Testing Artificially Regulated Or Assisted Heart Patents (Class 600/510)
  • Patent number: 8406875
    Abstract: An apparatus includes a sensing unit and control circuitry. The sensing unit is connected to a channel that delivers Electro-Physiological (EP) signals from a cardiac catheter to an EP recording system and pacing signals from the EP recording system to the catheter. The sensing unit is configured to automatically identify time intervals during which the pacing signals are delivered. The control circuitry is configured to route the EP signals on the channel from the catheter to the EP recording system via an intervening system that is detrimental to the pacing signals, to switch the channel to an alternate path that bypasses the intervening system during the identified time intervals, and to route the pacing signals from the EP recording system to the cardiac catheter over the alternate path.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 26, 2013
    Assignee: Biosense Webster (Israel), Ltd.
    Inventors: Michael Levin, Avi Reuveni, Yoav Lichtenstein
  • Patent number: 8401625
    Abstract: In some aspects, a method includes measuring unipolar signals at one or more electrodes in response to electrical activity in a heart cavity. The method also includes determining, based at least in part on Laplace's equation, bipolar physiological information at multiple locations of an surface based on the measured unipolar signals and positions of the one or more electrodes with respect to the surface.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: March 19, 2013
    Assignee: Rhythmia Medical, Inc.
    Inventors: Doron Harlev, Zsolt Badics
  • Patent number: 8401644
    Abstract: A method and system of post-processing of sensing data generated by a medical device that includes transmitting a plurality of stored sensing data generated by the medical device to an access device, the stored sensing data including sensed atrial events and sensed ventricular events. The access device determines, in response to the transmitted data, instances where the medical device identified a cardiac event being detected in response to the sensing data, and determines whether there is an abrupt onset of the cardiac event in response to the transmitted data.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: March 19, 2013
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Mark L. Brown, Amisha Somabhai Patel
  • Patent number: 8401645
    Abstract: A method includes selecting an electrode located in a patient; acquiring position information with respect to time for the electrode where the acquiring uses the electrode for repeatedly measuring electrical potentials in an electrical localization field established in the patient; calculating a stability metric for the electrode based on the acquired position information with respect to time; and deciding if the selected electrode, as located in the patient, has a stable location for sensing biological electrical activity, for delivering electrical energy or for sensing biological electrical activity and delivering electrical energy. Position information may be acquired during one or both of intrinsic or paced activation of a heart and respective stability indexes calculated for each activation type.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: March 19, 2013
    Assignee: Pacesetter, Inc.
    Inventors: Stuart Rosenberg, Thao Thu Nguyen, Kyungmoo Ryu, Kjell Norén, Allen Keel, Wenbo Hou, Michael Yang
  • Patent number: 8396539
    Abstract: An implantable medical device for optically sensing action potential signals in excitable body tissue. The device includes an elongated tubular lead body carrying an optical fiber extending from a proximal lead end to a distal lead end to position the optical fiber at a target site. The lead body additionally carries a conduit for dispensing a voltage-sensitive fluorescent dye into tissue surrounding the target site. The optical fiber transmits excitation light to the fluorescent dye to cause the dye to fluoresce with varying intensity as the transmembrane potentials of local tissue cells vary due to passing depolarization wavefronts. The optical fiber transmits the fluorescence signal to the device to generate an action potential signal or fiducial points of an action potential signal for use in accurately measuring and characterizing electrical activity of excitable tissue.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: March 12, 2013
    Assignee: Medtronic, Inc.
