Blood Glucose Patents (Class 600/347)
  • Patent number: 11967408
    Abstract: Method and system for providing diabetes management and insulin therapy based on substantially real time glucose monitoring system is provided.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: April 23, 2024
    Assignee: Abbott Diabetes Care Inc.
    Inventor: R. Curtis Jennewine
  • Patent number: 11965854
    Abstract: A method of calibrating a device for measuring the concentration of creatinine using one or more calibration solutions, the method comprising: receiving concentrations at an initial time of creatine, Cr, and/or creatinine, Crn, of the one or more calibration solutions; receiving outputs of the measuring device at the end time; calculating the concentration of Cr and/or Crn in the calibration solutions at an end time using a temperature model, wherein the temperature model indicates changes in temperature of the calibration solutions from the initial time to the end time; and determining a relationship between the outputs of the measuring device and the calculated concentrations of Cr and/or Crn.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: April 23, 2024
    Assignee: Radiometer Medical ApS
    Inventor: Thomas Kjaer
  • Patent number: 11968790
    Abstract: Introduced here is an attachable unit that connects to a base unit through a snap-fitting mechanism. The attachable unit can include a top housing structure and a bottom housing structure that are ultrasonically welded together. The top housing structure can include the toe portion that is integral with remaining portions of the top housing structure, where the toe portion is configured to provide the snap-fit with the base unit.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: April 23, 2024
    Assignee: Verily Life Sciences LLC
    Inventors: Arthur Lin, Sean Frick
  • Patent number: 11931145
    Abstract: A continuous glucose monitoring system may include a hand-held monitor, a transmitter, an insulin pump, and an orthogonally redundant glucose sensor, which may comprise an optical glucose sensor and a non-optical glucose sensor. The former may be a fiber optical sensor, including a competitive glucose binding affinity assay with a glucose analog and a fluorophore-labeled glucose receptor, which is interrogated by an optical interrogating system, e.g., a stacked planar integrated optical system. The non-optical sensor may be an electrochemical sensor having a plurality of electrodes distributed along the length thereof. Proximal portions of the optical and electrochemical sensors may be housed inside the transmitter and operationally coupled with instrumentation for, e.g., receiving signals from the sensors, converting to respective glucose values, and communicating the glucose values.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: March 19, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Jesper Svenning Kristensen, Katherine T. Wolfe, Soren Aasmul, Anubhuti Bansal
  • Patent number: 11931144
    Abstract: Devices and methods are described herein for directly and accurately measuring sweat flow rates using miniaturized thermal flow rate sensors. The devices (100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500) include the flow rate sensors (220, 320, 420, 520, 620, 720, 820, 920, 1020, 1120, 1220, 1320, 1420) in or adjacent to a microfluidic component (230, 330, 430, 530, 630, 730, 830, 930, 1030, 1130, 1230, 1330, 1430, 1530) of a wearable sweat sensing device. The devices and methods optimize the sensitivity of the flow rate sensors, while minimizing the presence of noise, in order to accurately and directly measure sweat flow rates.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: March 19, 2024
    Assignee: University Of Cincinnati
    Inventors: Jason Charles Heikenfeld, Michelle D. Hoffman, Mikel Larson, Nicholas Bailey, Andrew Beckman, Adam Hauke
  • Patent number: 11929158
    Abstract: A diabetes management system including a pump for dispensing a medicant and a control device for controlling the pump includes a user interface for controlling functions of the pump and providing information related to operation of the pump and other information. The user interface can display blood glucose information and insulin dosing data such that a user can appropriately act on the information and/or gain confidence that the diabetes management system is operating appropriately to manage the disease. User interfaces provided herein can include displays of current and projected glucose values, bolus calculators, charts displaying glucose levels and/or insulin delivery data, system maintenance reminders, system status information, patient configuration input screens, and log-in screens. Diabetes management systems can include insulin pumps, continuous glucose monitors, blood glucose monitors, mobile computing devices, servers, and/or other insulin delivery devices (e.g., insulin pens).
