor K. Shum
  • Patent number: 5160502
    Abstract: A solid composition of matter comprising: (1) cobalt, (2) at least one metal selected from the group consisting of Group IA metals, (3) silicon and (4) oxygen, preferably containing at least two Group IA metals and optionally containing at least one material selected from the group consisting of halogen ions and compounds containing halogen ions, phosphorous and compounds containing phosphorous, sulfur and compounds containing sulfur. A method for the oxidative conversion of feed organic compounds to product organic compounds utilizing these solid compositions of matter as solid contact materials is described.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: November 3, 1992
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 5157189
    Abstract: A process is disclosed for catalytically converting light hydrocarbons, such as natural gas, to saturated or unsaturated higher molecular weight hydrocarbons, such as ethylene, propylene, ethyl benzene, and styrene. The process employs gaseous catalyst or a mixture of catalysts selected from hydrogen sulfide, hydrogen halides other then hydrogen fluoride, halogen other than fluorine, sulfur vapor, and/or sulfur containing hydrocarbons.
    Type: Grant
    Filed: November 21, 1990
    Date of Patent: October 20, 1992
    Inventor: Sankaram B. Karra
  • Patent number: 5157188
    Abstract: A method for the oxidative conversion of methane, to higher hydrocarbons, particularly ethylene and ethane, in which a methane-containing gas, such as natural gas, and a free oxygen containing gas are contacted with a contact material selected from the group consisting of:(a) a component comprising: (1) at least one oxide of a metal selected from the group consisting of calcium, strontium and barium and, optionally, a component comprising: (2) at least one material selected from the group consisting of chloride ions, compounds containing chloride ions, tin and compounds containing tin;(b) a component comprising: (1) at least one metal selected from the group consisting of sodium, potassium and compounds containing said metals, a component comprising: (2) at least one metal selected from the group consisting of Group IIA metals and compounds containing said metals, and, optionally, a component comprising: (3) at least one material selected from the group consisting of chloride ions, compounds containing chlori
    Type: Grant
    Filed: March 19, 1985
    Date of Patent: October 20, 1992
    Assignees: Phillips Petroleum Company, Atlantic Richfield Company
    Inventors: John H. Kolts, James B. Kimble
  • Patent number: 5146027
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700.degree. to 1200.degree. C. in the presence of a halogen promoter, the contacting being conducted in the substantial absence of alkali metals or compounds thereof.
    Type: Grant
    Filed: May 24, 1985
    Date of Patent: September 8, 1992
    Assignees: Atlantic Richfield Co., Phillips Petroleum Co.
    Inventor: Anne M. Gaffney
  • Patent number: 5132482
    Abstract: An improvement in the process for the oxidative coupling of methane is provided. Typically, the reaction takes place in a reactor that includes a catalyst zone. A primary CH.sub.4 /O.sub.2 stream is fed into the entrance of the reactor and reacted at a temperature of 600.degree. C.-1000.degree. C. and a pressure of between 101 kPa and 800 kPa. The improvement comprises introducing an auxiliary oxygen stream directly into the catalyst zone and one or more points to thereby selectively increase the yield of C.sub.2+ products.
    Type: Grant
    Filed: June 14, 1990
    Date of Patent: July 21, 1992
    Assignee: Alberta Research Council
    Inventors: Kevin J. Smith, Jan Z. Galuszka
  • Patent number: 5126499
    Abstract: A process for the production of hydrocarbons having 2 or more carbon atoms by oxidative coupling of methane includes a step of contacting a feed gas containing methane with an oxide of metals having the following composition:MCo.sub.1-x Fe.sub.x O.sub.ywherein M stands for at least one alkaline earth metal x is a number greater than 0 but not greater than 1 and y is a number in the range of 2.5-3.5, at a temperature of 500.degree.-1000.degree. C.