    Inventors: Vinod Sharma, Xiaohong Zhou
  • Patent number: 8391962
    Abstract: Systems and Methods for stratifying relative risks of adverse cardiac events by processing a duration of electrocardiograph recordings generally recorded by a Holter type of device. The duration of electrocardiograph recordings are processed to resolve RR interval related data, QT interval related data, and are fitted to formulas to at least partially establish fitting related measures. The fitting formulas incorporate circadian related periodic factors, and can further incorporate additional processing including utilizing Lissajous analysis techniques, among others.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: March 5, 2013
    Inventor: Mari Alford Watanabe
  • Patent number: 8391964
    Abstract: Techniques are described for detecting conduction abnormalities in a heart of a patient. In particular, an IMD may be configured to obtain electrical signals corresponding to cardiac activity of the heart of the patient and periodically analyze a most recent electrical signal of the obtained electrical signals to detect an electrical conduction abnormality of the heart. The IMD adjusts a frequency at which the most recent electrical signal is analyzed based on at least one physiological parameter of the patient. For example, the IMD may increase the frequency at which the most recent electrical signal is analyzed when a heart rate parameter has significantly changed and the number of detected premature ventricular contractions (PVCs) is greater than or equal to a threshold number. In this manner, the most recent electrical signal is analyzed at a higher frequency in situations in which conduction abnormalities are more likely.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: March 5, 2013
    Assignee: Medtronic, Inc.
    Inventors: Shailesh Kumar V. Musley, Vincent E. Splett, Aleksandre T. Sambelashvili
  • Patent number: 8388546
    Abstract: Methods of locating a tip of a central venous catheter (“CVC”) relative to the superior vena cava, sino-atrial node, right atrium, and/or right ventricle using electrocardiogram data. The CVC includes at least one electrode. In particular embodiments, the CVC includes two or three pairs of electrodes. Further, depending upon the embodiment implemented, one or more electrodes may be attached to the patient's skin. The voltage across the electrodes is used to generate a P wave. A reference deflection value is determined for the P wave detected when the tip is within the proximal superior vena cava. Then, the tip is advanced and a new deflection value determined. A ratio of the new and reference deflection values is used to determine a tip location. The ratio may be used to instruct a user to advance or withdraw the tip.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: March 5, 2013
    Assignee: Bard Access Systems, Inc.
    Inventor: Peter M. Rothenberg
  • Publication number: 20130053715
    Abstract: This method for analyzing the cardiac activity of a patient are comprises the steps for acquiring (20) at least one cardiac said electric signal comprising at least one elementary signal corresponding to a heart beat, for extracting (29) from said elementary signal, at least one elementary wave, the general shape of which may be expressed by x(t)=x0+x1 cos(?(t)), wherein ?(t) is the phase of said elementary wave, and for analyzing (30) said elementary wave, comprising the steps for determining an expression of a phase equation F ? ( ? ) = ? ? ? t of said elementary wave and determining an expression of the phase ?(t) of said elementary wave as a functions of parameters measuring the anharmonicity of said elementary wave and its morphology, from p cosn and p sinn functions defined by: p ? ? cos n ? ( t , r ) = ? k = 1 ? ? cos ? ( kt ) ? r k k n and p ? ? sin n ? ( t , r ) = ? k = 1 ? ? sin ? ( kt ) ? r k k n .
    Type: Application
    Filed: April 12, 2011
    Publication date: February 28, 2013
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N. R.S)
    Inventor: Patrick Hanusse
  • Publication number: 20130046195
    Abstract: An implantable medical device such as an implantable pacemaker or implantable cardioverter/defibrillator includes a programmable sensing circuit providing for sensing of a signal approximating a surface electrocardiogram (ECG) through implanted electrodes. With various electrode configurations, signals approximating various standard surface ECG signals are acquired without the need for attaching electrodes with cables onto the skin. The various electrode configurations include, but are not limited to, various combinations of intracardiac pacing electrodes, portions of the implantable medical device contacting tissue, and electrodes incorporated onto the surface of the implantable medical device.
