Condition Responsive Control Of Reactor Feed, Pressure, Or By-pass Patents (Class 60/287)
  • Patent number: 9399942
    Abstract: A method for diagnosing reductant delivery performance of a reductant delivery system is provided. The method provides an outlet pressure sensor at a reductant outlet of the reductant delivery system and a virtual pressure sensor in an exhaust stream where reductant is injected into the stream. The method comprises calculating a downstream reductant flow rate using the outlet pressure sensor and the virtual pressure sensor; and calculating an upstream reductant flow rate within the reductant delivery system using at least one of a temperature sensor, a pressure sensor and a control valve. The calculated downstream and upstream reductant flow rates are compared, and diagnostics is conducted based the comparison to find the malfunctions in the reductant delivery system. An intrusive self-consistent diagnostics method allows for detection of malfunctions in the outlet pressure sensor and the virtual pressure sensor can be determined.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: July 26, 2016
    Assignee: International Engine Intellectual Property Company, LLC.
    Inventor: Pu Sun
  • Patent number: 9353660
    Abstract: There is provided a system for storing and injecting an additive into exhaust gas from an internal combustion engine, the system comprising a tank for storing the additive, an injector, and a pump for driving the additive from the tank to the injector via an injection channel, the system also comprising a purge device mounted between the pump and the injection channel. The purge device comprises a chamber and piston moving equipment slidably mounted in the chamber, the purge device being designed so that: movement of the moving equipment in one of its sliding directions causes a passage to open into the chamber for passing the additive to the injection channel; and movement of the moving equipment in its other sliding direction creates suction within the chamber, which causes at least some of the additive contained in the injection channel to return into the chamber.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: May 31, 2016
    Assignee: Inergy Automotive Systems Research
    Inventors: Frederic Jannot, Franck Dhaussy, Stephane Leonard
  • Patent number: 9328639
    Abstract: An exhaust treatment system includes a particulate filter having a filter substrate configured to trap soot contained in exhaust gas. A regeneration system is configured to perform a regeneration operation that regenerates the particulate filter by burning away soot stored in the filter substrate. A control module is in electrical communication with the regeneration system to generate a first control signal that initiates the regeneration operation based on a comparison between at least one operating condition of the exhaust treatment system and a threshold value. The control module generates a second control signal in response to detecting at least one diagnostic signal. The second control signal initiates the regeneration operation independently of the comparison.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: May 3, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Janean E. Kowalkowski, Benjamin Radke, Vincent J. Tylutki
  • Patent number: 9228461
    Abstract: A bi-directional tractor exhaust system includes a downwardly directed exhaust pipe connected to an upwardly directed exhaust pipe. An exhaust pipe valve may be mounted in the downwardly directed exhaust pipe. An actuator may be connected to the exhaust pipe valve and may be moveable between a first position opening the exhaust pipe valve to direct exhaust through the downwardly directed exhaust pipe, and a second position closing the exhaust pipe valve to direct exhaust through the upwardly directed exhaust pipe.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: January 5, 2016
    Assignee: DEERE & COMPANY
    Inventors: Benjamin E. Dietrich, Nicholas R. Wilson, Christopher T. McCord
  • Patent number: 9212580
    Abstract: Method for determining a starting time of a regeneration process of a particle filter which is connected into the exhaust train of an internal combustion engine, in particular of a diesel engine, wherein the data of an air mass flow rate meter, of an exhaust gas temperature sensor and of a differential pressure sensor are fed to a control unit and the control unit starts the regeneration on the basis of the data by means of the comparison with characteristic diagrams.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: December 15, 2015
    Assignee: MANN+HUMMEL GMBH
    Inventors: Ulrich Lampen, Andreas Kloss, Volker Hensel, Uwe Brenneis, Alexander Kuehn, Stéphane Nataf
  • Patent number: 9181835
    Abstract: A method of controlling an aftertreatment system having a SCR catalyst and communicating with an engine electronic control module (ECM) is provided. The method may receive a plurality of system values corresponding to NH3 and NOx emissions of the aftertreatment system; determine an optimal urea dosing target value based on the system values and one of a target NH3 storage value and an estimated NH3 storage value; and determine an optimal engine NOx output target value based on the system values and a measured NOx conversion efficiency value.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: November 10, 2015
    Assignee: Caterpillar Inc.