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: March 12, 2024
    Assignee: Insulet Corporation
    Inventors: Bryan Mazlish, Jeffrey Brewer, Lane Desborough, Jennifer Block, Robert Weishar, Alan Schachtely
  • Patent number: 11918783
    Abstract: Some embodiments an infusion pump system can be configured to modify alarm limit parameters as the user's insulin load increases or decreases. Moreover, in particular embodiments, the infusion pump system can be configured to provide a “missed bolus” or “missed meal” alarm in response to the user's blood glucose characteristics, the user's insulin load information, or the like.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: March 5, 2024
    Assignee: INSULET CORPORATION
    Inventor: Mark C. Estes
  • Patent number: 11918356
    Abstract: A transcutaneous sensor configured to measure one or more physiological conditions of a patient. The transcutaneous sensor includes a substrate and first and second working electrodes on the substrate. The first working electrode includes a first active sensing area and the second working electrode includes a second active sensing area. The first active sensing area of the first working electrode is longitudinally offset along the substrate from the second active sensing area of the second working electrode.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: March 5, 2024
    Assignee: ABBOTT DIABETES CARE INC.
    Inventor: Benjamin Feldman
  • Patent number: 11903708
    Abstract: A sensor implanted in tissues and including a sensing enzyme takes an electrical measurement and compares it to reference curves for the voltage current relationship. The sensor determines whether molecular compounds are present which interfere with the detection of the molecule of interest. If interfering species are found, the measurement voltage is set in a low range to reduce errors, while if the interfering species are not found, the measurement voltage is set in a high range to increase the detected signal.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: February 20, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Samson Chen, Axel Scherer, Muhammad Musab Jilani, Xiomara L. Madero
  • Patent number: 11903738
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: February 20, 2024
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Matthew Chapman, Alan Szmodis
  • Patent number: 11896792
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 13, 2024
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11896793
    Abstract: A microsensor and method of manufacture for a microsensor, comprising an array of filaments, wherein each filament of the array of filaments comprises a substrate and a conductive layer coupled to the substrate and configured to facilitate analyte detection. Each filament of the array of filaments can further comprise an insulating layer configured to isolate regions defined by the conductive layer for analyte detection, a sensing layer coupled to the conductive layer, configured to enable transduction of an ionic concentration to an electronic voltage, and a selective coating coupled to the sensing layer, configured to facilitate detection of specific target analytes/ions. The microsensor facilitates detection of at least one analyte present in a body fluid of a user interfacing with the microsensor.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: February 13, 2024
    Assignee: One Drop Biosensor Technologies, LLC
    Inventors: Ashwin Pushpala, Alan Szmodis, Matthew Chapman, Weldon Hall, Scott Miller, Hooman Hafezi
  • Patent number: 11896369
    Abstract: The present invention is directed to a cuff-like medical device that may analyze and report the concentrations of various biomarkers in a subject's bodily fluids, samples of which may be extracted by the device in the field and analyzed on the spot using the cuff-like medical device. For example, extracellular fluid (commonly known as “tissue fluid”) of a patient may be analyzed by the present invention, and in particular, the constituent interstitial fluid—the known main component of extracellular fluid—may be analyzed for concentrations of one or more specific types of proteins. A sensor component within the device may include one or more aptamers that permit chemical binding of at least one biomarker of interest. When the aptamer-protein binding complex is complete, an electronic component of the device may employ nanoscale weighing using frequency differential analysis through quartz crystal microbalances to determine the presence and concentration of biomarkers.
    Type: Grant
    Filed: November 29, 2019
    Date of Patent: February 13, 2024
    Inventor: Ismael Marvin Voltaire
  • Patent number: 11892426
    Abstract: Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: February 6, 2024
    Assignee: Dexcom, Inc.