    Type: Application
    Filed: October 22, 2012
    Publication date: February 21, 2013
    Inventors: Aaron R. McCabe, Avram Scheiner, Geng Zhang, Quan Ni, Douglas R. Daum, Yi Zhang
  • Publication number: 20130046194
    Abstract: An implantable medical device (100) is configured for generating a cardiogenic impedance signal representative of the cardiogenic impedance of at least a portion of a heart (10) of a subject (20) during multiple cardiac cycles. A transform processor (132) generates a spectrum signal by applying a time-to-frequency transform to the cardiogenic impedance signal. The spectrum signal is processed by a distribution processor (133) configured to calculate a distribution parameter indicative of a distribution in at least a portion of the spectrum signal. The calculated distribution parameter is of high diagnostic value and is employed by an arrhythmia classifier (134) in order to classify a detected arrhythmia of the heart (10), such as discriminate between hemodynamically stable or unstable arrhythmias and/or supraventricular or ventricular tachycardia.
    Type: Application
    Filed: April 27, 2010
    Publication date: February 21, 2013
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Anders Bjolring, Malin Hollmark, Tomas Svensson, Stefan Hjelm, Kjell Noren, Karin Jarverud
  • Patent number: 8374691
    Abstract: Validated atrial and/or ventricular interval decreases are used to discriminate between VT and SVT. Atrial and/or ventricular intervals are monitored in order to detect decreases in such intervals (which are indicative in increases in rate). The atrial intervals can be, e.g., AA intervals, and the ventricular intervals can be, e.g., VV intervals. A detected atrial and/or ventricular interval decrease can be a decrease that is greater than an interval decrease threshold. Detected atrial and/or ventricular interval decreases can be validated by examining atrial and/or ventricular intervals before and after a detected atrial and/or ventricular interval decrease. The use of the validated atrial and/or ventricular interval decreases to classify an arrhythmia as SVT or VT can be called arrhythmia initiation analysis, since it is believed to determine whether the initiation of the arrhythmia is in an atrium or a ventricle.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: February 12, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Carolyn Lall
  • Patent number: 8369946
    Abstract: An implantable medical device and associated method classify therapy outcomes and heart rhythms in association with therapy outcome. A therapy success time interval is started in response to delivering an arrhythmia therapy. If normal sinus rhythm is detected after the therapy success time interval expires, the delivered therapy is classified as unsuccessful and the detected arrhythmia is classified as a self-terminating rhythm.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: February 5, 2013
    Assignee: Medtronic, Inc.
    Inventors: Anne M. Gillis, Katherine H. Anderson, Douglas A. Hettrick, David E. Ritscher
  • Patent number: 8366628
    Abstract: An implantable apparatus for sensing biological signals from an animal includes at least two electrodes disposed at locations to sense the biological signals. The electrode locations may be internal or external to the animal. Insulated conductors couple the electrodes via a passive network of filters to an instrumentation amplifier that has an internal voltage reference. Thus a sensed biological signal is filtered and amplified to provide an amplified differential signal. A signal analysis module processes amplified differential signal to determine at least one physiological parameter of the animal. The signal analysis module may include a first derivative zero detector for signal transition detection and feature detection and analysis. The apparatus may also comprise a signal presentation module to display amplified signals and physiological parameters associated with those signals.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 5, 2013
    Assignee: Kenergy, Inc.
    Inventors: Stephen T. Denker, Cherik Bulkes
  • Patent number: 8359089
    Abstract: Reconstruction of a surface electrocardiogram from far field signals extracted from an endocardial electrogram in an active medical device is disclosed. The device collects a ventricular EGM signal (EGMV) and an atrial EGM signal (EGMA), and extracts a ventricular far field signal component (FFV) and an atrial far field signal component (FFA). The ventricular and atrial far field signal components are combined to deliver as an output a reconstructed surface electrogram ECG signal (ECGj*). The ventricular and atrial far field signals are respectively extracted from the collected ventricular and atrial EGM signals (FFV, FFA). The reconstruction of the ECG is operated by ventricular (18) and atrial (16) far field signal estimator filters. According to one embodiment, the far field signal estimator filters are linear or nonlinear filters, receiving as input the far field signal components. An adder (20) adds the filtered signals and delivers as output the reconstructed ECG signal (ECGj*).