    Inventor: Timur Aliyev
  • Patent number: 9151202
    Abstract: An exhaust aftertreatment system for treating exhaust flow from an internal combustion engine, and associated method, allows for independent control of exhaust flow through plural exhaust legs of the exhaust aftertreatment system. The independent control of exhaust flow is carried out by adjusting a valve positioned in each the exhaust legs based on a value of a signal generated by a flow measurement device positioned along at least one of the exhaust legs. The valves can be adjusted to force a target flow in a exhaust leg, relative flow among exhaust legs, exhaust temperature in an exhaust leg, exhaust backpressure and/or imbalance within the exhaust legs.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: October 6, 2015
    Assignee: CUMMINS INTELLECTUAL PROPERTY, INC.
    Inventors: Colin L. Norris, Richard J. Ancimer, Axel O. zur Loye, Randy W. Nelson, Gary Charles Salemme, Ousmane Gueye, John Franklin Wright
  • Patent number: 9084968
    Abstract: Disclosed is an after treatment device of an engine, which comprises: an urea solution injection section for injecting an urea solution to exhaust gas that is discharged from a combustion chamber of an engine to the outside via an exhaust pipe; a nitrogen oxide treatment section for converting a nitrogen oxide (NOx) in the exhaust gas, which is mixed with the urea solution injected from the urea solution injection section, into water (H2O) and nitrogen (N2); and an OC (Oxidation Catalyst) for reducing hydrocarbon (HC) and carbon monoxide (CO) in the exhaust gas that is discharged from the nitrogen oxide treatment section.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: July 21, 2015
    Assignee: Doosan Infracore Co., Ltd.
    Inventor: Yun Sub Park
  • Patent number: 9034267
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. The exhaust purification catalyst (13) is comprised of a mixture of a first catalyst in which platinum (51) and a basic layer (52) are carried on alumina (50) and a second catalyst in which rhodium (56) is carried on zirconia (55). The concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to vibrate by within a predetermined range of amplitude of a 200 ppm or more and within a predetermined range of period of 5 second or less, whereby the NOx which is contained in exhaust gas is reduced at the exhaust purification catalyst (13).
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: May 19, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Koutarou Hayashi, Kohei Yoshida, Yuki Bisaiji, Kazuhiro Umemoto
  • Publication number: 20150128576
    Abstract: An exhaust gas purification system includes a previous-stage oxidation catalyst device, an ammonia-based solution feeder, a Diesel Particulate Filter (DPF) device, a turbine of a turbocharger, and a NOx selective reduction catalyst device in the exhaust system of an internal combustion engine in this order from an exhaust port side. The NH3 production rate is improved, thereby improving the NOx removal rate; the temperature of the DPF device is kept high to increase the time and frequency of continuous regeneration, thus decreasing the frequency of forced regeneration of the DPF device and the amount of discharge of CO2 produced during the forced regeneration; and also corrosion of the turbine of the turbocharger by SOx is suppressed.
    Type: Application
    Filed: May 2, 2013
    Publication date: May 14, 2015
    Applicant: ISUZU MOTORS LIMITED
    Inventor: Kazuo Osumi
  • Publication number: 20150128566
    Abstract: A previous-stage oxidation catalyst device, a Diesel Particulate Filter (DPF) device, a turbine of a turbocharger, a previous-stage NOx selective reduction catalyst device, and a subsequent-stage NOx selective reduction catalyst device in an exhaust system of an internal combustion engine in this order from an exhaust port side. An ammonia-based solution feeder is on an inlet side or outlet side of the DPF device. The previous-stage NOx selective reduction catalyst device is a rare earth composite oxide catalyst, and the subsequent-stage NOx selective reduction catalyst device is a zeolite catalyst. The NOx removal rate is improved in wide ranges from low to high temperatures and to high flow rates, and the temperature of the DPF device is kept high to increase the time and frequency of continuous regeneration, thereby reducing the frequency of forced regeneration and an amount of discharge of CO2 during the forced regeneration.
