With Plural Separation Procedures Applied To Effluent Or Effluent Component Patents (Class 585/719)
  • Patent number: 11511256
    Abstract: Systems and processes for the flexible production of gasoline and jet fuel via alkylation of C4 and C5 olefins.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 29, 2022
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Zan Liu, Jackeline Medina Bolívar, Maurice Korpelshoek, Romain Lemoine, Manoj Som
  • Patent number: 10252956
    Abstract: A process utilizing an ionic liquid is described. The process includes contacting a hydrocarbon feed with an ionic liquid component, the ionic liquid component comprising a mixture of a first ionic liquid and a viscosity modifier, wherein a viscosity of the ionic liquid component is at least about 10% less than a viscosity of the first ionic liquid.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: April 9, 2019
    Assignee: UOP LLC
    Inventors: Avram M. Buchbinder, Erin M. Broderick, Susie C. Martins, Alakananda Bhattacharyya, Stuart Smith
  • Patent number: 9669377
    Abstract: An ionic liquid reactor unit and a process for controlling heat generation from an ionic liquid reactor unit. The ionic liquid reactor unit may include an external heat exchanger. The effluent from the reactor is separated in a separation zone allowing the hydrocarbon phase to transfer heat to a cooling fluid. The heat exchanger may be a tube-in-shell, a spiral plate heat exchanger, a hair pin heat exchanger. The heat exchanger accommodates the separation of the ionic liquid from the hydrocarbon phase, and may allow for the ion liquid to be drained.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: June 6, 2017
    Assignee: UOP LLC
    Inventors: Zhanping Xu, James Hagen, Sanford A. Victor, Phillip F. Daly, Kurt Detrick
  • Patent number: 8912382
    Abstract: One exemplary embodiment can be a method of modifying an alkylation unit to increase capacity. The method may include combining a first alkylation zone with a second alkylation zone. Generally, the first alkylation zone includes a first settler having a height and a width. Typically, the width is greater than the height. In addition, the second alkylation zone may have a second settler having a height and a width. Usually, the height is greater than the width.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: December 16, 2014
    Assignee: UOP LLC
    Inventors: Daryl Dunham, Dale James Shields
  • Patent number: 8895798
    Abstract: One exemplary embodiment can be a method for altering an operation of an alkylation unit during a process upset. The method may include blocking an outlet of a settler to a separation zone, and recycling at least a portion of a hydrocarbon stream to the separation zone to prevent an uncontrolled pressure rise in one or more distillation columns during shutdown of an alkylation reactor.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: November 25, 2014
    Assignee: UOP LLC
    Inventor: Dale James Shields
  • Patent number: 8865960
    Abstract: Methods for starting and operating ionic liquid catalyzed hydrocarbon conversion processes and systems to provide maximum process efficiency, system reliability and equipment longevity may include: purging air and free water from at least a portion of the system; introducing at least one reactant into the at least a portion of the system; and re-circulating the at least one reactant through the at least a portion of the system, via at least one feed dryer unit, until the at least one reactant exiting the at least a portion of the system has a water content at or below a threshold value, prior to the introduction of an ionic liquid catalyst and/or additional reactant(s) and feeds into the system.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: October 21, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung Timken, Howard S. Lacheen, Shawn S. Winter
  • Publication number: 20140163293
    Abstract: One exemplary embodiment can be a process. The process can include obtaining a hydrocarbon phase having one or more hydrocarbons and an alkylation catalyst from a first vessel, swirling the hydrocarbon phase to separate the alkylation catalyst, and recycling the alkylation catalyst to an alkylation reactor.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 12, 2014
    Applicants: Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, UOP LLC
    Inventors: Daniel K. Aiken, Kurt A. Detrick, Andrey Kuzmin
  • Patent number: 8653318
    Abstract: The present invention provides process for preparing an alkylate comprising contacting in a reactor a hydrocarbon mixture comprising at least an isoparaffin and an olefin with an acidic ionic liquid catalyst under alkylation conditions to obtain an alkylate, which process further comprises: —withdrawing an alkylate-comprising reactor effluent from the reactor, wherein the reactor effluent comprises an ionic liquid phase and a hydrocarbon phase; —separating at least part the reactor effluent into a hydrocarbon phase effluent and a multiple-phase effluent in a centrifugal separation unit; —fractionating at least part of said hydrocarbon phase effluent into at least a stream comprising alkylate and a stream comprising isoparaffin.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: February 18, 2014