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: January 22, 2013
    Assignee: Sorin CRM S.A.S.
    Inventor: Alaa Makdissi
  • Publication number: 20130009779
    Abstract: The invention relates to a method for determining the activity of the parasympathetic nervous system or of the sympathetic nervous system of the autonomic nervous system of a living being, in particular a human being, wherein a feature of the condition of the living being is determined, and the activity is determined from the feature of the condition. According to the invention, the activity of the parasympathetic nervous system and/or of the sympathetic nervous system is determined dependent on time. Advantageously, the feature of the condition is a series of heartbeats of the living being, and the activity is determined by analyzing the time intervals between the heartbeats. For this purpose, the heart rate of the living being is preferably measured, and the heartbeat is determined using first positive deflections of a ventricular stimulus (R deflection). The invention further relates to a device for carrying out the method.
    Type: Application
    Filed: March 18, 2011
    Publication date: January 10, 2013
    Inventors: Werner Wittling, Ralf Arne Wittling
  • Patent number: 8346353
    Abstract: An implantable medical system for detecting incipient edema has an implantable medical lead including an optical sensor having a light source and a light detector. The medical system further has an edema detection circuit that activates the light source to emit light, the light being directed into lung tissue of a patient and that obtains a light intensity value corresponding to an intensity of light received by the light detector, and that evaluates the light intensity value to detect a consistency with incipient edema.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: January 1, 2013
    Assignee: St. Jude Medical AB
    Inventors: Sven-Erik Hedberg, Andreas Blomqvist, Karin Järverud, Karin Ljungström, Leif Lindqvist, Urban Lönn
  • Patent number: 8332035
    Abstract: A method for delivering physiological pacing includes selecting an electrode implant site for sensing cardiac signals, which is in proximity to the heart's intrinsic conduction system, where pacing stimulation results in a rhythm breaking out at an intrinsic location, and selected in response to a ratio of sensed P-wave amplitude to sensed R-wave amplitude.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: December 11, 2012
    Assignee: Medtronic, Inc.
    Inventors: Paul A. Iaizzo, Timothy G. Laske
  • Patent number: 8326422
    Abstract: Methods for monitoring a patient's level of B-type natriuretic peptide (BNP), and implantable cardiac systems capable of performing such methods, are provided. A ventricle is paced for a period of time to provoke a ventricular evoked response, and a ventricular intracardiac electrogram (IEGM) indicative of the ventricular evoked response is obtained. Based on the ventricular IEGM, there is a determination of at least one ventricular evoked response metric (e.g., ventricular evoked response peak-to-peak amplitude, ventricular evoked response area and/or ventricular evoked response maximum slope), and the patient's level of BNP is monitored based on determined ventricular evoked response metric(s). Based on the monitored level's of BNP, the patients heart failure (HF) condition and/or risks and/or occurrences of certain events (e.g., an acute HF exacerbation and/or an acute myocardial infarction) can be monitored.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 4, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Allen Keel, Steve Koh, Taraneh Ghaffari Farazi
  • Patent number: 8323205
    Abstract: A method of identifying a potential cause of pulmonary edema is provided. The method includes obtaining one or more impedance vectors between predetermined combinations of the electrodes positioned proximate the heart. At least one of the impedance vectors is representative of a thoracic fluid level. The method also includes applying a stimulation pulse to the heart and sensing cardiac signals of the heart that are representative of an electrophysiological response to the stimulation pulse. The method further includes monitoring the cardiac signals and at least one of the impedance vectors with respect to time to identify the potential cause of pulmonary edema.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: December 4, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Euljoon Park, Steve Koh
  • Publication number: 20120289845
    Abstract: A method includes retrieving electrogram (EGM) data for N cardiac cycles from a memory of an implantable medical device. N is an integer greater than 1. The method further include categorizing each of the N cardiac cycles into one of a plurality of categories based on a morphology of the N cardiac cycles and performing comparisons between pairs of the N cardiac cycles. Each of the comparisons between two cardiac cycles includes detecting a mismatch between the two cardiac cycles when the two cardiac cycles are in different categories, and detecting a match between the two cardiac cycles when the two cardiac cycles are in the same category. Additionally, the method includes classifying the rhythm of the N cardiac cycles based on a number of detected matches and detected mismatches.
