Testing Means Inserted In Body Patents (Class 600/486)
  • Publication number: 20140213890
    Abstract: An apparatus and method for gathering bodily fluid dynamic pressure measurements including placing a delivery tool in a region of interest (ROI), wherein the delivery tool includes a sensor, wherein the sensor is positioned in a substantially perpendicular direction to a flow direction of the ROI; measuring a sensor displacement for a time period; and determining a pressure measurement in the ROI using the sensor displacement.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: PACESETTER, INC.
    Inventor: PACESETTER, INC.
  • Publication number: 20140213915
    Abstract: Systems for monitoring left atrial pressure using implantable cardiac monitoring devices and, more specifically, to a left atrial pressure sensor implanted through a septal wall are presented herein.
    Type: Application
    Filed: February 14, 2013
    Publication date: July 31, 2014
    Applicant: PACESETTER, INC.
    Inventors: Phong D. Doan, Apratim Dixit
  • Publication number: 20140207008
    Abstract: Devices, systems, and methods for visually depicting a vessel and evaluating treatment options are disclosed. In some instances, a method of evaluating a vessel of a patient includes moving a second instrument longitudinally through a vessel of the patient from a first position to a second position while maintaining a first instrument in a fixed longitudinal position with respect to the vessel; obtaining pressure measurements from the first and second instruments while the second instrument is moved longitudinally through the vessel; visually depicting the vessel on a display based on the obtained pressure measurements; and modifying the visual depiction of the vessel to simulate one or more treatment options. Systems for performing such methods are also provided.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: Volcano Corporation
    Inventor: Justin Davies
  • Publication number: 20140206959
    Abstract: A measurement system may comprise a sensor wire and a transceiver unit. The sensor wire may comprise an insertable portion configured to be inserted in a blood vessel of a patient's body and a sensor disposed within the insertable portion at a distal end of the senior wire. The sensor is configured to measure a parameter when inserted inside the patient. The transceiver unit may comprise: a housing adapted to be connected to a proximal end of the sensor wire; and a first communication module within the housing adapted to wirelessly communicate by a communication signal with an external second communication module in order to transfer information to the external second communication module.
    Type: Application
    Filed: March 18, 2014
    Publication date: July 24, 2014
    Applicant: ST. JUDE MEDICAL SYSTEMS AB
    Inventors: Magnus SAMUELSSON, Sauli Tulkki
  • Patent number: 8784332
    Abstract: A system for measuring and converting to an observer intelligible form an internal physiological parameter of a patient. The invention allows transcutaneous telemetry of intracranial pressure via a system which includes a patient implanted sensor module and an external processing module, optically coupled to the sensor module via an external coupling module. A sensor within the sensor module transduces the measured pressure and a near infrared emitter transmits the telemetry when interrogated by the external coupling module. A set of tuned inductor-crystal circuits comprised in part of a cylindrical crystal oscillator whose resonant frequency is sensed by a dipper circuit arrangement is provided. Power for the sensor module is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field generated within the external coupling module.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: July 22, 2014
    Inventor: Erich W. Wolf, II
  • Patent number: 8777850
    Abstract: An implantable medical device system and method provide physiological variable monitoring for use in patient management. A target value for a physiological variable and formulations for computing metrics of the physiological variable are stored. Values of the physiological variable are determined from a sensed physiological signal and are used to compute a selected metric. The metric is compared to the stored target value.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: July 15, 2014
    Assignee: Medtronic, Inc.