    Type: Grant
    Filed: March 20, 1991
    Date of Patent: June 30, 1992
    Assignee: Director-General of Agency of Industrial Science and Technology
    Inventors: Takashi Hayakawa, Katsuomi Takehira, Hideo Orita, Masao Shimizu, Yoshihito Watanabe
  • Patent number: 5118899
    Abstract: Compositions of matter particularly useful for the oxidative conversion of feed organic compounds to produce organic compounds include combination of Group IIA, zinc, titanium and Lanthanum Series base materials and, optionally, Group IA and/or halogen promoters. A method for the oxidative conversion of feed organic compounds to produce organic compounds, particularly methane, to higher hydrocarbons and saturated C.sub.2 to C.sub.7 hydrocarbons to less saturated hydrocarbons in the presence of an oxygen-containing gas is disclosed utilizing base compositions of matter.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: June 2, 1992
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 5113032
    Abstract: Process for producing olefins from natural gas, the natural gas (2) is mainly fractionated (1) into methane (3) and higher hydrocarbons (4), the latter being then mainly fractionated (17, 20) into propane (9) and ethane (7). The methane (3), admixed with oxygen (6), passes through an oxidation reactor (5), receives the ethane (7) and the obtained mixture passes through a pyrolysis reactor (8). The effluent coming out of reactor (8) receives the propane (9) and the obtained mixture passes through a pyrolysis reactor (10). A hydrocarbon flow comprising olefins (12), more particularly ethylene and propene, is recovered.
    Type: Grant
    Filed: January 8, 1990
    Date of Patent: May 12, 1992
    Assignee: Institut Francais du Petrole
    Inventors: Charles Cameron, Hubert Mimoun, Alain Robine, Serge Bonnaudet, Patrick Chaumette, Quang Dang Vu
  • Patent number: 5105045
    Abstract: A method for the oxidative conversion of feed organic compounds, such as methane and ethane, to product organic compounds, such as ethylene, in the presence of a free oxygen containing gas and a contact material comprising: (1) Group IA and/or Group IIA metals/O.sub.2 /halogen; (2) Group IA metals/La Series metals/O.sub.2 /halogen and, optionally, Group IIA metals; (3) Group IA metals/Zn/O.sub.2 /halogen and, optionally, Group IIA metals; (4) Group IA metals/Ti or Zr/O.sub.2 /halogen and, optionally, Group IIA metals; (5) Group IA and/or IIA metals/phosphate/halogen or (6) Co/Zr, Zn, Nb, In, Pb and/or Bi/P/O.sub.2 halogen, and, optionally, Group IA metals and/or S, in which a contact material containing no halogen or an ineffective amount are activated and/or regenerated by contacting them with a halogen and, when the contact material is contact material (6), with a reducing agent or both a reducing agent and a halogen.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: April 14, 1992
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 5105044
    Abstract: There is provided a catalyst and a process for the direct partial oxidation of methane with oxygen, whereby hydrocarbons having at least two carbon atoms are produced. The catalyst used in this reaction is a spinel oxide, such as MgMn.sub.2 O.sub.4 or CaMn.sub.2 O.sub.4, modified with an alkali metal, such as Li or Na.
    Type: Grant
    Filed: October 15, 1990
    Date of Patent: April 14, 1992
    Assignee: Mobil Oil Corp.
    Inventors: Scott Han, Lorenzo C. DeCaul, Robert E. Palermo, Dennis E. Walsh
  • Patent number: 5095161
    Abstract: Methane is upgraded to higher molecular weight hydrocarbons in a process using a novel catalyst comprising oxides of boron, tin and zinc. The feed admixture also comprises oxygen. The novel catalyst may comprise one or more Group I-A or II-A elements, preferably potassium and is characterized by its method of manufacture.
    Type: Grant
    Filed: August 6, 1990
    Date of Patent: March 10, 1992
    Assignee: UOP
    Inventors: Hayim Abrevaya, Tamotsu Imai, Lisa M. Lane
  • Patent number: 5093542
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700.degree. to 1200.degree. C. in the presence of a halogen promoter, the contacting being conducted in the substantial absence of alkali metals or compounds thereof.