    Type: Application
    Filed: May 10, 2011
    Publication date: November 15, 2012
    Applicant: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey M. Gillberg
  • Publication number: 20120283587
    Abstract: Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: Medtronic, Inc.
    Inventors: Subham Gosh, Jeffrey M. Gillberg, Robert W. Stadler
  • Publication number: 20120265085
    Abstract: An implantable cardiac stimulator includes a cardioversion/defibrillation unit connectable to at least one ventricular sensing electrode and one ventricular defibrillation electrode, and is designed to generate and deliver cardioversion or defibrillation shocks. A ventricular sensing unit having automatic threshold adaptation is connectable to the ventricular sensing electrode, and is designed to process the signals of the sensing electrode and detect a chamber contraction, and if a chamber contraction is detected, to output a ventricular sensing signal. The ventricular sensing unit processes the signals of the sensing electrode with at least two switchable sensing thresholds wherein after every sense, a VF detection window is started at a first lower sensing threshold; once the VF detection window has passed, a T wave blanking window is activated at an upper second sensing threshold; and once the T wave blanking window has passed, sensing at a second lower threshold is started.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 18, 2012
    Inventors: Thomas Doerr, Ulrich Tietze
  • Publication number: 20120259234
    Abstract: The present invention generally relates to implantable stimulation devices, such as pacemakers, defibrillators, and cardioverters, and, in particular, to implantable medical devices using atrial based pacing such as an AAI pacing mode and methods for such implantable medical devices for detecting early stages of incipient A-V node malfunction as well as presence of A-V node malfunction. An AV conduction capacity is detected, wherein a sensed ventricular event following an intrinsic or paced atrial event during a predetermined period of time indicates good AV conduction capacity and wherein absence of a ventricular event within the predetermined period of time indicates poor AV conduction capacity. At least one A-V node function parameter indicating a function of the A-V node is determined, wherein the A-V node function parameter includes whether a status of the AV conduction capacity is good or poor.
    Type: Application
    Filed: December 22, 2009
    Publication date: October 11, 2012
    Applicant: ST. JUDE MEDICAL AB
    Inventor: Anders Lindgren
  • Patent number: 8280511
    Abstract: Techniques are provided for detecting heart failure or other medical conditions within a patient using an implantable medical device, such as pacemaker or implantable cardioverter/defibrillator, or external system. In one example, physiological signals, such as immittance-based signals, are sensed within the patient along a plurality of different vectors, and the amount of independent informational content among the physiological signals of the different vectors is determined. Heart failure is then detected by the implantable device based on a significant increase in the amount of independent informational content among the physiological signals. In response, therapy may be controlled, diagnostic information stored, and/or warning signals generated. In other examples, at least some of these functions are performed by an external system.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 2, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Wenxia Zhao, Dorin Panescu, Anders Bjorling
  • Patent number: 8271015
    Abstract: A wireless blood glucose meter (2) has a blood glucose level detector (21), a transmitter (22), a receiver (23), a storage component (24), and a transmission power determiner (25). Whether or not an acknowledge signal has been received and the transmission power when the transmitter (22) has transmitted a blood glucose level are stored as history information in the storage component (24), and the transmission power determiner (25) determines the transmission power when the transmitter (22) transmits on the basis of the history information stored in the storage component (24).