    Inventors: Yong K. Cho, Ven R. Manda, Brandon S. Sparks, Tommy D. Bennett
  • Patent number: 8777863
    Abstract: Methods, systems, and apparatus for powering and/or recharging medical devices implanted within the body are described. An illustrative power generation module disposable within the interior space of an implantable medical device includes a module body that defines an interior cavity as well as a flexible diaphragm that spans the interior cavity. The flexible diaphragm includes a first electrical conductor, a piezoelectric layer disposed adjacent to the first electrical conductor, and a second electrical conductor disposed adjacent to the piezoelectric layer. The piezoelectric layer is configured to displace within the interior cavity and generate a voltage differential between the first electrical conductor and the second electrical conductor.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: July 15, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Thomas W. Piaget, Bin Mi, Lance E. Juffer, Keith R. Maile, Abhijeet V. Chavan, Cheng Zhang
  • Publication number: 20140194717
    Abstract: A heart support system featuring a sheath sized to fit about at least a portion of an adult human heart in a living body, an expansion sleeve disposed within the sheath and sized to fit about the heart and a sensor sleeve disposed within the sheath and sized to fit about the heart. The expansion sleeve is at least partially defining an expandable chamber. The sensor sleeve carries at least one sensor electrically responsive to a heart parameter.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 10, 2014
    Inventors: Stephen Manuel Wildhirt, Markus Meister
  • Publication number: 20140187983
    Abstract: In one embodiment, a sensing guidewire for performing atraumatic intravascular physiologic measurements includes an elongated core wire and a sensor disposed at a distal end portion thereof. A flexure is disposed in the core wire proximal to the sensor housing. The flexure is substantially more flexible than regions of the core wire disposed on either side of the flexure, and enables a distal end portion of the guide wire to conform to and rest against a wall of vascular structure, such as an aneurism, without exerting an undue outward pressure thereon in response to making any contact with the wall.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventor: David Anderson
  • Publication number: 20140187985
    Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, the intravascular devices include at least one pressure sensing component within a distal portion of the device. In that regard, one or more electrical, electronic, optical, and/or electro-optical pressure-sensing components is secured to an elongated member and the system includes components to process the output signals according to various calibration parameters.
    Type: Application
    Filed: December 24, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventors: Paul Douglas Corl, David H. Burkett, Douglas E. Meyer
  • Publication number: 20140187981
    Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, the intravascular devices are guide-wires that include one or more sensing components and a sensor control module that stores information about the guide-wire. In some instances, the information about the guide-wire stored in the sensor control module is calibration information for a sensing component of the guide-wire. In some embodiments, the intravascular devices are guide-wires that include wireless communication functionality. In some instances, the guide-wires include one or more antennas adjacent a proximal portion of the guide-wire. In some instances, the guide-wires include passive radio frequency devices integrated into the guide-wire. Systems associated with such intravascular devices are disclosed. Methods of using such devices and systems are also disclosed.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventors: Bret C. Millett, Paul Douglas Corl
  • Publication number: 20140187874
    Abstract: Intravascular devices, systems, and methods are disclosed. In some instances, the intravascular device is a guide wire with electrical conductors printed on a solid core wire. In some instances, the electrical conductors are coupled to conductive bands adjacent a proximal portion of the guide wire. Methods of making, manufacturing, and/or assembling such intravascular devices and associated systems are also provided. In certain aspects, guidewires of the invention include a body having an inner core and an outer layer with one or more embedded conductors. The conductors are exposed at one or more locations along the body and a conductive material can be layered over the exposed locations. A sensor can also be coupled to the body via the conductive material at one of the exposed locations.
    Type: Application
    Filed: December 30, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventors: David H. Burkett, Bret C. Millett, Paul Douglas Corl
  • Publication number: 20140187984
    Abstract: A guidewire system for treating a patient may include a sensor assembly for detecting a physiological characteristic of a patient and a hypotube sized for insertion into vasculature of the patient and having an integrated sensor mount formed therein for predictably locating the sensor during assembly. The hypotube may also have a wall structure and a lumen, and the sensor mount may be formed within the wall structure of the hypotube and may include a first mechanical stop configured to limit movement of the sensor assembly in at least a first dimension and a second mechanical stop configured to limit movement of the sensor assembly in at least a second dimension. A sensor housing may be disposed about the sensor mount and may have a window formed therein to provide fluid communication between the sensor assembly and an environment outside the hypotube.