    Type: Application
    Filed: May 7, 2013
    Publication date: May 14, 2015
    Applicant: ISUZU MOTORS LIMITED
    Inventor: Kazuo Osumi
  • Patent number: 9027326
    Abstract: The present disclosure relates to a vehicle exhaust heat recovery system including a first exhaust line fluidically connected to a heat exchanger, a second exhaust line fluidically connected to the first exhaust line, and an inanimate flow regulator in the first exhaust line configured to limit exhaust flow under predetermined conditions.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: May 12, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Douglas Raymond Martin, Kenneth J. Jackson, Nimrod Kapas
  • Patent number: 9021788
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. At the time of engine operation, the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to become within a predetermined range of amplitude by control of the injection amount of hydrocarbons from the hydrocarbon feed valve (15), the concentration of hydrocarbons flowing into the exhaust purification catalyst (13) is made to vibrate by a predetermined range of period by control of the injection period of hydrocarbons from the hydrocarbon feed valve (15), and thereby the NOx contained in the exhaust gas and the NOx stored in the exhaust purification catalyst (13) are reduced.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mikio Inoue, Kohei Yoshida, Yuki Bisaiji, Kazuhiro Umemoto
  • Publication number: 20150113964
    Abstract: Reductant delivery systems are disclosed that include a dry reductant source and a liquid reductant source which are operable to selectively provide gaseous reductant and liquid reductant to an exhaust aftertreatment system for treatment and reduction of NOx emissions. The gaseous reductant is provided to the exhaust aftertreatment system for treatment of NOx emissions under a first temperature condition associated with the exhaust system and the liquid reductant for treatment of NOx emissions under a second temperature condition associated with the exhaust system.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Cary Henry, Steven J. Kolhouse
  • Patent number: 9016048
    Abstract: An exhaust arrangement for an internal combustion engine. The exhaust arrangement includes a diffuser duct including a wall surface which diverges between an inlet and a first outlet. The arrangement further includes an auxiliary duct extending from a second outlet of the diffuser duct. The second diffuser duct outlet being located on the wall surface between the diffuser duct inlet and the first outlet. The auxiliary duct includes a heat recovery device configured to convert heat energy from exhaust gases passing through the auxiliary duct in use to mechanical or electrical energy.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: April 28, 2015
    Assignee: ROLLS-ROYCE plc
    Inventor: Stephen Gallimore
  • Patent number: 9016047
    Abstract: In one embodiment, a method for controlling nitrogen oxides in an exhaust gas received by an exhaust system, the exhaust system including a first selective catalytic reduction device, an exhaust gas heat recovery device and a second selective catalytic reduction device is provided. The method includes flowing the exhaust gas from an internal combustion engine into the first selective catalytic reduction device, receiving the exhaust gas from the first selective catalytic reduction device into the exhaust gas heat recovery device and directing the exhaust gas to a heat exchanger in the exhaust gas heat recovery device based on a temperature of the internal combustion engine proximate moving engine components. The method includes adsorbing nitrogen oxides from the exhaust gas via a nitrogen oxide adsorbing catalyst disposed in the heat exchanger and flowing the exhaust gas from the exhaust gas heat recovery device into the second selective catalytic reduction device.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: April 28, 2015
    Assignee: GM Global Technologies Operations LLC
    Inventors: Eugene V. Gonze, Chang H. Kim, Michael J. Paratore, Jr., George M. Claypole
  • Patent number: 8991161
    Abstract: A process which solves the problem of supplying NO2 in accordance with requirements by means of temperature control of the precatalyst which is decoupled from the operating state of the engine. In an associated apparatus, a precatalyst which contains at least one oxidation component and whose temperature can be controlled independently of the operating state of the engine and an active SCR stage comprising an SCR catalyst with upstream metering facility for a reducing agent from an external source are arranged in series. A particle filter can be arranged between precatalyst and metering facility. The precatalyst preferably additionally contains a nitrogen oxide storage material.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: March 31, 2015
    Assignee: Umicore AG & Co. KG
    Inventors: Lothar Mussmann, Ingo Lappas, Andreas Geisselmann, Wilfried Mueller
  • Patent number: 8984868
    Abstract: An exhaust system for a machine is disclosed. The exhaust system may have a diffuser configured to receive exhaust from an engine. The exhaust system may further have a plurality of dosers associated with the diffuser and configured to inject fuel into the diffuser. The exhaust system may also have a controller configured to selectively control an amount of fuel injected by each of the plurality of dosers based on a velocity of the exhaust adjacent to each doser. In addition, the exhaust system may have an after-treatment component fluidly connected downstream of the diffuser and configured to heat the exhaust by oxidizing the injected fuel.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: March 24, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Ajay Patel, Pradeep K. Ganesan
  • Publication number: 20150075136
    Abstract: A pump assembly (214) for an exhaust treatment system is provided that may include a housing (220), a gas flow path (259), a reductant flow path (239) and a pump (224). The housing may include a first inlet (236) configured to receive a reductant from a tank (210), a second inlet (252) configured to receive a gas from a gas compressor (13), and an outlet (262) through which the gas and the reductant exit the housing. The gas flow path may extend between and fluidly communicate with the second inlet and the outlet. The reductant flow path may extend between and fluidly communicate with the first inlet and the outlet. The pump may be at least partially disposed within the housing and may include a motor in a heat transfer relationship with gas flowing through the gas flow path.