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: September 18, 2012
    Assignee: Panasonic Corporation
    Inventors: Tooru Aoki, Eiji Okuda, Akiyoshi Oozawa, Hiroshi Ando, Kazuo Manabe, Norio Imai
  • Publication number: 20120232415
    Abstract: Implementations of various technologies described herein are directed toward a sensing architecture for use in cardiac rhythm management devices. The sensing architecture may provide a method and means for certifying detected events by the cardiac rhythm management device. Moreover, by exploiting the enhanced capability to accurately identifying only those sensed events that are desirable, and preventing the use of events marked as suspect, the sensing architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 13, 2012
    Inventors: Surekha Palreddy, Jay A. Warren, James W. Phillips
  • Patent number: 8265741
    Abstract: A medical device for processing physiological signals such as electrocardiograms. The processing includes: sampling a physiologic signal in a first channel with a first sampling rate, simultaneously sampling the physiologic signal in a second channel with a higher sampling rate to thus generate pairs of sampling values, forming the difference between two sampling values of each pair, comparing said difference with a threshold, and generating a noise detection indicator whenever said threshold is exceeded.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: September 11, 2012
    Assignee: Biotronik CRM Patent AG
    Inventors: Hollis Whittington, Dirk Muessig, Volker Lang
  • Patent number: 8262578
    Abstract: Techniques are provided for tracking patient respiration or other physiologic states based upon intracardiac electrogram (IEGM) signals. In one example, respiration patterns are detected based upon cycle-to-cycle changes in morphological features associated with individual cardiac cycles while taking into account different cardiac rhythm types within the patient, such as predominantly paced or predominantly intrinsic rhythm types. Once respiration patterns have been identified, episodes of abnormal respiration, such as apnea, hyperpnea, nocturnal asthma, or the like, may be detected and therapy automatically delivered. In addition, techniques for detecting abnormal respiration using a pattern classifier are described, wherein the pattern classifier is trained while distinguishing the different cardiac rhythm types of the patient.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: September 11, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Rupinder Bharmi, Gene A. Bornzin
  • Publication number: 20120226178
    Abstract: A method of automatically determining which type of treatment is most appropriate for (or the physiological state of) a patient. The method comprises transforming one or more time domain measurements from the patient into frequency domain data representative of the frequency content of the time domain measurements; processing the frequency domain data to form a plurality of spectral bands, the content of a spectral band representing the frequency content of the measurements within a frequency band; forming a weighted sum of the content of the spectral bands, with different weighting coefficients applied to at least some of the spectral bands; determining the type of treatment (or physiological state) based on the weighted sum.
    Type: Application
    Filed: April 23, 2012
    Publication date: September 6, 2012
    Inventors: Gary A. Freeman, James E. Brewer
  • Patent number: 8260421
    Abstract: Methods and devices for reducing phrenic nerve stimulation of cardiac pacing systems involve delivering a pacing pulse to a ventricle of a heart. A transthoracic impedance signal is sensed, and a deviation in the signal resulting from the pacing pulse may be used to determine phrenic nerve stimulation. Methods may further involve detecting the phrenic nerve stimulation from the pacing pulse by delivering two or more pacing pulse to the ventricle of the heart, and determining a temporal relationship. A pacing vector may be selected from the two or more vectors that effects cardiac capture and reduces the phrenic nerve stimulation. A pacing voltage and/or pulse width may be selected that provides cardiac capture and reduces the phrenic nerve stimulation. In other embodiments, a pacing pulse width and a pacing voltage may be selected from a patient's strength-duration curve that effects cardiac capture and reduces the phrenic nerve stimulation.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: September 4, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Alok Sathaye
  • Patent number: 8260407