    Type: Application
    Filed: December 23, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventor: David H. Burkett
  • Publication number: 20140187980
    Abstract: A guidewire system for treating a patient may include a sensor assembly for detecting a physiological characteristic of a patient, the sensor assembly having a portion having a first width. The system also may include a hypotube having an integrated sensor mount formed therein for predictably locating the sensor during assembly, the hypotube having a lumen and the sensor mount being formed of opposing walls of the hypotube, the distance between the opposing walls being a second width. The first width of the sensor assembly may be greater than the second width between the opposing walls of the hypotube such that a portion of the sensor assembly lies directly on the walls of the hypotube. A sensor housing disposed about the sensor mount and configured to reinforce the hypotube at the sensor mount.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventor: David H. Burkett
  • Publication number: 20140187978
    Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, the intravascular devices are guide-wires that include one or more sensing components and a sensor control module that stores information about the guide-wire. In some instances, the information about the guide-wire stored in the sensor control module is calibration information for a sensing component of the guide-wire. In some embodiments, the intravascular devices are guide-wires that include wireless communication functionality. In some instances, the guide-wires include one or more antennas adjacent a proximal portion of the guide-wire. In some instances, the guide-wires include passive radio frequency devices integrated into the guide-wire. Systems associated with such intravascular devices are disclosed. Methods of using such devices and systems are also disclosed.
    Type: Application
    Filed: December 18, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventors: Bret C. Millett, Paul Douglas Corl
  • Publication number: 20140187982
    Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, the intravascular devices are guide-wires that include one or more sensing components and a sensor control module that stores information about the guide-wire. In some instances, the information about the guide-wire stored in the sensor control module is calibration information for a sensing component of the guide-wire. In some embodiments, the intravascular devices are guide-wires that include wireless communication functionality. In some instances, the guide-wires include one or more antennas adjacent a proximal portion of the guide-wire. In some instances, the guide-wires include passive radio frequency devices integrated into the guide-wire. Systems associated with such intravascular devices are disclosed. Methods of using such devices and systems are also disclosed.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventors: Bret C. Millett, Paul Douglas Corl
  • Publication number: 20140187986
    Abstract: A pressure sensing device is provided that can monitor and measure pressure at two points in a vessel or artery without moving the outer sheath or catheter of the device. The outer sheath or catheter includes two spaced apart openings that may be positioned in a vessel or artery on opposing sides of an occlusion. The device also includes an inner elongated tube with at least one opening. The inner elongated tube is slidable with respect to the outer sheath or catheter thereby permitting the opening of the elongated tube to be moved into selective registration with one of the openings of the outer sheath. A pressure measurement may be taken through one of the openings in the outer sheath by aligning the opening of the elongated tube with said opening and, then, a second pressure reading may be taken by sliding the elongated tube within the outer sheath so that the opening of the elongated tube is in registry with the other opening of the tubular sheath.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 3, 2014
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: TIMOTHY G.J. EHR, BRUCE H. ASMUS
  • Publication number: 20140187933
    Abstract: A coaxial dual lumen pigtail catheter utilizes coaxial construction incorporating a thin wall guiding catheter technology for the outer lumen and using a strong braided diagnostic technology for the central lumen to accommodate high-pressure injections. The catheter includes a manifold body to provide for connection to each of the dual lumens. The distal end of the coaxial dual lumen pigtail catheter tapers to a more flexible portion that is perforated by spiral side holes to provide for more undistorted pressure readings in the left ventricle. The coaxial dual lumen pigtail catheter also utilizes proximal straight sideholes at the end of the dual lumen portion and a taper between the dual lumen portion and the single lumen portion.
    Type: Application
    Filed: November 11, 2013
    Publication date: July 3, 2014
    Inventor: Phil Langston
  • Publication number: 20140187979
    Abstract: An intravascular sensor assembly including a flexible elongate member having a longitudinal axis (LA) is provided. The sensor assembly includes a first engagement feature proximal to a distal end of the flexible elongate member; a core member disposed inside a lumen of the flexible elongate member, the core member configured to translate within the flexible elongate member along the LA proximal to the first engagement feature; and a component holding a sensor circuit, the component fixedly secured to a distal end of the core member such that the mounting structure translates along the LA of the flexible elongate member with the core member. A system and a method for performing measurements using a sensor as above are also provided.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 3, 2014
    Applicant: Volcano Corporation
    Inventor: David H. Burkett
  • Patent number: 8764674
    Abstract: A medical device system and method that includes receiving an A2 heart sound signal from a first external acoustic sensor, receiving a P2 heart sound signal from a second external acoustic sensor, determining at least one A2 heart sound signal parameter from the A2 heart sound signal, determining at least one P2 heart sound signal parameter from the P2 heart sound signal, and based on the at least one P2 heart sound signal parameter, estimating pulmonary arterial pressure.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: July 1, 2014
    Assignee: Medtronic, Inc.