    Inventors: Michael J. Estes, Jennifer Blackwell, Sebastian Bohm, Robert J. Boock, Jack Pryor, Peter C. Simpson, Matthew D. Wightlin
  • Patent number: 11890075
    Abstract: A portable complex sensor device for measuring multiple items of biometric information, according to the present invention, comprises: a plurality of electrodes for receiving the biometric information; a plurality of biometric information measuring circuits for measuring the biometric information received from the plurality of electrodes; a plurality of current sensors which are always supplied with power so as to sense electric current when an object to be measured contacts the electrodes; a wireless communication means for transmitting and receiving data to and from a smart phone; and a microcontroller for controlling the power supply of a battery by being operated in a sleep mode or an active mode on the basis of whether the current sensors have sensed the electric current.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: February 6, 2024
    Assignee: HEXACHECK INC.
    Inventors: In Deok Hwang, Chang Hwan Kim
  • Patent number: 11883164
    Abstract: Systems and methods for processing sensor analyte data are disclosed, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. The sensor can be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. Reference data resulting from benchtop testing an analyte sensor prior to its insertion can be used to provide initial calibration of the sensor data. Reference data from a short term continuous analyte sensor implanted in a user can be used to initially calibrate or update sensor data from a long term continuous analyte sensor.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: January 30, 2024
    Assignee: Dexcom, Inc.
    Inventors: Apurv U Kamath, Jack Pryor, Paul V. Goode, Jr., James H Brauker, Aarthi Mahalingam
  • Patent number: 11883208
    Abstract: A method for estimating glucose values of a user and an insulin infusion and management system are provided. The insulin infusion and management system can include an insulin infusion device configured to deliver insulin to a user; a blood glucose meter; a source of user activity data; and a processor-based computing device that supports data communication with the insulin infusion device. A processor device of the computing device can perform a method for estimating glucose values of a user. In accordance with the method, a first set of inputs can be received and processed via an estimation model for a user to generate a set of estimated glucose values that track actual glucose values.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: January 30, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Pratik Agrawal, Chantal M. McMahon, Huzefa F. Neemuchwala, Yuxiang Zhong, John Hoebing
  • Patent number: 11887711
    Abstract: Described is a system comprising an input module receiving a first data set indicative of at least one patient condition for each of a plurality of patients obtained during a predetermined time period, a comparison module comparing each of the at least one patient condition to at least one filter criteria, a filter module selecting a patient to include in a second data set if the at least one patient condition of the patient satisfies the at least one filter criteria, a report module generating a report based on the second data set, wherein the report includes at least one patient identifier for each patient in the second data set and at least one descriptor of the at least one patient condition for each patient in the second data set, and a classification module storing at least one classification value for the at least one patient condition.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: January 30, 2024
    Assignee: Sanofi
    Inventors: Ronald Draghi, Michael Hauser, Brian Stancampiano
  • Patent number: 11850020
    Abstract: Methods and apparatus, including computer program products, are provided for remote monitoring. In some example implementations, there is provided a method. The method may include receiving, at a remote monitor, a notification message representative of an event detected, by a server, from analyte sensor data obtained from a receiver monitoring an analyte state of a host; presenting, at the remote monitor, the notification message to activate the remote monitor, wherein the remote monitor is configured by the server to receive the notification message to augment the receiver monitoring of the analyte state of the host; accessing, by the remote monitor, the server, in response to the presenting of the notification message; and receiving, in response to the accessing, information including at least the analyte sensor data. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: December 26, 2023
    Assignee: Dexcom, Inc.
    Inventors: Michael Robert Mensinger, Eric Cohen, Philip Mayou, Eli Reihman, Katherine Yerre Koehler, Rian Draeger, Angela Marie Traven
  • Patent number: 11850388
    Abstract: A method of manufacturing a microneedle includes selecting and providing a microneedle material whose viscosity/elastic modulus measured for each shear rate using a viscoelasticity measuring equipment falls in a range between a predetermined upper limit and a predetermined lower limit, and manufacturing the microneedle using the microneedle material by an extension process.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: December 26, 2023
    Assignee: RAPHAS CO., LTD.