    Abstract: In a possible implementation, a method for cardiac testing is provided which includes measuring test data associated with cardiac events and storing the test data in an intracardiac stimulation device. The method further includes acquiring event electrograms corresponding with the test data and storing the event electrograms corresponding with the test data in the intracardiac stimulation device. In a possible implementation, marker data is stored associating event electrograms with measured test data, which may identify the event electrograms used for measuring the test data and/or identify when adjacent event electrograms are not contiguous. In some implementations, the test data may be measured and stored in an out-of-clinic test, and the test data and the corresponding event electrograms may be later retrieved from the intracardiac stimulation device and presented on a visual display.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: September 4, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Jennifer Rhude, Elia A. Mouchawar, David Houck, Gregory Hauck, Tejpal Singh, Monique Prue
  • Patent number: 8249715
    Abstract: A system includes an implantable medical device. The implantable medical device includes a control circuit and a motion sensing device. The motion sensing device is coupled to the control circuit, and the motion sensing device is configured to transmit signals to the control circuit. The control circuit is configured to identify one or more steps of a patient using the motion sensing device signal.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: August 21, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jilliann G. Fricke, Lemont Baker, Donald L. Hopper, Aaron R. McCabe, James A. Esler, Chie Kawahara
  • Patent number: 8239022
    Abstract: A ventricular rate based on first candidate waveforms and second candidate waveforms within sensed ventricular waveforms is compared to an atrial rate. If the ventricular rate exceeds the atrial rate, the first candidate waveforms and second candidate waveforms are compared to a ventricular polarization complex template to obtain a first morphology indicator and a second morphology indicator. If a morphology match inconsistency is present, the amount by which the ventricular rate exceeds the atrial rate is compared to a threshold. If the threshold is exceeded, high-ventricular-rate therapy to the heart is inhibited. The ventricular polarization complex template may be a QRS-complex template, in which case a match inconsistency is present if each of the first candidate waveforms and the second candidate waveforms do not match the QRS-complex template.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: August 7, 2012
    Assignee: Pacesetter, Inc.
    Inventor: Andrew Miller
  • Publication number: 20120197147
    Abstract: Methods, systems, and devices for signal analysis in an implanted cardiac monitoring and treatment device such as an implantable cardioverter defibrillator. In illustrative examples, captured data including detected events is analyzed to identify likely overdetection of cardiac events. In some illustrative examples, when overdetection is identified, data may be modified to correct for overdetection, to reduce the impact of overdetection, or to ignore overdetected data. New methods for organizing the use of morphology and rate analysis in an overall architecture for rhythm classification and cardiac signal analysis are also discussed.
    Type: Application
    Filed: March 30, 2012
    Publication date: August 2, 2012
    Inventors: Venugopal Allavatam, Surekha Palreddy, Rick Sanghera, Jay A. Warren
  • Patent number: 8233970
    Abstract: Method for processing cardioelectric signals and corresponding device. The method enables processing previously sampled cardioelectric signals so as to filter the T wave, thereby improving the visualization of the P wave. The method comprises the following stages: [a] dyadic decomposition the signal into bands by calculating its wavelet transform up to a range of frequencies comprised in a first range of 15 to 150 Hz and preferably 20 to 100 Hz, [b] selection of significant bands with P wave [c] processing of the significant bands by modifying the wavelet coefficients using statistical parametric models, and preferably statistical parametric noise suppression models, [d] weighting the non-significant bands by multiplying them by a weighting function, and [e] reconstructing the signal The invention also relates to a device for carrying out this method.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: July 31, 2012
    Assignee: GEM-MED S.L.
    Inventor: Guillem Serra Autonell
  • Patent number: 8224431
    Abstract: Methods and apparatus for storing data records associated with a medical monitoring event in a data structure. An implanted device obtains data and stores the data in the data record in a first data structure that is age-based. Before an oldest data record is lost, the oldest data record may be stored in a second data structure that is priority index-based. The priority index may be determined by a severity level and may be further determined by associated factors. The implanted device may organize, off-load, report, and/or display a plurality of data records based on an associated priority index. Additionally, the implanted device may select a subset or composite of physiologic channels from the available physiologic channels based on a selection criterion.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: July 17, 2012
    Assignee: Medtronic, Inc.