    Type: Application
    Filed: February 17, 2013
    Publication date: March 19, 2015
    Inventors: Gaofeng Fan, Jianqiang Fan, Yang Yang, Mingdao Xu, Bo Hu, Jianzhong Guan, Yingxin Jian
  • Patent number: 8978363
    Abstract: A diesel particulate filter (“DPF”) system that is more convenient than a conventional DPF system, including a DPF having a catalyzed soot filter (“CSF”) that is connected to an exhaust pipe of a diesel engine in order to collect particulate matter (“PM”) in exhaust gas, and a diesel oxidation catalyst (“DOC”) provided on an upstream side of the CSF; and temperature sensors provided respectively on an upstream side and a downstream side of the DOC. When a PM accumulation amount in the CSF exceeds a fixed amount, DPF regeneration is performed by setting a temperature detected by the upstream side temperature sensor at or above a first threshold and setting a temperature detected by the downstream side temperature sensor at or above a second threshold. When a breakdown is detected in the upstream side temperature sensor, the second threshold is modified upward.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 17, 2015
    Assignee: Isuzu Motors Limited
    Inventors: Takashi Ikeda, Naofumi Ochi, Hitoshi Satou
  • Patent number: 8978362
    Abstract: A method for operating an exhaust gas treatment system that includes an SCR catalytic converter is provided. Either a model-based filling level regulation for achieving the target filling level or a model-based efficiency control for achieving the target efficiency is performed according to presettable values for certain operating variables such as a temperature of the exhaust gas or of the SCR catalytic converter.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: March 17, 2015
    Assignee: Daimler AG
    Inventors: Bernd Christner, Markus Paule
  • Patent number: 8966883
    Abstract: Process for starting an SCR system intended for transporting urea from a tank to the exhaust gases of an engine using a feed line, this system comprising a rotary pump controlled by a controller and driven by a brushless direct current (BLDC) motor that comprises a rotor equipped with at least one permanent magnet and with a stator comprising at least 3 electromagnetic coils in which the direct current can flow according to a given sequence to make the rotor rotate, according to which, before starting the pump, a temperature is measured using a sensor and if this temperature is below a setpoint temperature, before making the rotor rotate, the current is passed through at least one of the coils in a way such that it preheats the pump without making the rotor rotate.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: March 3, 2015
    Assignee: Inergy Automotive Systems Research (Société)
    Inventors: Jean-Baptiste Gouriet, Jean-Claude Habumuremyi, Stephane Leonard, Volodia Naydenov
  • Publication number: 20150052878
    Abstract: A multi-stage SCR system including a front reductant injecting device, a front mixer, a front SCR catalyst, a back reductant injecting device, a back mixer, a back SCR catalyst, and a DCU. The front and back reductant injecting devices receives reductant from an air-driven pump, which includes a liquid supply tank, a pressure tank, and solenoids control valves. Under pressure provided by a compress air source, reductant is pressed into the front and back reductant injecting devices from the air-driven pump. The front and back reductant devices also have flow-back paths fluidly connected to a reductant tank. And in purging or maintenance heating, the flow-back paths can be energized open. In the multi-stage SCR system, a DOC can be further positioned in between the two SCR devices for increasing the deNOx efficiency in the back SCR catalyst, so that the system is less sensitive to catalyst aging.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 26, 2015
    Inventor: Baohua Qi
  • Patent number: 8959891
    Abstract: A selective catalytic reduction (SCR) system that can detect whether or not a float is stuck even where a water level sensor that detects a liquid level in a stepwise manner is used, including: an urea injection quantity integrating unit that integrates an injected quantity of urea to calculate an urea injection quantity integrated value; an integrated value resetting unit that, if a detected value from detection means changes, resets the urea injection quantity integrated value; and an abnormality determination unit that, if the urea injection quantity integrated value exceeds a predetermined threshold value for determination, determines a level sensor as having an abnormality.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: February 24, 2015
    Assignee: Isuzu Motors Limited
    Inventors: Takeshi Fukuoka, Hirotaka Takahashi, Tomoo Nishikawa
  • Publication number: 20150047321
    Abstract: Systems and methods for delivering a vehicular fluid to a component of the vehicle. A reductant delivery system of a selective catalytic reduction system delivers the vehicular fluid to the component of the vehicle. The reductant delivery system includes a compressed air source, a tank in fluid communication with the compressed air source, a dosing module in fluid communication with the tank, and a control module electrically coupled to the compressed air source. The tank may contain a diesel exhaust fluid and the dosing module is in fluid communication with the component that receives the diesel exhaust fluid. The control module regulates an amount of air pressure in the tank to deliver the vehicular fluid to the dosing module. The system omits a vehicular fluid pump such that the compressed air from the compressed air source pressurizes the dosing module with the vehicular fluid.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Inventor: Thyago Cruz