    Inventors: Ju Young Jin, Moon Su Lee, Tae Hyung Kim, Jung Dong Kim, Do Hyeon Jeong
  • Patent number: 11844598
    Abstract: Electrochemical Impedance Spectroscopy (EIS) is used in conjunction with continuous glucose monitors and continuous glucose monitoring (CGM) to enable in-vivo sensor calibration, gross (sensor) failure analysis, and intelligent sensor diagnostics and fault detection. An equivalent circuit model is defined, and circuit elements are used to characterize sensor behavior.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: December 19, 2023
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Andrea Varsavsky, Fei Yu, Michael E. Miller, Ning Yang
  • Patent number: 11826089
    Abstract: A device and method for compressing a renal artery prior to delivery of radiofrequency ablative energy to the renal nerves. The device includes a stent structure with a focal region that expands outwards to place the RF electrodes located on the stent structure in close proximity to the renal nerves. A covering is applied to the stent structure to prevent intimal hyperplasia.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: November 28, 2023
    Inventors: William Joseph Drasler, William Joseph Drasler, II
  • Patent number: 11806135
    Abstract: Sensing and infusion devices are described. In one embodiment, a sensing and infusion device may include an implantable segment having a sensor. The sensing and infusion device may also include a catheter, and a sensor channel may be formed in the catheter. The sensor channel may be configured to retain at least a portion of the implantable segment.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: November 7, 2023
    Assignee: PercuSense, Inc.
    Inventors: Rajiv Shah, Ellen Messer, Katherine Wolfe, Shaun Pendo
  • Patent number: 11806139
    Abstract: An on-body insertion system is described. The on-body system includes a sensor in a first position being substantially parallel to an insertion surface. Activation of an actuator transitions the sensor to a second position. Wherein the transition imparts movement to the sensor that is substantially parallel to the insertion surface and the second position results in the sensing area being beneath the insertion surface.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: November 7, 2023
    Assignee: PercuSense, Inc.
    Inventors: Katherine Wolfe, Joseph Ferreira, Ellen Messer, Rajiv Shah, Konrad Chan
  • Patent number: 11793472
    Abstract: A method comprising executing a prescription digital therapeutic configured to treat symptoms associated with migraines experienced by a patient.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: October 24, 2023
    Assignee: WELT Corp., Ltd
    Inventors: Marguerite Manteau-Rao, Antoun Nabhan
  • Patent number: 11796466
    Abstract: Contained herein is a system and method for using non-contact diffuse optical skin reflectance method to obtain remote sensing of in-vivo glucose levels in biological tissue or fluids. One embodiment uses an optical, non-contact method capable of measuring glucose levels at a stand-off distance of 0.5 to 2 meters. In this method, the tissue is illuminated with a collimated beam of near-infrared (optical) band of light having a specific band of wavelengths. The diffuse reflectance measured from the tissue/fluid is collected while varying the optical circuit. Using the collected data, an algorithm to unravel the mixed effects of tissue/fluid scattering and absorption is applied to determine the absorption level of the light, which is then associated with a quantitative glucose level.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: October 24, 2023
    Assignee: The Board of Regents for the Oklahoma Agricultural and Mechanical Colleges
    Inventors: Sabit Ekin, Daqing Piao, John O'Hara
  • Patent number: 11772329
    Abstract: An input data creation device for powder additive manufacturing that can design and provide an appropriate support that avoids manufacturing failure. The device creates input data of a model in which a support is provided to a manufacturing designed object in powder additive manufacturing. The device includes a mechanical quantity calculation unit including a mechanism configured to calculate a mechanical quantity generated on a surface to which the support is provided in the manufacturing designed object; and a support shape determination unit including a mechanism configured to determine, based on information on a plurality of types of support shapes, information on an allowable mechanical quantity defined for each support shape, and a mechanical quantity calculated by the mechanical quantity calculation unit, an optimized support shape having an allowable mechanical quantity equal to or greater than the calculated mechanical quantity from among the plurality of types of support shapes.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: October 3, 2023
    Assignee: HITACHI, LTD.