    Inventors: Zhendong Song, Xiaohong Zhou
  • Patent number: 8764668
    Abstract: A medical blood pressure transducer that provides an identifier to a monitor that conveys characteristics of the transducer. The monitor can use the information to decide whether to function, or in calibration of the system. The transducer may be part of a disposable blood pressure monitoring system, and may include two transducers closely-spaced to provide two separate but identical outputs. In this way, the transducer may be connected to both a patient monitor and a cardiac output monitor at the same time measurements from a single line can be simultaneously supplied to two separate monitoring devices (for example a patient monitor and a cardiac output monitor). The identifier for the transducer may be circuitry, specifically a resistance/capacitance (RC) combination that possesses a characteristic time constant.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: July 1, 2014
    Assignee: Edwards Lifesciences Corporation
    Inventors: Luchy Roteliuk, Weldon Dean West, Douglas Meyer, Jr., Luong N. Phan
  • Patent number: 8764685
    Abstract: A biomedical interface pressure transducer which is useful for interposing between a limb or tissue and an occlusive band, tourniquet cuff or other biomedical apparatus in order to estimate the pressure and pressure gradient applied to a selected area of the limb or tissue is disclosed. The pressure transducer comprises a modified MEMS pressure sensor and a conformable semisolid body enclosed in a shear relief membrane which translates the pressure applied by the occlusive band to the modified MEMS pressure sensor mounted on a flexible substrate with patterned electrical interconnect tracks allowing the connection of the pressure sensor to digital communication and control circuitry.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: July 1, 2014
    Assignee: Abatis Medical Technologies Limited
    Inventor: Vincent Casey
  • Publication number: 20140180139
    Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, side-loading electrical connectors for use with intravascular devices are provided. The side-loading electrical connector has at least one electrical contact configured to interface with an electrical connector of the intravascular device. A first connection piece of the side-loading electrical connector is movable relative to a second connection piece between an open position and a closed position, wherein in the open position an elongated opening is formed between the first and second connection pieces to facilitate insertion of the electrical connector between the first and second connection pieces in a direction transverse to a longitudinal axis of the intravascular device and wherein in the closed position the at least one electrical contact is electrically coupled to the at least one electrical connector received between the first and second connection pieces.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: Volcano Corporation
    Inventors: Bret C. Millett, Ky Huynh, Lonnie Milton
  • Publication number: 20140180030
    Abstract: The present invention generally relates to devices for determining pressure and flow in a vessel and methods for using such devices. The device can involve an elongate body configured for insertion into a vessel, a flow sensor positioned on the elongate body configured for detecting flow in the vessel, and a pressure sensor positioned on the elongate body configured for detecting pressure in the vessel, wherein the pressure sensor comprises an optical sensor.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: VOLCANO CORPORATION
    Inventor: Dale Dorando
  • Publication number: 20140180124
    Abstract: A steerable sheath for a catheter delivery system and associated devices and methods are disclosed. In some embodiments, the catheter delivery system includes a catheter sheath having a steerable distal portion and a flexible elongate member connecting to a steering unit. The flexible elongate member has a central lumen through which a therapeutic or diagnostic device of a first modality can be inserted, used to perform a procedure, and then removed and replaced by a different therapeutic or diagnostic device while the catheter sheath remains substantially at the same location within a patient.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Applicant: Volcano Corporation
    Inventors: Chester Whiseant, Richard Dunn
  • Publication number: 20140180141