    Assignee: Shell Oil Company
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng, Ana Cecilia Patroni, Peter Anton August Klusener, Albertus Vincentius Petrus Van Den Bosch
  • Patent number: 8569561
    Abstract: The present invention provides a method for revamping an HF or sulphuric acid alkylation unit to an ionic liquid alkylation unit, wherein the HF or sulphuric acid alkylation unit comprise at least: —a reactor unit for contacting catalyst and hydrocarbon reactants; —a separator unit for separating a reactor effluent into a catalyst phase and an alkylate-comprising hydrocarbon phase; —a fractionator unit for fractionating the alkylate-comprising hydrocarbon phase into at least one stream comprising alkylate; and which method includes: —providing one or more cyclone units downstream of the reactor unit to separate at least part of the reactor effluent in a catalyst phase and a alkylate-comprising hydrocarbon phase.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: October 29, 2013
    Assignee: Shell Oil Company
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng, Ana Cecilia Patroni, Peter Anton August Klusener, Albertus Vincentius Petrus Van Den Bosch
  • Patent number: 8552243
    Abstract: The present invention provides a process for preparing an alkylate, comprising: contacting in a reaction zone a hydrocarbon mixture comprising at least isoparaffin and an olefin with an acidic ionic liquid catalyst under alkylation conditions to obtain an alkylate; withdrawing an alkylate-comprising effluent from the reaction zone; separating at least part of the alkylate-comprising effluent into an hydrocarbon-rich phase and an ionic liquid catalyst-rich phase; fractionating part of the hydrocarbon-rich phase into at least an alkylate-comprising product and a isoparaffin-comprising stream; mixing another part of the hydrocarbon-rich phase with an olefin-comprising stream to form the hydrocarbon mixture; and providing the hydrocarbon mixture to the reaction zone.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: October 8, 2013
    Assignee: Shell Oil Company
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng, Ana Cecilia Patroni, Peter Anton August Klusener, Albertus Vincentius Petrus Van Den Bosch
  • Patent number: 8501123
    Abstract: An improved process for removing polymeric by-product (ASO) from the HF alkylation acid in an HF alkylation unit used for the production of gasoline boiling range alkylate product by olefin/iso-paraffin alkylation, comprises fractionating a portion of the circulating HF alkylation acid inventory of the unit with a portion of hot alkylate product in a fractionation zone to from an overhead product comprising HF alkylation acid and water and a bottoms fraction comprising the polymeric by-product and alkylate. The bottoms fraction is sent to the isoparaffin stripper of the unit to remove trace HF alkylation acid as overhead and form a product stream of hot alkylate as a bottoms fraction.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: D'Arcy H. J. Blais, Doug F. Bodeux, Steve L. Burgwin, Alexander D. Chan, Gary S. Locke, Jerry H. Squires, Sarah J. Virtue
  • Publication number: 20130066132
    Abstract: Methods for converting an H2SO4 alkylation unit to an ionic liquid alkylation system configured for performing ionic liquid catalyzed alkylation processes may comprise connecting at least one component configured for ionic liquid catalyzed alkylation to at least one component of the H2SO4 alkylation unit, wherein the at least one component of the H2SO4 alkylation unit is retained, modified or adapted for use in the ionic liquid alkylation system. Ionic liquid catalyzed alkylation systems derived from existing conventional alkylation units, and ionic liquid catalyzed alkylation processes are also disclosed.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 14, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Robert Fletcher Cleverdon, Christine Marie Phillips, Hye Kyung Cho Timken
  • Publication number: 20120172647
    Abstract: The present invention provides process for preparing an alkylate comprising contacting in a reactor a hydrocarbon mixture comprising at least an isoparaffin and an olefin with an acidic ionic liquid catalyst under alkylation conditions to obtain an alkylate, which process further comprises: -withdrawing an alkylate-comprising reactor effluent from the reactor, wherein the reactor effluent comprises an ionic liquid phase and a hydrocarbon phase; -separating at least part the reactor effluent into a hydrocarbon phase effluent and a multiple-phase effluent in a centrifugal separation unit; -fractionating at least part of said hydrocarbon phase effluent into at least a stream comprising alkylate and a stream comprising isoparaffin.