    Inventors: Takashi Hamaguchi, Makoto Onodera, Masayuki Hariya, Zixian Zhang, Shingo Noro
  • Patent number: 11771351
    Abstract: A sensor includes: a tubular needle member that includes a side wall and defines a hollow portion; and a linear detection member located in the hollow portion. The side wall of the needle member includes a thick portion that is thicker than another portion of the side wall in a cross-section of the needle member, and wherein the thick portion protrudes toward the hollow portion.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: October 3, 2023
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventor: Takeshi Akiyama
  • Patent number: 11730403
    Abstract: A diversified glucose sensor system comprises an introducer needle and two or more independent sensor bodies, each sensor body having one or more sensing elements that can be subcutaneously positioned in a patient's body by insertion of the introducer needle for glucose measurement. The system further includes a progressive insertion device comprising an insertion shaft that pushes the sensor bodies out the end opening of the introducer needle to a desired depth in the patient prior to removal of the insertion shaft and the introducer needle. The sensor bodies are bent or folded and held under stress within the introducer needle for insertion, and released and biased outwardly when pushed out of the introducer needle. The sensing elements are anchored and disposed within the patient at positions providing X/Y/Z-axis diversity for measurement.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: August 22, 2023
    Inventor: Arnold Chase
  • Patent number: 11718865
    Abstract: Embodiments of the invention provide multilayer analyte sensors having elements and/or architectures that function to improve oxygen delivery to sensor enzymes in manner that enhances sensor function, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: August 8, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Daniel E. Pesantez, Ashwin K. Rao, Ellis Garai, Rui Kong, Michael E. Miller
  • Patent number: 11701040
    Abstract: A venous access device includes a hub and a bifurcated cannula. The hub includes a bifurcated connecting arm, a blood sampling arm connected to the bifurcated connecting arm, a fluid transfer arm connected to the bifurcated connecting arm, a blood sampling channel and a fluid transfer channel. The blood sampling channel passes through the blood sampling arm and the bifurcated connecting arm. The fluid transfer channel passes through the fluid transfer arm and the bifurcated connecting arm. The bifurcated cannula is coupled to the bifurcated connecting arm and includes a blood sampling lumen having a blood sampling port, a fluid transfer lumen having a fluid transfer port, and a dividing member separating the blood sampling lumen from the fluid transfer lumen. The blood sampling port is 2 mm to 20 mm proximal from the fluid transfer port. The blood sampling channel is fluidly connected to the blood sampling lumen, and the fluid transfer channel is fluidly connected to the fluid transfer lumen.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 18, 2023
    Assignee: Site Saver, Inc.
    Inventors: Spencer A. Jones, David DePoyster, David L. Nichols, Christopher A. Richardson, Kelli L. Shada
  • Patent number: 11701038
    Abstract: An analyte monitoring system and method. The analyte monitoring system may include an analyte sensor and a transceiver. The analyte sensor may include an analyte indicator that exhibits one or more detectable properties based on an amount or concentration of an analyte in proximity to the indicator. The transceiver may be configured to receive one or more measurements from the sensor. The transceiver may be configured to assess in real time a performance of the sensor based on at least the one or more measurements. The transceiver may be configured to determine whether the performance of the sensor is deficient based at least on the assessed performance of the sensor. The transceiver may be configured to calculate an analyte level based on at least the one or more sensor measurements. The transceiver may be configured to determine whether the calculated analyte level is a spike.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: July 18, 2023
    Assignee: Senseonics, Incorporated
    Inventors: Ravi Rastogi, James Masciotti, Xiaoxiao Chen
  • Patent number: 11700695
    Abstract: A method for assembling a catheter is disclosed. The method includes printing conductive traces on at least one flexible substrate and encapsulating the at least one flexible substrate to provide for environmental protection. The at least one encapsulated flexible substrate is inserted into a shaft of a catheter. Then, connectors are attached to each end of the at least one encapsulated flexible substrate. One set of the connectors are further attached to sensors located at a distal end of the catheter and another set of the connectors are further attached to electronics in a handle of the catheter.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: July 11, 2023