    Abstract: Intravascular devices, systems, and methods are disclosed. In some embodiments, the intravascular devices include at least one mounting structure within a distal portion of the device. In that regard, one or more electronic, optical, and/or electro-optical component is coupled to the mounting structure. Methods of making and/or assembling such intravascular devices/systems are also provided.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Applicant: Volcano Corporation
    Inventor: Bret C. Millett
  • Publication number: 20140180032
    Abstract: Systems and methods for obtaining and processing data collected using a multi-site intravascular sensing device are provided. Some embodiments are directed to locating a structure within a vessel and performing an examination of the structure once it has been located. In one embodiment, an elongate member has a plurality of sensors and set of measurements is obtained using the plurality of sensors, the set of measurements including at least one measurement from each sensor of the plurality of sensors. The various sensor measurements are compared and a difference in a vascular characteristic is determined from the compared measurements. The location of the structure may be determined based on the adjacent sensors.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: Volcano Corporation
    Inventors: Bret C. Millett, Joseph Burnett, Paul Douglas Corl, Paul Michael Hoseit
  • Publication number: 20140180140
    Abstract: Embodiments of the present disclosure are configured to assess the severity of a blockage in a vessel and, in particular, a stenosis in a blood vessel. In some particular embodiments, the devices, systems, and methods of the present disclosure are configured to collect and wirelessly distribute reliable pressure signals to other devices, and do so in a small, compact device that integrates with existing proximal and distal pressure measurement systems and does not require a separate power source.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: Volcano Corporation
    Inventor: Howard David Alpert
  • Publication number: 20140171760
    Abstract: Systems and methods are disclosed herein that generally involve CED devices with various features for reducing or preventing backflow. In some embodiments, CED devices include a tissue-receiving space disposed proximal to a distal fluid outlet. Tissue can be compressed into or pinched/pinned by the tissue-receiving space as the device is inserted into a target region of a patient, thereby forming a seal that reduces or prevents proximal backflow of fluid ejected from the outlet beyond the tissue-receiving space. In some embodiments, CED devices include a bullet-shaped nose proximal to a distal fluid outlet. The bullet-shaped nose forms a good seal with surrounding tissue and helps reduce or prevent backflow of infused fluid.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 19, 2014
    Inventors: Deep Arjun Singh, PJ Anand
  • Patent number: 8747314
    Abstract: A system comprises an external medical device configured to communicate with a first implantable medical device (IMD). The external medical device includes a communication circuit and a display. The communication circuit is configured to receive information associated with cardiovascular pressure from the IMD. The external medical device is configured to annotate a waveform on the display to indicate one or more events associated with cardiovascular pressure.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: June 10, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile
  • Publication number: 20140155768
    Abstract: The present invention relates to devices, systems and methods for delivering a sensory implant along a selected linear pierced path of introduction to a wall target located on an external surface of an internal body organ; and implanting the sensory implant in the wall of the internal body organ.
    Type: Application
    Filed: June 27, 2013
    Publication date: June 5, 2014
    Inventors: Eyal Orion, Ronny Winshtein, Oren Goldshtein
  • Publication number: 20140155769
    Abstract: Provided herein are devices, systems, and methods for assessing, treating, and for developing new treatments for pulmonary arterial hypertension (PAH) using pulmonary artery pressure (PAP) values and/or cardiac output (CO) estimates.
    Type: Application
    Filed: November 21, 2013
    Publication date: June 5, 2014
    Applicant: CardioMEMS, Inc.