    Type: Application
    Filed: August 6, 2010
    Publication date: July 5, 2012
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng, Ana Cecilia Patroni, Peter Anton August Klusener, Albertus Vincentius Petrus Van Den Bosch
  • Patent number: 8212098
    Abstract: An improved process for removing polymeric by-product (ASO) from the HF alkylation acid in an HF alkylation unit used for the production of gasoline boiling range alkylate product by olefin/iso-paraffin alkylation, comprises fractionating a portion of the circulating HF alkylation acid inventory of the unit with a portion of hot alkylate product in a fractionation zone to from an overhead product comprising HF alkylation acid and water and a bottoms fraction comprising the polymeric by-product and alkylate. The bottoms fraction is sent to the isoparaffin stripper of the unit to remove trace HF alkylation acid as overhead and form a product stream of hot alkylate as a bottoms fraction.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: July 3, 2012
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: D'Arcy H. J. Blais, Doug F. Bodeux, Steve L. Burgwin, Alexander D. Chan, Gary S. Locke, Jerry H. Squires, Sarah J. Virtue
  • Publication number: 20120165593
    Abstract: The present invention provides process for preparing an alkylate comprising contacting in a reactor a hydrocarbon mixture comprising at least an isoparaffin and an olefin with an acidic ionic liquid catalyst under alkylation conditions to obtain an alkylate, which process further comprises: —withdrawing an alkylate-comprising reactor effluent from the reactor, wherein the reactor effluent comprises an ionic liquid phase and a hydrocarbon phase; —separating at least part the reactor effluent into an ionic liquid phase effluent and a multiple-phase effluent in a first separation unit; —separating at least part of the multiple-phase effluent into a hydrocarbon phase effluent and another effluent in a second separation unit; and recycling at least part of the ionic liquid phase effluent to the reactor.
    Type: Application
    Filed: August 6, 2010
    Publication date: June 28, 2012
    Inventors: Zhichang Liu, Chunming Xu, Rui Zhang, Xianghai Meng, Ana Cecilia Patroni, Peter Anton August Klusener, Albertus Vincentius Petrus Van Den Bosch
  • Patent number: 8153854
    Abstract: A process for producing an alkylate having a low Reid vapor pressure, the process including: contacting a C6+-containing hydrocarbon stream with a mixture of isopentane and isobutane in the presence of an acid catalyst in an alkylation reactor to form a dilute alkylate product, wherein the C6+-containing hydrocarbon stream includes at least one of oligomers of C3 to C5 olefins and a dilute alkylate produced by contacting an isoparaffin with at least one of C3 to C5 olefins and oligomers of C3 to C5 olefins; fractionating the dilute alkylate product to form an isobutane-rich fraction, a n-butane-rich fraction, a fraction containing isopentane, and an alkylate product having a Reid vapor pressure less than 0.35 bar (5 psi); recycling at least a portion of the fraction containing isopentane to the alkylation reactor.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 10, 2012
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Abraham P. Gelbein, William M. Cross, Jr.