    Type: Grant
    Filed: October 25, 1990
    Date of Patent: March 3, 1992
    Assignee: Atlantic Richfield Company
    Inventor: Anne M. Gaffney
  • Patent number: 5087787
    Abstract: A method for the oxidative conversion of feed organic compounds to product organic compounds, particularly, the conversion of methane to higher hydrocarbons and the conversion of saturated C.sub.2 to C.sub.7 hydrocarbons to less saturated hydrocarbons, in which the feed compounds are contacted with a free oxygen-containing gas, water and a contact material, comprising at least one Group IIA metal or lanthanum and oxygen; at least two Group IIA metals, Lanthanum Series metals, zinc, or titanium and oxygen; at least one Group IA metal, at least one Group IIA metal, Lanthanum Series metals, zinc or titanium and oxygen; at least one Group IA metal or Group IIA metal, phosphorous and oxygen; cobalt, at least one of zirconium, zinc, nickel, indium, lead or bismuth, phosphorous, at least one Group IA metal and oxygen; or cobalt, at least one Group IA metal, silicon and oxygen.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: February 11, 1992
    Assignee: Phillips Petroleum Company
    Inventors: James B. Kimble, John H. Kolts
  • Patent number: 5077446
    Abstract: A method for the oxidative conversion of methane, at a high conversion and high selectivity to ethylene and ethane, in which a methane-containing gas, such as a natural gas, and an oxygen-containing gas are contacted with a contact material comprising lithium, in an effective amount, preferably 0.1 to 50 wt. % (expressed as the metal), and magnesium oxide, as by passing a mixture of the methane-containing gas and the oxygen-containing gas through a body of the contact material.
    Type: Grant
    Filed: March 19, 1985
    Date of Patent: December 31, 1991
    Assignee: Phillips Petroleum Company
    Inventors: John H. Kolts, Jack H. Lunsford
  • Patent number: 5073664
    Abstract: Propane is dimerized to 2,3-dimethylbutane with barium peroxide oxidizer.
    Type: Grant
    Filed: March 11, 1991
    Date of Patent: December 17, 1991
    Assignee: Sun Refining and Marketing Company
    Inventors: Vincent A. Durante, James E. Lyons
  • Patent number: 5059740
    Abstract: A tin-containing composition is provided, the composition having a tin Auger line transition wherein the ratio of the area of the M.sub.5 N.sub.4,5 N.sub.4,5 transition peak at 424.5 eV.+-.1 eV, having a 6 eV FWHM, to the area of M.sub.4 N.sub.4,5 N.sub.4,5 transition peak at 430.5 eV.+-.1 eV is at least 10 to 1. Additional such tin-containing compositions, including catalyst compositions are also provided as are methods for converting feedstock alkanes containing from 1 to 4 carbon atoms to higher molecular weight hydrocarbons using such catalyst compositions.
    Type: Grant
    Filed: June 25, 1990
    Date of Patent: October 22, 1991
    Assignee: Amoco Corporation
    Inventors: Mark P. Kaminsky, Mark S. Kleefisch, Gerry W. Zajac
  • Patent number: 5026945
    Abstract: Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.
    Type: Grant
    Filed: September 19, 1989
    Date of Patent: June 25, 1991
    Assignee: Union Carbide Chemicals and Plastics Technology Corporation
    Inventor: Kenneth D. Campbell
  • Patent number: 5025108
    Abstract: Process for producing olefins from natural gas. The natural gas is fractionated (1). The methane (3) mixed with oxygen (6) crosses the oxidizing reactor (5), receives the C.sub.2 + hydrocarbons (7) and the mixture crosses the pyrolysis reactor (8). A hydrocarbons flow containing olefins (10) is collected.