    Inventors: Jason White, Ralph Jordan, John Erik Moore, Jay Yadav
  • Patent number: 8738111
    Abstract: Systems and methods for cardiac contraction detection using information indicative of lead motion are described. In an example, an implantable medical device can include a receiver circuit configured to be electrically coupled to conductor comprising a portion of an implantable lead and be configured to obtain information indicative of a movement of the implantable lead due at least in part to a motion of a heart. The device can include a processor circuit configured to determine whether a cardiac mechanical contraction occurred during a specified interval included in the obtained information indicative of the movement of the implantable lead. The processor circuit can be configured to determine information about the cardiac mechanical contraction using the obtained information indicative of the movement of the implantable lead.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 27, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert J. Sweeney, Allan C. Shuros, Krzysztof Z. Siejko, David C. Olson, Frank Ingle
  • Publication number: 20140142398
    Abstract: Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters are described. Using a single guidewire assembly, functional and anatomical measurements and identification of lesions may be made. Functional measurements such as pressure may be obtained with a pressure sensor on the guidewire while anatomical measurements such as luminal dimensions may be obtained by utilizing an electrode assembly along the guidewire. The vascular network and stenosed lesions may be modeled into an equivalent electrical network and solved based on the measured parameters to obtain unknown parameters of the electrical network. Several treatment plan options may be constructed where each plan may correspond to the treatment of a subset of particular lesions. The anatomical outcome for each of the treatment plans may be estimated and the equivalent modified electrical parameters may be determined.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 22, 2014
    Applicant: Angiometrix Corporation
    Inventors: Nitin PATIL, Raghavan SUBRAMANIYAN, Goutam DUTTA
  • Publication number: 20140142444
    Abstract: Techniques are provided for use with a pulmonary artery pressure (PAP) monitor having an implantable PAP sensor. In one example, a PAP signal is sensed that is representative of beat-by-beat variations in PAP occurring during individual cardiac cycles of the patient. The PAP monitor detects peaks within the PAP signal corresponding to valvular regurgitation within the heart, then detects mitral regurgitation (MR) based on the peaks. In other examples, the PAP monitor optimizes pacing parameters based on the PAP signal and corresponding electrical cardiac signals. Examples are provided where the PAP monitor is an external system and other examples are provided where the PAP monitor is a component of an implantable cardiac rhythm management device.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: PACESETTER, INC.
    Inventors: Thao Ngo, Kathleen Kresge, Michael Kane, Scott Patrick Simon
  • Publication number: 20140142443
    Abstract: Techniques are provided for use with a pulmonary artery pressure (PAP) monitor having an implantable PAP sensor. In one example, a PAP signal is sensed that is representative of beat-by-beat variations in PAP occurring during individual cardiac cycles of the patient. The PAP monitor detects intervals within the signal corresponding to the durations of cardiac cycles, then detects cardiac rhythm irregularities based on the intervals. For example, the PAP monitor can detect and distinguish atrial fibrillation, ventricular fibrillation and ventricular tachycardia based on the stability of the intervals of the PAP signal along with other information such as ventricular rate. The PAP monitor can also detect and distinguish premature contractions based on durations of the intervals. Examples where the PAP monitor is a component of an implantable cardiac rhythm management device (CRMD) are also provided.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: PACESETTER, INC.
    Inventors: Thao Ngo, Kathleen Kresge, Michael Kane, Scott Patrick Simon
  • Patent number: 8727996
    Abstract: A delivery device for implanting a medical device that includes an expandable fixation member adapted to fix the position of the medical device within a lumen of a human body. The delivery device has an inner shaft rotatably disposed in a tubular outer shaft. A retention member is secured to and rotatable with the inner shaft and has a free end and a retainer portion adapted to protrude outwardly through an exit aperture in the outer shaft to extend circumferentially about the exterior of the outer shaft. The fixation member of the medical device may be retained on the tubular shaft in a low profile configuration by the outwardly protruding retainer portion and may be released to expand upon retraction of the retainer portion in response to rotation of the inner shaft.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: May 20, 2014
    Assignee: Medtronic Vascular, Inc.