  • Patent number: 8128895
    Abstract: Processing schemes and arrangements are provided for obtaining propylene and propane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the propylene into cumene without separating the propane from the propane/propylene feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of propylene from propane produced by a FCC process prior to using the combined propane/propane stream as a feed for a cumene alkylation process. A bottoms stream from the cumene column of the cumene alkylation process can be used and an absorption solvent in the FCC process thereby eliminating the need for a transalkylation reactor and a DIPB/TIPB column.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 6, 2012
    Assignee: UOP LLC
    Inventor: Michael A. Schultz
  • Patent number: 8124034
    Abstract: One exemplary embodiment can be a method of modifying an alkylation unit to increase capacity. The method may include combining a first alkylation zone with a second alkylation zone. Generally, the first alkylation zone includes a first settler having a height and a width. Typically, the width is greater than the height. In addition, the second alkylation zone may have a second settler having a height and a width. Usually, the height is greater than the width.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: February 28, 2012
    Assignee: UOP LLC
    Inventors: Daryl Dunham, Dale James Shields
  • Publication number: 20110319694
    Abstract: Methods for starting and operating ionic liquid catalyzed hydrocarbon conversion processes and systems to provide maximum process efficiency, system reliability and equipment longevity may include: purging air and free water from at least a portion of the system; introducing at least one reactant into the at least a portion of the system; and re-circulating the at least one reactant through the at least a portion of the system, via at least one feed dryer unit, until the at least one reactant exiting the at least a portion of the system has a water content at or below a threshold value, prior to the introduction of an ionic liquid catalyst and/or additional reactant(s) and feeds into the system.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 29, 2011
    Inventors: Hye-Kyung Timken, Howard S. Lacheen, Shawn S. Winter
  • Patent number: 8021620
    Abstract: The process and apparatus converts ethylene in a dilute ethylene stream that may be derived from an FCC product to heavier hydrocarbons. The catalyst may be an amorphous silica-alumina base with a Group VIII and/or VIB metal. The catalyst is resistant to feed impurities such as hydrogen sulfide, carbon oxides, hydrogen and ammonia. At least 40 wt-% of the ethylene in the dilute ethylene stream can be converted to heavier hydrocarbons.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 20, 2011
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Alakananda Bhattacharyya, David E. Mackowiak
  • Patent number: 7935320
    Abstract: A system and/or process for decreasing the level of at least one organic fluoride present in a hydrocarbon phase contained in an alkylation settler by contacting the hydrocarbon phase with an HF containing stream, containing greater than about 80 wt. % and less than about 94 wt. % HF, in the intermediate portion of the settler which contains at least one tray system, with each tray system comprising a perforated tray defining a plurality of perforations and a layer of packing below the perforated tray, are disclosed.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: May 3, 2011
    Assignee: UOP LLC
    Inventors: Keith W. Hovis, Bruce B. Randolph
  • Patent number: 7914754
    Abstract: Processing schemes and arrangements are provided for obtaining ethylene and ethane via the catalytic cracking of a heavy hydrocarbon feedstock and converting the ethylene into ethyl benzene without separating the ethane from the feed stream. The disclosed processing schemes and arrangements advantageously eliminate any separation of ethylene from ethane produced by a FCC process prior to using the combined ethylene/ethane stream as a feed for an ethyl benzene process. Further, heat from the alkylation reactor is used for one of the strippers of the FCC process and at least one bottoms stream from alkylation process is used as an absorption solvent in the FCC process.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 29, 2011
    Assignee: UOP LLC
    Inventor: Michael A. Schultz
  • Publication number: 20100312034
    Abstract: One exemplary embodiment can be a method for altering an operation of an alkylation unit during a process upset. The method may include blocking an outlet of a settler to a separation zone, and recycling at least a portion of a hydrocarbon stream to the separation zone to prevent an uncontrolled pressure rise in one or more distillation columns during shutdown of an alkylation reactor.
    Type: Application
    Filed: June 4, 2009
    Publication date: December 9, 2010
    Inventor: Dale James Shields
  • Patent number: 7781634
    Abstract: A process for the removal of aromatic compounds from an olefin feed to a paraffin alkylation is disclosed. The process may include feeding a olefin and aromatic containing hydrocarbon stream and a dilute alkylate product stream comprising alkylate product and unreacted material from the paraffin alkylation to a distillation zone and removing the unreacted material as overheads and removing a more concentrated alkylate product stream and a portion of the aromatic compounds as bottoms resulting in an improved alkylation process.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 24, 2010
    Assignee: Catalytic Distillation Technologies
    Inventor: William M. Cross, Jr.