  • Patent number: 8955308
    Abstract: A method for operating a tank for reducing agent, in particular aqueous urea solution, having a sensor with a first electrical contact and a second electrical contact, includes initially determining a conductance value for liquid reducing agent, a conductance value for frozen reducing agent and a conductance value for air in steps a.1) to a.3. A voltage is then applied between the first electrical contact and the second electrical contact in step b. A conductance value between the first electrical contact and the second electrical contact is then determined in step c. The conductance value determined in step c) is then compared to the conductance values determined in steps a.1) to a.3) and a determination is made as to if liquid reducing agent, frozen reducing agent, or air is present in step d). A motor vehicle in which the method is carried out, is also provided.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: February 17, 2015
    Assignee: EMITEC Gesellschaft fuer Emissionstechnologie mbH
    Inventors: Peter Bauer, Jan Hodgson
  • Patent number: 8950176
    Abstract: An exhaust emission reduction system for a fuel injected engine system has a plurality of emission reduction components configured to process the exhaust gas. The emissions reduction components include of one or more NOX reduction components and one or more filtration components configured to reduce particulate matter, hydrocarbons and/or carbon monoxide emissions. Each engine cylinder is associated with a respective one of the emission reduction components, such that exhaust gas from each engine cylinder flows through the respective one emission reduction component in parallel with the exhaust gas flows from the other cylinders through their respective emission reduction components.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: February 10, 2015
    Assignee: Electro-Motive Diesel, Inc.
    Inventors: Teoman Uzkan, Thomas Gallagher
  • Publication number: 20150033713
    Abstract: A device for supplying a liquid additive for a motor vehicle includes a tank for storing the liquid additive and a delivery unit for delivering the liquid additive out of the tank. A sensor emits and receives waves and is configured to measure a fill level of the liquid additive in the tank by way of a propagation time measurement of the waves along a measurement path to a liquid surface in the tank and back to the sensor. The measurement path runs at least partially through a measurement duct. At least one back-flushing line ends in the measurement duct so that flushing of the measurement duct to the tank can be performed, in such a way that the measurement duct is kept clean and/or is cleaned. A motor vehicle having the device is also provided.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 5, 2015
    Inventors: JAN HODGSON, SVEN SCHEPERS, ROLF BRUECK
  • Patent number: 8943806
    Abstract: In a working gas circulation engine, water vapor contained in exhaust gas after combustion is separated and removed at higher efficiency as compared with the conventional technology, the influence of remaining water vapor is prevented from reducing the ratio of specific heats of working gas and deteriorating the thermal efficiency of the engine. A working gas circulation engine which comprises a circulation passage part which connects an inlet port communicated to a combustion chamber and an exhaust port communicated to the combustion chamber in the exterior of the combustion chamber, supplies fuel, oxygen, and working gas to the combustion chamber to burn the fuel in the combustion chamber, and supplies the working gas contained in the exhaust gas discharged through the exhaust port from the combustion chamber to the combustion chamber through the circulation passage part and the inlet port.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: February 3, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Rentaro Kuroki, Daisaku Sawada, Akira Kato
  • Patent number: 8943807
    Abstract: The present invention relates to a method for achieving reduced emissions at cold start of an internal combustion engine having an exhaust gas after treatment system comprising at least one Diesel Oxygen Catalyst (DOC), at least one Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) unit, comprising the steps of: heating the DOC prior to cold starting said internal combustion engine, starting and controlling the internal combustion engine towards low NOx emission when said DOC has reached a predetermined temperature, optimizing the fuel consumption at a given total emission level when said DPF and SCR has reached a predetermined temperature.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 3, 2015
    Assignee: Volvo Lastvagnar AB
    Inventors: Lennart Andersson, Bert-Inge Bertilsson
  • Patent number: 8935916