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Shemer Shmaryau Berkowitz, Sharona Ben Shoshan, Eden Kidishman
  • Patent number: 11698385
    Abstract: Technologies and implementations for a wearable healthcare system, which may be worn by a person. The wearable healthcare systems may include one or more motion sensors. A motion analysis modules may be included in the wearable healthcare system, which may be configured to determine physical activities and intensity of the physical activities of the person.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: July 11, 2023
    Assignee: WEST AFFUM HOLDINGS DAC
    Inventors: Jaeho Kim, Pamela F. Breske
  • Patent number: 11690577
    Abstract: Systems and methods for providing sensitive and specific alarms indicative of glycemic condition are provided herein. In an embodiment, a method of processing sensor data by a continuous analyte sensor includes: evaluating sensor data using a first function to determine whether a real time glucose value meets a first threshold; evaluating sensor data using a second function to determine whether a predicted glucose value meets a second threshold; activating a hypoglycemic indicator if either the first threshold is met or if the second threshold is predicted to be met; and providing an output based on the activated hypoglycemic indicator.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: July 4, 2023
    Assignee: Dexcom, Inc.
    Inventors: Hari Hampapuram, Anna Leigh Davis, Naresh C. Bhavaraju, Apurv Ullas Kamath, Claudio Cobelli, Giovanni Sparacino, Andrea Facchinetti, Chiara Zecchin
  • Patent number: 11678820
    Abstract: A continuous glucose monitoring (CGM) device may include a wearable portion having a sensor configured to produce glucose signals from interstitial fluid, a processor, a memory and transmitter circuitry. The memory may include a pre-determined gain function based on a point-of-interest glucose signal and glucose signals measured prior to the point-of-interest glucose signal. The memory may also include computer program code stored therein that, when executed by the processor, causes the CGM device to (a) measure and store a plurality of glucose signals using the sensor and memory; (b) for a presently-measured glucose signal, employ the plurality of previously-measured glucose signals stored in the memory and the pre-determined gain function to compute a compensated glucose value; and (c) communicate the compensated glucose value to a user of the CGM device. Numerous other embodiments are provided.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: June 20, 2023
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventor: Huan-Ping Wu
  • Patent number: 11680933
    Abstract: A method of operating a gas sensor for a gas analyte including a sensing component includes, in a first mode, interrogating the sensor by periodically applying an electrical signal to the sensing component of the sensor, measuring sensor response to the electrical signal which is indicative of a sensitivity of the sensor each time the electrical signal is applied to the sensing component, determining whether one or more thresholds have been exceeded based upon the sensor response determined each time the electrical signal is applied to the sensing component, and entering a second mode, different from the first mode in analysis of the sensor response to the periodically applied electrical signals, if one or more thresholds are exceeded.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: June 20, 2023
    Assignee: MSA Technology, LLC
    Inventors: Michael Alvin Brown, Brian Keith Davis
  • Patent number: 11672449
    Abstract: Embodiments of the present disclosure relate generally devices for detecting analytes in a subject. More particularly, the present disclosure provides a biosensor array for detecting analytes in a subject. Embodiments of the present disclosure include a biosensor array comprising a plurality of sensor cells for detecting an analyte in a subject. In accordance with these embodiments, the plurality of sensor cells comprises at least one electrode, at least one antibody immobilized on a surface of the at least one electrode, and a biodegradable coating in contact with the at least one antibody.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 13, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, David Probst, Bin Mu
  • Patent number: 11670418
    Abstract: The subject matter disclosed herein provides methods for presenting glucose level data. Glucose data for a patient may be received. A current glucose level and a rate of change of the current glucose level may be determined based on the received glucose data. A first interface may be displayed on a screen of a device. The first interface may include a unitary icon. The unitary icon may display the current glucose level and a visualization of the rate of change. Related apparatus, systems, techniques, and articles are also described.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: June 6, 2023
    Assignee: Dexcom, Inc.