  • Patent number: 7723555
    Abstract: A process for the alkylation of isobutane is disclosed wherein isobutane is fed to two separate alkylation systems. The effluent from the first alkylation system is fed to an interim debutanizer where the C4's are separated from the alkylate product. The overhead C4 product is then fed to the second alkylation system to provide the isobutane. The effluent from the second alkylation system is fed to a traditional deisobutanizer to prevent any build up of normal butanes in the system.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: May 25, 2010
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., William M. Cross, Jr.
  • Patent number: 7449612
    Abstract: A process for the alkylation of isobutane is disclosed wherein isobutane is fed to two separate alkylation systems. The effluent from the first alkylation system is fed to an interim debutanizer where the C4's are separated from the alkylate product. The overhead C4 product is then fed to the second alkylation system to provide the isobutane. The effluent from the second alkylation system is fed to a traditional deisobutanizer to prevent any build up of normal butanes in the system.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: November 11, 2008
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., William M. Cross, Jr.
  • Patent number: 7176340
    Abstract: A continuous alkylation process performed in an apparatus comprising a series of at least two zone A reactors and a series of at least two zone B reactors, in which the zone A reactors and the zone B reactors cycle between alkylation mode and mild regeneration mode, and wherein the alkylation mode comprises introducing an alkylation agent into a first reactor of the zone through which the alkylatable compound passes, reacting a portion of the alkylatable compound with a portion of the alkylation agent to produce a product stream, and performing this operation at least once more in a downstream reactor in the same zone employing, instead of alkylatable compound, a stream comprising the product stream.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: February 13, 2007
    Assignee: Albemarle Netherlands B.V.
    Inventors: Emanuel Hermanus Van Broekhoven, Johannes Wilhelmus Maria Sonnemans, Stephan Zuijdendorp
  • Patent number: 7126038
    Abstract: An improvement in the alkylation of olefins with isoalkanes in the presence of sulfuric acid wherein the sulfuric acid is removed from the product by a mechanical coalescer means prior to fractionation. No water wash or caustic treatment is required. Any sulfonates or sulfonic esters are removed by hydrodesulfurization or decomposition catalyst in a separate reactor or in either the deisobutanizer (DIB) or debutanizer (DB) column.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: October 24, 2006
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 7119243
    Abstract: An alkylation process in which a recycle stream is cooled by heat exchange with the alkylation reactor effluent is disclosed.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: October 10, 2006
    Assignee: UOP LLC
    Inventors: Robert L. Mehlberg, Dale J. Shields, John J. Senetar
  • Patent number: 7119244
    Abstract: A process for the removal of organic sulfur compounds, primarily oxygenated organic compounds, such as sulfates and sulfonic esters from a hydrocarbon liquid is disclosed which comprises contacting the hydrocarbon liquid with a coalescer comprising a mesh material which has been wetted by sulfuric acid. The hydrocarbon liquid may be the product from a sulfuric acid catalyzed alkylation process and contain sufficient sulfuric acid to remove the sulfates and sulfonic esters. Sulfuric acid may be added to the coalescer vessel counter current to the hydrocarbon liquid to improve the efficiency of the contacting and removal.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: October 10, 2006
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 7087803
    Abstract: Method for the recovery of a perfluorinated sulphonic acid from a viscous organic residue by aqueous extraction of the acid from the residue in presence of a solvent containing aromatic compounds.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: August 8, 2006
    Assignee: Haldor Topsoe A/S
    Inventors: Sven Ivar Hommeltoft, Ole Stahl
  • Patent number: 6943276
    Abstract: An alkylation process in which a recycle stream is cooled by heat exchange with the alkylation reactor effluent is disclosed.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: September 13, 2005
    Assignee: UOP LLC
    Inventors: Robert L. Mehlberg, Dale J. Shields, John J. Senetar
  • Patent number: 6891076
    Abstract: Process for the recovery of perfluorinated sulphonic acid from a hydrocarbon residue, comprising the steps of (a) treating the residue with an alkyl ammonium salt of the perfluorinated sulphonic acid or a mixture of an alkyl ammonium salt of the perfluorinated sulphonic acid and the perfluorinated sulphonic acid in an amount being effective to liquefy the residue at ambient temperature; (b) contacting the liquefied residue with water at conditions to obtaining an aqueous extract containing the perfluorinated sulphonic acid and/or the alkyl ammonium salt of the perfluorinated acid into water; and (c) separating water from the aqueous extract to recover the perfluorinated sulphonic acid or the mixture of the acid and the ammonium salt.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: May 10, 2005