    Type: Grant
    Filed: April 4, 1989
    Date of Patent: June 18, 1991
    Assignee: Institut Francais du Petrole
    Inventors: Charles Cameron, Hubert Mimoun, Alain Robine, Serge Bonnaudet, Patrick Chaumette, Quang Dang Vu
  • Patent number: 5015799
    Abstract: A method for converting methane to higher molecular weight hydrocarbons wherein hot oxidative coupling reactor effluent is briefly contacted with a C.sub.2 to C.sub.20 alkane quench material to remove part of the heat contained in the raw reactor effluent, and is then further quenched by thermal quenching means to achieve a temperature which discourages retrograde reactions.
    Type: Grant
    Filed: July 6, 1989
    Date of Patent: May 14, 1991
    Assignee: Amoco Corporation
    Inventors: Robert H. Walker, Paul A. Willems, George A. Huff, Lewis E. Grimes, David F. Tatterson, Robert L. Mehlberg
  • Patent number: 4981829
    Abstract: This invention relates to a method for the oxidative conversion of methane to ethylene and/or ethane and to a catalyst system for use in the method.In more detail a method for the oxidative conversion of methane to ethylene and/or ethane in which a mixture comprising methane and oxygen is heated to a temperature of from 500.degree. to 1000.degree. C. and the heated mixture is contacted with a catalyst system which comprises a first component which is a non-reducible metal compound and which first component is sufficiently refractory to withstand the operative temperature and a second component which is one or more oxycompounds of boron or phosphorus provided on the surface of the first component.
    Type: Grant
    Filed: June 15, 1989
    Date of Patent: January 1, 1991
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Eric Shutt, Andries G. Altena, John W. Jenkins
  • Patent number: 4973786
    Abstract: A process is disclosed for catalytically converting methane to synthesis gas and one or more saturated or unsaturated higher molecular weight hydrocarbons, such as ethane, ethylene, and acetylene. The process employs a homogeneous gas phase hydrogen halide catalyst other than hydrogen fluoride to faciltiate the pyrolytic oxidation of methane. Alternatively the homogeneous gas phase catalyst may consist of a mixture of gaseous hydrogen halide and gaseous halogen, or a halogen gas.
    Type: Grant
    Filed: October 19, 1987
    Date of Patent: November 27, 1990
    Inventor: Sankaram B. Karra
  • Patent number: 4939310
    Abstract: Methane is converted into higher hydrocarbons by contact at a temperature in the range from 500.degree. to 1000.degree. C. with a contact solid comprising a manganese oxide incorporating at least one of the elements tin, titanium, tungsten, tautalum, silicon, germanium, lead, phosphorus, arsenic, antimony, boron, gallium, indium, a lanthanide or an actinide. The contact solid is preferably promoted by either an alkali or alkaline earth metal, for example sodium.
    Type: Grant
    Filed: October 11, 1988
    Date of Patent: July 3, 1990
    Assignee: The British Petroleum Company p.l.c.
    Inventor: Steven R. Wade
  • Patent number: 4939311
    Abstract: An oxidative coupling catalyst composition for converting methane to a higher hydrocarbon comprising a mixed oxide of: (a) a Group IIIB metal selected from the grouup consisting of yttrium, scandium and lanthanum; (b) a Group IIA metal selected from the group consisting of barium, calcium and strontium; and (c) a Group IVA metal selected from the group consisting of tin, lead and germanium and approximate ratio of 1:0.5-3:2-4, and an improved process employing same.
    Type: Grant
    Filed: August 17, 1988
    Date of Patent: July 3, 1990
    Assignee: Amoco Corporation
    Inventors: Don M. Washecheck, Aileen E. Alvarado-Swaisgood, Mark P. Kaminsky, Mark S. Kleefisch, George A. Huff, Jr.