    Inventors: Katherine Yerre Koehler, Esteban Cabrera, Jr., Eric Cohen, Mark Dervaes, Rian Draeger, Sheryl Sadsarin Gaano, Thomas Hall, Paul Kramer, Shawn Larvenz, Michael Robert Mensinger, Paul Noble-Campbell, Andrew Attila Pal, Eli Reihman, Brian Christopher Smith, Angela Marie Traven
  • Patent number: 11654235
    Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: May 23, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Patent number: 11638781
    Abstract: An infusion pump system providing therapy to a patient in a closed-loop or semi-closed loop mode can safely automatically revert to open-loop therapy. The system stores a default open-loop basal rate profile in memory. The system also continually tracks the insulin on board for the patient over a plurality of closed-loop therapy intervals. When an error or event occurs requiring reversion to open-loop therapy, the system automatically provides therapy according to the open-loop basal rate profile and the tracked insulin on board amount.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: May 2, 2023
    Assignee: Tandem Diabetes Care, Inc.
    Inventor: Michael J. Rosinko
  • Patent number: 11639989
    Abstract: A time-of-flight (ToF) transmitter with self-stabilized optical output phase with minimal overhead is described, where the transmitter may either function as a slave in that the laser pulse phase and width can be controlled by the master ToF receiver, or it can function as a master where the laser control pulse is generated on the same chip or a companion chip. When the ToF transmitter functions as a slave and receives the laser pulse control signal, the techniques of this disclosure can transform the receive path and the pre-driver circuit into part of a delay locked loop (DLL).
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: May 2, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Junhua Shen, Erik D. Barnes, Alberto Marinas, Daniel Peter Canniff, Siwen Liang
  • Patent number: 11633129
    Abstract: Systems and methods are provided for determining levels of an analyte in a biological fluid sample. A transdermal sampling and analysis device may include a substrate, at least one disruptor mounted on the substrate, a reservoir configured to collect and contain a biological fluid sample; a sensing element comprising at least two sensing electrodes, and at least one layer of a cofactor covering the sensing element in which the cofactor catalyzes a reaction to determine levels of an analyte in the biological fluid sample. The at least one disruptor of the transdermal sampling and analysis device may generate a localized heat capable of altering permeability characteristics of a stratum corneum layer of skin of an organism. The surface of at least one of the sensing electrodes of the transdermal sampling and analysis device may be coated with a sensing layer in which an enzyme immobilized within a hydrogel.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: April 25, 2023
    Assignee: Cambridge Medical Technologies LLC
    Inventors: Helena Woodvine Snyder, Vikas Bhatia, John Frederick Currie, Emil F. Jachmann
  • Patent number: 11627894
    Abstract: A method for determining a body fluid glucose level of a patient from a continuous signal of a glucose sensor element of a continuous body fluid glucose monitoring device in a data processing unit, comprising receiving measurement data representing a continuous sensor signal provided by a glucose sensor element of a continuous body fluid glucose monitoring device in the data processing unit, receiving calibration data representing a time-dependent zero-signal level of the glucose sensor element in the data processing unit, determining a body fluid glucose level by processing at least the measurement data and the calibration data in the data processing unit, the processing comprising subtraction of the time dependent zero-signal level from the continuous sensor signal, and providing result data indicative of the continuous body fluid glucose level in the processing unit; and a system for determining a body fluid glucose level of a patient.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: April 18, 2023
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Guenther Schmelzeisen-Redeker, Nikolaus Schmitt
  • Patent number: 11607156
    Abstract: Systems and methods are provided for determining levels of an analyte in a biological fluid sample. A transdermal sampling and analysis device may include a substrate, at least one disruptor mounted on the substrate, a reservoir configured to collect and contain a biological fluid sample; a sensing element comprising at least two sensing electrodes, and at least one layer of a cofactor covering the sensing element in which the cofactor catalyzes a reaction to determine levels of an analyte in the biological fluid sample. The at least one disruptor of the transdermal sampling and analysis device may generate a localized heat capable of altering permeability characteristics of a stratum corneum layer of skin of an organism. The surface of at least one of the sensing electrodes of the transdermal sampling and analysis device may be coated with a sensing layer in which an enzyme immobilized within a hydrogel.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: March 21, 2023