    Assignee: Haldor Topsoe A/S
    Inventors: Karsten Laurents, Ole Stahl
  • Patent number: 6673977
    Abstract: A procedure for the alkylation of isobutane by olefinic hydrocarbons, in which a first hydrocarbon charge (3) rich in isobutane is put in contact with a second hydrocarbon charge rich in light olefins (2), under conditions that will provoke the alkylation of the isobutane by the light olefins, the effluents that emanate from the reaction area in a fractionation column (6) are treated in order to extract therefrom at least a first cut rich in alkylate (7), a second cut rich in normal butane (8) and a third cut rich in isobutane (9), said third cut (9) is then recycled at the entry of the alkylation reaction area. The second cut (8) rich in normal butane is purified (12) so as to lower its content in compounds with 5 or more carbon atoms to a value that is less than or equal to 5% by weight, the cut thus purified (14) is treated in an isomerization reactor (16) of normal butane to isobutane, this cut is then recycled (21) at the entry of the alkylation effluents fractionation column (6).
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: January 6, 2004
    Assignee: Total Raffinage Distribution S.A.
    Inventors: Jean-Louis Mauleon, Pedro Nascimento
  • Publication number: 20030158457
    Abstract: Disclosed is a device for the production of alkylate(s) by sulfuric acid alkylation of at least one isoparaffin such as isobutane with at least one olefin, such as butylenes. The device includes a mixing chamber for preparing a mixture of the isoparaffin with recycled reaction products. It also includes an emulsion chamber for preparing a first hydrocarbons-in-sulfuric acid emulsion, where the mixture prepared in the mixing chamber is injected in multiple parallel jets into a sulfuric acid composition. The device further includes a pre-reaction chamber for preparing a second emulsion, where a given portion of the olefin is injected in jet streams into the first hydrocarbons-in-sulfuric acid emulsion coming from the emulsion chamber.
    Type: Application
    Filed: December 4, 2002
    Publication date: August 21, 2003
    Inventor: Seme Gershuni
  • Patent number: 6552241
    Abstract: A system and/or process for removing water from an alkylation catalyst mixture of an alkylation process is disclosed. The process includes passing an alkylation reaction zone effluent to a settler for separation into a hydrocarbon phase and a catalyst mixture phase; passing at least a portion of the hydrocarbon phase, as a settler effluent stream containing alkylate, water, HF and volatility reducing additive, to a first separator; removing and condensing a first overhead stream from the first separator thereby forming an HF/water stream; passing the HF/water stream to a second separator for separation into a modified HF stream containing HF and volatility reducing additive and into an HF/water azeotrope stream containing HF and water; using the modified HF stream as a part of the alkylation catalyst mixture and; removing water from the system by removing the HF/water azeotrope stream from the second separator.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: April 22, 2003
    Assignee: ConocoPhillips Company
    Inventors: Bruce B. Randolph, Curtis B. Wood, Martyn E. Pfile
  • Patent number: 6486374
    Abstract: A method and apparatus for alkylating an alkylation substrate with an alkylating agent in the presence of solid catalyst particles in a transport reactor is disclosed. Solid catalyst particles in the transport reactor effluent recirculate to the inlet of the transport reactor through one or more conduits. The rate through each conduit is regulated by fluid-controlled valves that use the alkylation substrate as the regulating fluid. This method and apparatus help ensure uniform or symmetric flow of catalyst from the effluent of the transport reactor to the bottom of the transport reactor. This method and apparatus also help ensure uniform or symmetric flow of alkylation substrate to the bottom of the transport reactor with minimal bypassing by the alkylating agent around of the transport reactor. This invention finds use in the production of motor fuels by the alkylation of liquid hydrocarbons in the presence of solid catalyst particles.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: November 26, 2002
    Assignee: UOP LLC
    Inventors: William H. Radcliffe, Wesley L. Kiel, Christopher D. Gosling, Paul A. Sechrist, Paul Anderson
  • Patent number: 6429349
    Abstract: Methods and apparatus that are used in an alkylation reactor system for adding low purity isopentane to alkylation reactor feed to block formation of isopentane, resulting in high incremental isopentane conversion and minimal octane and C5+ yield loss, and low acid consumption from C6+ isoparaffins with superior yields.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: August 6, 2002
    Assignee: BP Corporation North America Inc.