    Abstract: A method for the operation of a particulate filter system for an internal combustion engine wherein an. An exhaust gas stream enters a housing via a gas inlet opening. The housing receives a particulate filter, the stream flows into crude gas ducts connected to the gas inlet opening, and the stream can flow out of the particulate filter via clean gas ducts that are in fluid connection with a gas outlet opening, and are separated from the crude gas ducts. The crude gas ducts are connected to a connecting space in the direction of flow, and the connecting space has an exhaust port controlled by a closing mechanism. According to the invention, a method for operating an open particulate filter system is provided, by which the degree of separation of the soot particles from the exhaust gas can be increased.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: January 20, 2015
    Assignee: Deutz Aktiengesellschaft
    Inventors: Rolf Miebach, Stephan Schraml, Bernhard Hoffschmidt, Daniel Gonsior, Fabian Holzheid
  • Patent number: 8919107
    Abstract: A control device of a diesel engine with a turbocharger is provided. The device includes an engine body having a cylinder, a fuel injection valve, a turbine of the turbocharger, a bypass passage for bypassing the turbine, a bypass valve for opening and closing the bypass passage, an oxidation catalyst for purifying HC, and a DPF for capturing soot. The device includes a fuel cutting module for stopping, when the diesel engine is in a deceleration state, a main injection of the fuel performed on compression stroke, a DPF regenerating module for performing, when a predetermined DPF regeneration condition is satisfied, a post injection on expansion stroke to supply HC to the oxidation catalyst and regenerate the DPF by heat generated from an oxidation reaction of HC, and a bypass valve control module for controlling the bypass valve.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Mazda Motor Corporation
    Inventor: Hiroyuki Nishimura
  • Patent number: 8920757
    Abstract: Reductant dosing systems and methods for engine exhaust aftertreatment are disclosed. The opening and closing of a metering valve in the reductant dosing system is controlled in a manner that mitigates pressure oscillations in the dosing system. The metering valve is opened in response to the dosing command exceeding a minimum threshold value and the differential pressure across the metering valve exceeding a differential pressure threshold. The metering valve is closed in response to either the differential pressure across the metering valve dropping below a differential pressure threshold or the actual dosed quantity exceeding the dosing command.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: December 30, 2014
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Srivardhan Chandrapati, Yongquan Chai, Stephen M. Holl, Shu Zhang
  • Patent number: 8915069
    Abstract: Arrangement for introducing a liquid medium into exhaust gases from a combustion engine: an exhaust gas line (2), an injection chamber (3) bounded in radial directions by a tubular wall (8), an injector (13) injects the liquid medium into the injection chamber; a mixing duct (14) to which the injection chamber has an outlet (10) for delivering exhaust gases; a bypass duct (15) which has an outlet (17) via which it is connected to the mixing duct, and an endwall (7) at the injection chamber's downstream end and demarcating the chamber from the mixing duct, such that the chamber's outlet is situated at the periphery of the endwall. The outlet of the bypass duct is close to the outlet of the injection chamber so that the exhaust gases which flow into the mixing duct via the chamber's outlet will collide with the exhaust gases which flow into the mixing duct via the outlet of the bypass duct.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: December 23, 2014
    Assignee: Scania CV Ab (Publ)
    Inventor: Peter Loman
  • Patent number: 8904763
    Abstract: The invention is an exhaust gas apparatus of an internal combustion engine, in particular of an internal combustion engine with gasoline direct injection. The exhaust gas apparatus includes at least one selective catalytic converter. It is provided that a first catalytic converter is positioned upstream of the selective catalytic converter. The invention also provides a method for the purification of exhaust gas of an internal combustion engine, in an internal combustion engine with gasoline direct injection, for use in such an exhaust gas apparatus. In the method the selective catalytic converter is preceded by a first catalytic converter disposed upstream therefrom.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: December 9, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Thorsten Raatz
  • Patent number: 8904771
    Abstract: An exhaust heat recovery apparatus for a vehicle, may include a case having an inlet and an outlet, a heat exchange part mounted in the case, the heat exchange part, a bypass tube connecting the inlet and the outlet of the case in the case, having an inflow opening for the inflow of the exhaust gas to the heat exchange part, and allowing an exhaust gas to bypass the heat exchange part, and a variable valve installed in the bypass tube to selectively block flow of the exhaust gas through the bypass tube and induce the exhaust gas to the heat exchange part, wherein the heat exchange part includes a coolant distribution member having a plurality of coolant paths connected to and spaced apart from each other between the bypass tube and the case, and a lubricant distribution member installed in one of the coolant paths and in which the lubricant flows.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: December 9, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Sejong Industrial Co., Ltd.