    Assignee: Cambridge Medical Technologies LLC
    Inventors: Helena Woodvine Snyder, Vikas Bhatia, John Frederick Currie, Emil F. Jachmann
  • Patent number: 11607180
    Abstract: A computer-implemented method for analyzing glucose monitoring data comprising: receiving first glucose monitoring data indicative of a glucose level at a measurement time, the first glucose monitoring signals detected in one or more glucose measurement time periods over a first monitoring time period of a continuous glucose monitoring, determining at least one first range event selected from the following group: a normal glucose level event, a hyperglycaemia event, or a hypoglycaemia event; determining how often the first range event is determined for the first monitoring time period; providing a first minimum total, measurement time period, the first minimum total measurement time period being shorter in time than the first monitoring time period; generating first display data representing, for the at least one first range event, the number of first range events in a graphical representation, if the one or more glucose measurement time periods sum up to at least a first minimum total measurement time period
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: March 21, 2023
    Assignee: ROCHE DIABETES CARE, INC.
    Inventor: Itzhak Grinberg
  • Patent number: 11596356
    Abstract: The present it relates to a sensor applicator assembly for a continuous glucose monitoring system and provides a sensor applicator assembly for a continuous glucose monitoring system, which is manufactured with a sensor module assembled inside an applicator, thereby minimizing additional work by a user for attaching the sensor module to the body and allowing the sensor module to be attached to the body simply by operating the applicator, and thus can be used more conveniently. A battery is built in the sensor module and a separate transmitter is connected to the sensor module so as to receive power supply from the sensor module and be continuously used semi-permanently, thereby making the assembly economical. The sensor module and the applicator are used as disposables, thereby allowing accurate and safe use and convenient maintenance.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: March 7, 2023
    Assignee: I-SENS, INC.
    Inventors: Kyung Chul Chae, Hyun Ho Choi, Goang Yel Ryu, Ji Hoon Wang, Young Jea Kang
  • Patent number: 11589823
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: February 28, 2023
    Assignee: Dexcom, Inc.
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 11584945
    Abstract: A biosensor system, method and apparatus are provided for implementing threshold based correction functions for biosensors. A primary measurement of an analyte value is obtained. A secondary measurement of a secondary effect is obtained and is compared with a threshold value. A correction function is identified responsive to the compared values. The correction function is applied to the primary measurement of the analyte value to provide a corrected analyte value. The correction method uses correction curves that are provided to correct for an interference effect. The correction curves can be linear or non-linear. The correction method provides different correction functions above and below the threshold value. The correction functions may be dependent or independent of the primary measurement that is being corrected. The correction functions may be either linear or nonlinear.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: February 21, 2023
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventor: George A. Mecklenburg
  • Patent number: 11574742
    Abstract: A method includes obtaining training data for a plurality of patients of a patient population. The training data includes training blood glucose history data including treatment doses of insulin administered by the patients of the patient population and one or more outcome attributes associated with each treatment dose. The method also includes identifying, for each patient of the patient population, one or more optimum treatment doses of insulin from the treatment doses yielding favorable outcome attributes. The method also includes receiving patient-state information for the treated patient, determining a next recommended treatment dose of insulin for the treated patient based on one or more of the identified optimum treatment doses associated with the patients of the patient population having training patient-state information similar to the patient-state information for the treated patient, and transmitting the next recommended treatment dose to a portable device associated with the treated patient.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: February 7, 2023
    Assignee: Aseko, Inc.
    Inventors: Robert C. Booth, Harry Hebblewhite