    Inventors: Lewis E. Grimes, R. L. Mehlberg, V. J. Kwasniewski, James B. Young, John V. Bartels
  • Patent number: 6392114
    Abstract: An alkylating agent alkylates an alkylation substrate in a solid catalyst alkylation process in which an alkylation reactor produces a reaction effluent and a catalyst regeneration zone produces a hydrogen-containing regeneration effluent. The alkylation effluent passes to an alkylate fractionation zone, while the regeneration effluent passes to a hydrogen fractionation zone to remove hydrogen and produce a hydrogen-depleted stream that passes to the alkylate fractionation zone. The process recycles hydrogen, and can recycle halogen-containing species as well, within the process while preventing admixture of hydrogen with the alkylating agent. This invention is particularly applicable to alkylation processes that use an olefinic alkylating agent.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: May 21, 2002
    Assignee: UOP LLC
    Inventors: Dale J. Shields, Paul A. Sechrist
  • Publication number: 20010034468
    Abstract: The object of the invention is a procedure for the alkylation of isobutane by olefinic hydrocarbons, in which a first hydrocarbon charge (3) rich in isobutane is put in contact with a second hydrocarbon charge rich in light olefins (2), under conditions that will provoke the alkylation of the isobutane by the light olefins, the effluents that emanate from the reaction area in a fractionation column (6) are treated in order to extract therefrom at least a first cut rich in alkylate (7), a second cut rich in normal butane (8) and a third cut rich in isobutane (9), said third cut (9) is then recycled at the entry of the alkylation reaction area.
    Type: Application
    Filed: December 20, 2000
    Publication date: October 25, 2001
    Inventors: Jean-Louis Mauleon, Pedro Nascimento
  • Patent number: 6281405
    Abstract: A process for recovering halides from hydrocarbon containing streams is disclosed using a sulfonated hexafluro bis-A-polysulfone membrane of polymers and copolymers having the polymer repeat unit of the formula: in the polymer or copolymer. This process is applicable to recovering and recycling hydrogen chloride, which is used as a catalytic promoter, in hydrocarbon conversion processes such as isomerization and alkylation.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: August 28, 2001
    Assignee: UOP LLC
    Inventors: Mark M. Davis, William B. Dolan, Robert J. Schmidt, Paul J. Kuchar
  • Patent number: 5856606
    Abstract: Paraffins or other hydrocarbons are alkylated in a process featuring a reaction zone containing a pool of liquid maintained at its boiling point and containing a suspended solid catalyst, which allows the heat of reaction to vaporize a portion of the liquid phase feed hydrocarbon. The vapor phase withdrawn from the top of the reaction zone is at least partially recycled to the reaction zone either as vapor or liquid. The feed hydrocarbons are introduced to the bottom of the reaction zone as a vapor phase stream, which may contain hydrogen. The catalyst is suspended within the liquid in the reaction zone.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: January 5, 1999
    Assignee: UOP LLC
    Inventor: Anil R. Oroskar
  • Patent number: 5767335
    Abstract: Disclosed is an alkylation process which utilizes a mixture of sulfone and hydrogen fluoride as an alkylation catalyst. The process provides for the removal of light ASO from the alkylation catalyst that accumulates therein as a result of the inability to remove the light ASO produced as a by-product of the alkylation reaction.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: June 16, 1998
    Assignee: Phillips Petroleum Company
    Inventors: Richard L. Anderson, Keith W. Hovis
  • Patent number: 5763728
    Abstract: An HF-agent complex, such as HF-pyridine complex where the complexing agent is pyridine, is recovered and recycled from a by-product containing stream in an alkylation process using the complex by (a) selectively removing a portion of the HF from the by-product stream to produce an HF-depleted stream having a molar ratio of HF per Lewis base site of the complexing agent of 3:1 to 5:1, (b) separating the resulting HF-depleted stream into a hydrocarbon phase enriched in ASO and an acid phase depleted in ASO and containing a substantial portion of the complex, and (c) recycling the acid phase to the hydrocarbon alkylation step.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: June 9, 1998