  • Patent number: 4929787
    Abstract: The invention concerns a process for the oxidative conversion of methane or natural gas to higher hydrocarbons, particularly ethylene and ethane, characterized in that a methane-oxygen mixture is passed over a contact mass consisting of at least one compound pertaining to the family of rare-earth metal carbonates. It concerns particularly the use of rare-earth oxycarbonates, more particularly lanthanum oxycarbonate La.sub.2 O.sub.2 (CO.sub.3), as contact mass.
    Type: Grant
    Filed: August 4, 1988
    Date of Patent: May 29, 1990
    Assignee: Institut Francais du Petrole
    Inventors: Charles Cameron, Hubert Mimoun, Serge Bonnaudet, Alain Robine
  • Patent number: 4914252
    Abstract: A method is provided for converting feedstock comprising paraffins by selective oxidative coupling to product comprising higher hydrocarbons including dimers of said feedstock paraffins which comprises contacting said feedstock with a catalyst composition comprising a thermally stable layered metal chalcogenide having adjacent layers separated by chalcogenide pillars, and an alkali metal.
    Type: Grant
    Filed: January 12, 1989
    Date of Patent: April 3, 1990
    Assignee: Mobil Oil Corporation
    Inventors: Pochen Chu, Michael E. Landis
  • Patent number: 4886931
    Abstract: A multi-component oxide catalyst comprising zinc and an alkali metal is described which is useful particularly for converting methane and/or natural gas to higher molecular weight hydrocarbon products such as ethane and ethylene. The catalyst is characterized by the formulaZn.sub.a A.sub.b M.sub.c M'.sub.d O.sub.xwhereinA is Li, Na, K, or mixtures thereof;M is Al, Ga, Cr, La, Y, Sc, V, Nb, Ta, Cu or mixtures thereof;M' is Cs, Rb, Mg, Ca, Sr, Ba, Sm, Pb, Mn, Sb, P, Sn, Bi, Ti, Zr, Hf, or mixtures thereof;a is from about 1 to about 20;b is from about 0.1 to about 20;c is from about 0 to about 5;d is from about 0 to about 20; andx is a number needed to fulfill the valence requirements of the other elements; provided that(i) at least one of c and d is at least 0.1; and(ii) when M' is Sn, c must be at least 0.1.
    Type: Grant
    Filed: June 4, 1987
    Date of Patent: December 12, 1989
    Assignee: The Standard Oil Company
    Inventors: Joseph P. Bartek, James F. Brazdil, Jr., John M. Hupp, Robert K. Grasselli
  • Patent number: 4886932
    Abstract: The invention relates to the conversion of methane to higher hydrocarbons by reaction of methane and gaseous oxidant under adiabatic conditions in a thin bed reactor, wherein the hydrocarbon feed contains 1 to 10 wt % C.sub.2.sup.+ alkanes based on methane plus C.sub.2.sup.+ alkanes.
    Type: Grant
    Filed: April 11, 1988
    Date of Patent: December 12, 1989
    Assignee: Atlantic Richfield Company
    Inventor: David W. Leyshon
  • Patent number: 4876409
    Abstract: The invention relates to the conversion of methane to higher hydrocarbons by reaction of methane and gaseous oxidant under adiabatic conditions in a thin bed reactor, and to reactors for carrying out this reaction.
    Type: Grant
    Filed: March 4, 1988
    Date of Patent: October 24, 1989
    Assignee: Atlantic Richfield Company
    Inventors: David W. Leyshon, Robert A. Bader
  • Patent number: 4873388
    Abstract: This invention relates to a method for the oxidative conversion of methane to ethylene and/or ethane and to a catalyst system for use in the method.In more detail a method for the oxidative conversion of methane to ethylene and/or ethane in which a mixture comprising methane and oxygen is heated to a temperature of from 500.degree. to 1000.degree. C. and the heated mixture is contacted with a catalyst system which comprises a first component which is a non-reducible metal compound and which first component is sufficiently refractory to withstand the operative temperature and a second component which is one or more oxycompounds of boron or phosphorus provided on the surface of the first component.