    Inventors: Jong Seung Won, Jongho Seon, Jaesan Kim, Sung Soo Chae, Jin-Yong Park, Jong-Yun Moon, Jin-Yong Kim
  • Patent number: 8904756
    Abstract: An exhaust emission control system of an internal combustion engine includes: a bypass passage (22) provided in an exhaust passage (14) of the engine and arranged to bypass a main passage (16) as a part of the exhaust passage, a NOx adsorbent (28) provided in the bypass passage and adapted to adsorb at least NOx as one of components contained in exhaust gas, a channel switching device (30) that switches a channel of the exhaust gas between the main passage and the bypass passage, an adsorption control device (50) that controls the channel switching device, based on operating conditions of the engine, so as to cause the exhaust gas to flow through the bypass passage, and an adsorbing capability determining device (50) that determines, when the adsorbing capability of the NOx adsorbent degrades, whether the degradation in the adsorbing capability is a surmountable degradation from which the NOx adsorbent can recover, or an insurmountable degradation from which the NOx adsorbent cannot recover.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: December 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kimikazu Yoda, Takaaki Itou, Keisuke Sano, Kazuhiro Wakao
  • Patent number: 8899025
    Abstract: The invention is directed at systems and process for reducing or eliminating the emissions of one or more undesirable substances. The systems include a heat storage device an emission reduction device, one or more valves, and one or more exit points.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: December 2, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Andrey N. Soukhojak, David H. Bank
  • Patent number: 8893472
    Abstract: A cogeneration apparatus includes: an airtight chamber provided within an apparatus casing and constructed to prevent exhaust gas of a prime mover from flowing out therefrom; and a relief valve provided in a water flow path within the airtight chamber and constructed to discharge the exhaust gas, contained in the water flow path, to the airtight chamber.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: November 25, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Koichi Oka, Daiki Kamiyama, Kosuke Yamana, Nobuyuki Sasaki, Hideyuki Ushiyama
  • Publication number: 20140338311
    Abstract: A method for operating a dosing apparatus for providing a liquid additive includes providing the dosing apparatus with at least one pump for pumping the additive from a tank into a pressure accumulator, a dosing valve for providing additive present in the pressure accumulator in a dosed manner, and a return valve through which additive present in the pressure accumulator can be led back into the tank. A dosing demand is established, subsequently the pump is activated to build up a pressure in the pressure accumulator, then the pressure in the pressure accumulator is set to a desired metering pressure, and thereafter the liquid additive is dispensed by the dosing valve. A motor vehicle having a dosing apparatus is also provided.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 20, 2014
    Inventors: ROLF BRUECK, JAN HODGSON
  • Patent number: 8887492
    Abstract: In an exhaust gas purification apparatus of an internal combustion engine, there is provided a technique capable of suppressing a reduction in exhaust gas purification performance. The apparatus includes: an exhaust gas purification catalyst (6) that is arranged in an exhaust passage of the internal combustion engine for purifying an exhaust gas; an adsorption device (5) that is arranged at an upstream side of the exhaust gas purification catalyst, rises in temperature up to an upper limit temperature due to heat generated by adsorption thereto of an incoming first component, and falls in temperature after its temperature has reached said upper limit temperature; and a heat generating component supply unit (10) that supplies a second component which generates reaction heat in the exhaust gas purification catalyst, before the temperature of the adsorption device begins to fall.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuka Nakata, Hiromasa Nishioka, Hiroshi Otsuki, Kohei Yoshida, Takamitsu Asanuma
  • Patent number: 8883101
    Abstract: A method for operating an exhaust gas system for an internal combustion engine, in which the exhaust gas system includes at least one first catalytic coating and at least one second catalytic coating, the second catalytic coating being situated in the exhaust gas flow downstream from the first catalytic coating. An additional quantity of hydrocarbons is occasionally introduced into the exhaust gas upstream from the first catalytic coating so that a heat-generating reaction may take place in the second catalytic coating. With the aid of at least one temperature sensor and/or at least one hydrocarbon sensor and/or at least one lambda sensor upstream and/or downstream from the second catalytic coating, at least one property of the exhaust gas is ascertained which characterizes a reaction of the second catalytic coating due to the additional quantity of hydrocarbons.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: November 11, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Tobias Pfister, Arthur Bastoreala, Alexander Heinrich
  • Patent number: 8869512
    Abstract: An apparatus for controlling engine operations to a low NOx output amount at low selective catalytic reduction (SCR) temperature values and alternatively for controlling engine operations in an EGR cooler bypass regime at low engine load levels is described. The apparatus includes a controller that interprets a present speed and a present load of an engine, that determines an engine operating region in response to the present speed and the present load, and that provides an EGR cooler bypass command that provides EGR cooler bypass flow in response to the engine operating region being a first, low load, region. The controller operates the engine with supplemental NOx management in response to the engine operating region being a second, intermediate load, region. The controller operates the engine without either of the EGR cooler bypass or the supplemental NOx management in response to the engine operating region being a third region.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: October 28, 2014
    Assignee: Commins Inc.