    Assignee: UOP
    Inventors: Joseph A. Kocal, Harold U. Hammershaimb, Robert J. Cornish, Terry L. Marker, James F. Himes
  • Patent number: 5744681
    Abstract: A process for the alkylation of at least one isoparaffin by at least one olefin in the presence of at least one solid acidic catalyst, characterized in that the major portion of the olefin is initially brought into contact with the catalyst in a complexing zone to form an olefin-catalyst complex in the presence of the isoparaffin, and in that the suspension of the complex in the isoparaffin is then sent to at least one alkylation reaction zone.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: April 28, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Fran.cedilla.ois Joly, Alain Forestiere, Jean-Luc Duplan, Eric Benazzi
  • Patent number: 5659096
    Abstract: In a process for alkylating C.sub.4 -C.sub.18 alkenes in the presence of an acid catalyst, propylene is separated from the alkenes feed, the propylene is oligomerized to oligomers containing maily propylene tetramers, and the propylene oligomers are then combined with the remainder of the alkene feed before the alkylation reaction is carried out.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: August 19, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Bruce B. Randolph, Marvin M. Johnson
  • Patent number: 5648588
    Abstract: Disclosed is a process for separating sulfone and hydrogen fluoride from hydrocarbon streams containing a concentration of such compounds. An extraction solvent laden with sulfone and HF is contacted with a reversible base in order to remove the HF therefrom. The thus-treated extract stream is separated into a water stream that can be reused as the water extractant and a sulfone stream that is suitably free of HF.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: July 15, 1997
    Assignee: Phillips Petroleum Company
    Inventors: Richard L. Anderson, Bruce B. Randolph
  • Patent number: 5639930
    Abstract: Method of producing alkylates in which an isoparaffin, olefin, a diffusing agent and a solid, acid catalyst are combined to form a three phase reaction mixture; a hydrocarbon phase containing primarily isoparaffin, a diffusing agent phase containing the diffusing agent, olefin and diffuse isoparaffin and a solid, acid catalyst phase, the diffusing agent being a polar solvent in which the olefin and aromatics are soluble.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: June 17, 1997
    Inventor: Joe E. Penick
  • Patent number: 5565617
    Abstract: A process for purifying an alkylate feedstream is disclosed. The feedstream contains hydrogen, hydrogen chloride, C.sub.2 -C.sub.7+ alkanes, C.sub.2 -C.sub.6 alkenes and C.sub.2 -C.sub.6 alkyl halides. The process involves flowing the alkylate through a series of separation zones and a reaction zone to provide a halide free alkylate stream.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: October 15, 1996
    Assignee: UOP
    Inventors: Robert J. Schmidt, Paul A. Sechrist, Paul T. Barger, Christopher D. Gosling
  • Patent number: 5491277
    Abstract: Paraffins and other hydrocarbons are alkylated using a solid bed catalyst in a process featuring a reaction zone operated at mixed-phase conditions which allow the heat of reaction to vaporize a portion of the liquid phase feed hydrocarbon passing downward through it thus facilitating recycling of the feed hydrocarbon. The feed hydrocarbon recovered from the reaction zone effluent is recycled as a liquid, preferably admixed with hydrogen, with the feed olefin being preferably introduced near the top of the reactor as a vapor. The catalyst preferably contains a metal hydrogenation function effective to selectively hydrogenate C.sub.6 -plus olefins produced as by-products.
    Type: Grant
    Filed: December 28, 1993
    Date of Patent: February 13, 1996
    Assignee: UOP
    Inventors: Laurence O. Stine, Harold U. Hammershaimb, Joseph A. Kocal