    Inventors: James Calvin Allan, Don Tran, Erik Griswold, Rudy Beasley, Arvind Srinivas
  • Patent number: 8728562
    Abstract: A method of manufacturing a medical electrical lead includes molding a lead body pre-form, stringing an electrode onto the pre-form and overmolding the pre-form with a polymer to form a lead body portion. The pre-form has a proximal end, a distal end and at least one lumen extending between the proximal and distal ends. At least one asymmetric region of the pre-form has a transverse cross-section that has a non-circular outer dimension. The overmolding causes the asymmetric region to become substantially circular.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: May 20, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Kimberly A. Morris, Andrew De Kock, David A. Durand, Joshua Haarer, Ronald W. Kunkel, Peter J. Wolf, Joel T. Eggert, Joseph A. Cihlar
  • Publication number: 20140135604
    Abstract: The invention relates to a system for predicting the viability of a body tissue in a patient. The system comprises a computing device, and a first pressure measuring device for measuring local perfusion pressure in the body tissue of the patient. This measuring device is connected to the computing device. A second pressure measuring device is provided for measuring the systemic perfusion pressure of the patient, said second pressure measuring device being connected to the computing device. A feedback indicator is connected to the computing device and is adapted to indicate the viability of the tissue calculated by the computing device on the basis of the measured local and systemic perfusion pressures. The invention also includes a method of predicting the viability of the body tissue and to the first pressure measuring device.
    Type: Application
    Filed: July 4, 2012
    Publication date: May 15, 2014
    Applicants: Veenhof Medical Devices B.V., STICHTING VU-VUMC
    Inventors: Miguel Angel Cuesta Valentin, Alexander Amold Frederik Adriaan Veenhof
  • Publication number: 20140135633
    Abstract: Embodiments of the present disclosure are configured to assess the severity of a blockage in a vessel and, in particular, a stenosis in a blood vessel. In some particular embodiments, the devices, systems, and methods of the present disclosure are configured to assess the severity of a stenosis in the coronary arteries without the administration of a hyperemic agent. Further, in some implementations devices, systems, and methods of the present disclosure are configured to normalize and/or temporally align pressure measurements from two different pressure sensing instruments. Further still, in some instances devices, systems, and methods of the present disclosure are configured to exclude outlier cardiac cycles from calculations utilized to evaluate a vessel, including providing visual indication to a user that the cardiac cycles have been excluded.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: Volcano Corporation
    Inventors: David Anderson, Howard David Alpert
  • Patent number: 8721546
    Abstract: Devices and methods for guidewire assisted placement of catheters into blood vessels are described. Some of the devices and methods relate to automated or partially automated or assisted insertion and placement of an intravenous catheter into a vein or artery of a patient. Other of the devices are blood draw devices and methods for insertion and placement of an intravenous device into a vein or artery of a patient or to withdraw a blood sample from the patient. The devices also provide for guide wire tip inspection after use.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: May 13, 2014
    Assignee: Vascular Pathways, Inc.
    Inventor: Amir Belson
  • Publication number: 20140128750
    Abstract: A neuromodulation system includes a first therapy element adapted for positioning within a superior vena cava, and a second therapy element adapted for positioning within a pulmonary artery. The first therapy element is carried on a first elongate flexible shaft, and the second therapy element is carried on a second elongate flexible shaft. One of the first and second shafts is slidably received within a lumen of the other of the first and second shafts—so that the second therapy element may be advanced within the body relative to the first therapy element. A stimulator is configured to energize the first therapy element within the first blood vessel to deliver therapy to a first nerve fiber disposed external to the superior vena cava and to energize the second therapy element within the pulmonary artery to deliver sympathetic therapy to a second nerve fiber disposed external to the pulmonary artery.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: Interventional Autonomics Corporation
    Inventors: Terrance J Ransbury, Richard S Stack, William E Sanders, Stephen C Masson
  • Patent number: 8714009
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device. The capacitor is shielded from parasitic coupling and parasitic capacitance.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 6, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew U. Chase
  • Patent number: 8715195
    Abstract: A system for accurate placement of a catheter tip in a patient, the system including a catheter adapted for placement within a patient, the catheter having a tip at a distal end thereof and having a proximal end which is normally located outside of the patient, a pressure sensor adapted to sense pressure at the tip of the catheter and catheter tip placement location indicating circuitry operative in response to at least an output of the pressure sensor for indicating the location of the catheter tip in the patient.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: May 6, 2014
    Assignee: Elcam Medical Agricultural Cooperative
    Inventor: David Ziv
  • Patent number: 8715196
    Abstract: In a method for intermittently occluding the coronary sinus, in which in an alternating manner the coronary sinus is occluded by an occlusion device and the occlusion is released, the curve of the fluid pressure occurring in the coronary sinus after the release of the occlusion is estimated by calculation and the time of the beginning of the next occlusion is determined as a function of the estimated pressure curve.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: May 6, 2014
    Assignee: Miracor Medical Systems GmbH
    Inventors: Werner Mohl, Ilinka Kajgana
  • Publication number: 20140121475
    Abstract: A multifunctional invasive cardiovascular diagnostic measurement host is disclosed that interfaces a variety of sensor devices, such as guide wire-mounted pressure sensors, flow sensors, temperature sensors, etc, and provides a multi-mode graphical user interface providing a plurality of displays in accordance with the various types of sensors and measurements rendered by the sensors.