    Inventors: Vivek Anand Sujan, Abdul R. Ofoli, Govindarajan Korthandaraman
  • Patent number: 8874309
    Abstract: A method for acquiring information from a driving operation of a vehicle, in which first information is acquired with respect to at least one operating state of the vehicle and additional second information is ascertained with respect to this at least one operating state using statistical methods, the first and second information concerning this at least one operating state being stored. A method for the assigning and diagnosis of at least one operating state of a vehicle, a control unit, a computer program and a computer-program product are also provided.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: October 28, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Andreas Genssle, Michael Kolitsch, Tobias Pfister
  • Publication number: 20140311135
    Abstract: The internal combustion engine has an upstream side NOX selective reduction catalyst and a downstream side NOX selective reduction catalyst which are arranged in an engine exhaust passage. The upstream side NOX selective reduction catalyst has a region where the NOX removal rate becomes substantially constant when the ratio of concentration of ammonia to NOX of the inflowing exhaust rises. The internal combustion engine has an operating state in that region where the ratio of concentration of ammonia to NOX is maintained. The downstream side NOX selective reduction catalyst has an ammonia oxidation ability which is larger than the upstream side NOX selective reduction catalyst.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventor: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
  • Patent number: 8857159
    Abstract: An exhaust system includes main line that runs through a three way converter (TWC) and then a lean NOx trap (LNT). The exhaust system further includes a bypass line configured to bypass the TWC. The LNT includes catalyst that is non-uniformly distributed along the longitudinal axis. The catalyst is distributed such that storage sites are weighted toward the upstream end of the LNT and oxidation and reduction sites are weighted toward the downstream end of the LNT.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 14, 2014
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Atul Pant, Karthik Ramanathan
  • Patent number: 8857156
    Abstract: In accordance with the embodiments of the present invention, an engine is disclosed. The engine includes at least one donor cylinder and at least one non-donor cylinder coupled to an intake manifold feeding intake air and an exhaust manifold. The exhaust manifold is configured to carry an engine exhaust emission from the donor cylinder and the non-donor cylinder. The engine also includes an exhaust gas recirculation manifold extending from the donor cylinder to the intake manifold for recirculating a donor cylinder exhaust emission from the donor cylinder to the donor, and non-donor cylinders via the intake manifold. The engine further includes an after-treatment system and a sensor configured to sense a temperature of the engine exhaust emission and a device configured to receive a sensing signal from the sensor and to control a parameter of the engine and a component of the engine in response to the sensing signal.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Roy James Primus, Luke Michael Henry, Paul Gerard Nistler, James Robert Mischler, John Stephen Roth
  • Patent number: 8844271
    Abstract: In a method for regenerating s catalyzed diesel particulate filter (DPF) via active NO2-based regeneration with enhanced effective NO2 supply, a NOx containing gas is introduced into the DPF, and a temperature of at least one of the DPF, the NOx containing gas, and soot in the DPF is controlled while control Sing NOx levels at an inlet of the DflF so that the NOx containing gas reacts with the catalyst to form N 02 molecules that thereafter react with soot particles to form CO, CO2, and NO molecules and a N02 efficiency is greater than 0.52 gC/gNO2 and so that less than two thirds of the soot mass that is removed from the DPF is oxidized by 02 molecules in the gas to form CO and CO2 molecules.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: September 30, 2014
    Assignee: Mack Trucks, Inc.
    Inventors: Jeffrey A. Huber, Kenth I. Svensson
  • Patent number: 8833059
    Abstract: A motor vehicle combustion engine includes an air supply section and an exhaust gas recirculation section that includes a particle filter and an SCR exhaust gas purification component. A first exhaust gas turbocharger includes a turbine arranged upstream of the particle filter in the exhaust gas section. A first exhaust gas recirculation line, which diverges from the exhaust gas section upstream of the turbine of the first exhaust gas turbocharger, and a second exhaust gas recirculation line, which diverges from the exhaust gas section downstream of the particle filter are provided to recirculate the exhaust gas from the exhaust gas section into the air supply system. An SCR catalyst is arranged in the second exhaust gas recirculation line.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: September 16, 2014
    Assignee: Daimler AG
    Inventor: Berthold Keppeler
  • Patent number: 8833058
    Abstract: Embodiments for routing exhaust in an engine are provided. In one example, an engine method comprises, during a first condition, firing a subset of cylinders and routing all exhaust from the subset of cylinders through a first exhaust manifold coupled directly to a catalyst and not a turbocharger, and during a second condition, firing all cylinders, routing a first portion of exhaust through a second exhaust manifold coupled to the turbocharger, and routing a second portion of exhaust through the first exhaust manifold. In this way, exhaust can be directly routed to a catalyst under some conditions.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: September 16, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: James Douglas Ervin, Kim Hwe Ku, Gregory Patrick McConville, Brad Alan Boyer