    Type: Grant
    Filed: August 13, 1987
    Date of Patent: October 10, 1989
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Eric Shutt, Andries G. Altena, John W. Jenkins
  • Patent number: 4861936
    Abstract: Compositions comprising boron-promoted reducible metal oxides (expecially reducible oxides of Mn) and optionally containing alkali and alkaline earth metal components are disclosed, as well as use thereof for hydrocarbon conversions characterized by formation of by-product water. Particular processes comprise the conversion of methane to higher hydrocarbons and the dehydrogenation of dehydrogenatable hydrocarbons, e.g., dehydrogenation of C.sub.2 -C.sub.5 alkanes to form the corresponding olefins.
    Type: Grant
    Filed: June 27, 1988
    Date of Patent: August 29, 1989
    Assignee: Atlantic Richfield Company
    Inventors: John A. Sofranko, Robert G. Gastinger, C. Andrew Jones
  • Patent number: 4814539
    Abstract: The catalyzed oxidative coupling of a lower molecular weight alkane to more valuable, higher molecular weight hydrocarbons and oxidative coupling catalysts for use therein are disclosed.
    Type: Grant
    Filed: February 28, 1985
    Date of Patent: March 21, 1989
    Assignee: Amoco Corporation
    Inventors: James L. Jezl, Glenn O. Michaels, Michael J. Spangler, Mark L. Winzenburg
  • Patent number: 4814534
    Abstract: Disclosed is a continuous catalytic process for the production of higher molecular weight hydrocarbons from methane in which a methane-containing gas is contacted in a reaction zone with a higher molecular weight hydrocarbon synthesis catalyst under C.sub.2 +hydrocarbon synthesis conditions, the improvement comprising adding a C.sub.2 to C.sub.4 hydrocarbon and hydrogen to said gas thereby forming a reaction gas wherein said C.sub.2 to C.sub.4 hydrocarbon comprises 0.1 to 10 volume percent of said reaction gas and said hydrogen comprises 1 to 25 volume percent of said reaction gas, said synthesis conditions including a temperature greater than 1000.degree. C. and a gas hourly space velocity of greater than 3200 hr.sup.31 1.
    Type: Grant
    Filed: October 31, 1985
    Date of Patent: March 21, 1989
    Assignee: Chevron Research Company
    Inventors: Louis Devries, P. R. Ryason
  • Patent number: 4814533
    Abstract: In a continuous catalytic process for the production of higher molecular weight hydrocarbons from lower molecular weight hydrocarbons in which a lower molecular weight hydrocarbon containing gas is contacted in a reaction zone with a higher molecular weight hydrocarbon synthesis catalyst under C.sub.2 + hydrocarbon synthesis conditions, the improvement comprising adding hydrogen to said gas thereby forming a reaction gas wherein said hydrogen comprises 1 to 25 volume percent of the reaction gas, said synthesis conditions including a temperature greater than 1000.degree. C. and a gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: October 31, 1985
    Date of Patent: March 21, 1989
    Assignee: Chevron Research Company
    Inventors: Loius Devries, P. R. Ryason
  • Patent number: 4814538
    Abstract: In a continuous catalytic process for the production of higher molecular weight hydrocarbons from methane in which a reaction gas containing methane is contacted in a reaction zone with a higher molecular weight hydrocarbon synthesis catalyst under C.sub.2 + hydrocarbon synthesis conditions, the improvement comprising adding a C.sub.2 to C.sub.4 hydrocarbon to the reaction gas such that said C.sub.2 to C.sub.4 hydrocarbon comprises 0.1 to 10 volume percent of the reaction gas, said reaction conditions including a temperature greater than 1000.degree. C. and a gas hourly space velocity of greater than 3200 hr.sup.-1.
    Type: Grant
    Filed: October 23, 1985
    Date of Patent: March 21, 1989
    Assignee: Chevron Research Company
    Inventors: Louis Devries, P. R. Ryason