    Type: Application
    Filed: December 23, 2013
    Publication date: May 1, 2014
    Applicant: Volcano Corporation
    Inventors: Howard David Alpert, Paul Michael Hoseit
  • Publication number: 20140114202
    Abstract: The invention relates to a blood withdrawal cannula (4) for connecting a pump (2) assisting or replacing activity of the heart to the inner volume of a heart ventricle (1), in particular the left ventricle. At the end thereof that is located in the ventricle the cannula has a pressure sensor (7a, 7b) for measuring the ventricle pressure and/or ventricle pressure differences and at the same end of the cannula has a volume sensor (3a, 3b, 5, 6) for measuring the volume and/or volume changes of the ventricle (1) in at least a partial region of the ventricle. The invention further relates to a measuring device for monitoring the ventricle contractions and/or the function of a pump replacing or assisting activity of the heart. The measuring device can be/is connected to the pressure sensor (7a, 7b) and to the volume sensor of a blood withdrawal cannula according to any one of the preceding claims and is designed to detect pressure changes and volume changes of a ventricle (1) as the heart is beating.
    Type: Application
    Filed: May 25, 2012
    Publication date: April 24, 2014
    Inventors: Marc Hein, Greatex Nicholas, Roland Graefe, Ulrich Steinseifer
  • Patent number: 8701484
    Abstract: A measurement system for measuring a parameter of the muscular-skeletal system is disclosed. The measurement system comprises a capacitor, a signal generator, a digital counter, counter register, a digital clock, a digital timer, and a data register. The sensor of the measurement system is the capacitor. The measurement system generates a repeating signal having a measurement cycle that corresponds to the capacitance of the capacitor. The capacitor comprises more than one capacitor mechanically in series. Electrically, the capacitor comprises more than one capacitor in parallel. In one embodiment, the capacitor includes a dielectric layer comprising polyimide. A force, pressure, or load is applied to the capacitor that elastically compresses the device.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Orthosensor Inc.
    Inventors: Marc Stein, Andrew U. Chase
  • Patent number: 8702613
    Abstract: Devices, systems, and methods for determining fractional flow reserve. At least one method for determining fractional flow reserve of the present disclosure comprises the steps positioning a device comprising at least two sensors within a luminal organ at or near a stenosis, wherein the at least two sensors are separated a predetermined distance from one another, operating the device to determine flow velocity of a second fluid introduced into me luminal organ to temporarily displace a first fluid present within the luminal organ, and determining fractional flow reserve at or near the stenosis based upon the flow velocity, a mean aortic pressure within the luminal organ, and at least one cross-sectional area at or near the stenosis. Devices and systems useful for performing such exemplary methods are also disclosed herein.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 22, 2014
    Assignee: 3DT Holdings, LLC
    Inventor: Ghassan S. Kassab
  • Publication number: 20140107505
    Abstract: A method and a device for determining a cardiac function parameter, the device including a sonic sensor for determining timing data of a closure of a mitral valve and an aortic valve, a pressure cuff and a sensing unit coupled to the pressure cuff for sensing. The sensing unit is configured to sense, for each cardiac cycle, blood breakthrough pressure data and corresponding time data from a closing of the mitral valve and data relating to a velocity of propagation of a pressure wave as it travels along at least a portion of the pressure cuff. The device also includes a processing unit for determining a value of at least one cardiac function parameter based on the data.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Inventors: Alon MARMOR, Amir MARMOR