    Inventor: Touby A. Drew
  • Publication number: 20120136263
    Abstract: A chronically implanted medical device, connected to a medical electrical lead that includes a sensor, is used to detect diastolic dysfunction. A LV accelerometer signal is sensed through the sensor. Based on the LV accelerometer signal, a determination is made as to whether diastolic dysfunction data exists.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 31, 2012
    Applicant: Medtronic, Inc.
    Inventors: Rajan Prakash, Rodolphe Katra
  • Patent number: 8185202
    Abstract: Methods and devices for reducing phrenic nerve stimulation of cardiac pacing systems involve delivering a pacing pulse to a ventricle of a heart. A transthoracic impedance signal is sensed, and a deviation in the signal resulting from the pacing pulse may be used to determine phrenic nerve stimulation. Methods may further involve detecting the phrenic nerve stimulation from the pacing pulse by delivering two or more pacing pulse to the ventricle of the heart, and determining a temporal relationship. A pacing vector may be selected from the two or more vectors that effects cardiac capture and reduces the phrenic nerve stimulation. A pacing voltage and/or pulse width may be selected that provides cardiac capture and reduces the phrenic nerve stimulation. In other embodiments, a pacing pulse width and a pacing voltage may be selected from a patient's strength-duration curve that effects cardiac capture and reduces the phrenic nerve stimulation.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: May 22, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Alok S. Sathaye
  • Patent number: 8180439
    Abstract: An implanted cardiac rhythm management device is disclosed that is operative to detect myocardial ischemia. This is done by evaluating electrogram features to detect an electrocardiographic change; specifically, changes in electrogram segment during the early part of an ST segment. The early part of the ST segment is chosen to avoid the T-wave.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: May 15, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Jong Gill, Peter Boileau, Gene A. Bornzin, Joseph J. Florio, Mohssen Fard
  • Patent number: 8175709
    Abstract: A system for heart monitoring comprises an IEGM input for an intracardiac electrocardiogram (IEGM) that is connected to an active filtering stage that is adapted to transform an incoming IEGM into an output ECG signal. The active filtering stage is connected to a filter characterization stage that is adapted to process a recorded, patient specific IEGM template and a corresponding SECG template and to adapt the filter characteristics of said active filtering stage such that the filter characteristics best characterize the input-output relationship between the IEGM template and the corresponding SECG template. As a consequence, the active filtering stage is adapted to transform an incoming IEGM such that the output ECG signal closely resembles a morphology of a corresponding SECG.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: May 8, 2012
    Assignee: Biotronik CRM Patent AG
    Inventors: Jie Lian, Hannes Kraetschmer, Dirk Muessig
  • Patent number: 8170652
    Abstract: A method and apparatus for predicting acute response to cardiac resynchronization therapy is disclosed. The method can comprise measuring a first interval during an intrinsic systolic cycle and measuring a second interval during a stimulated systolic cycle. The acute response can be predicted by comparing the percent change in duration between the first interval and the second interval against a pre-determined threshold value. The first and second time intervals can be measured using, for example, a surface ECG or, alternatively, an intracardiac electrogram. In one embodiment, the first interval can be the duration of an intrinsic QRS complex measured during a non-stimulated systolic cycle. Similarly, the second interval can be the duration of a stimulated QRS complex measured during a stimulated systolic cycle.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 1, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Jiang Ding, Julio Spinelli, Angelo Auricchio
  • Patent number: 8145301
    Abstract: Systems and methods are described for classifying a cardiac rhythm. A cardiac rhythm is classified using a classification process that includes a plurality of cardiac rhythm discriminators. Each rhythm discriminator provides an independent classification of the cardiac rhythm. The classification process is modified if the modification is likely to produce enhanced classification results. The rhythm is reclassified using the modified classification process.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 27, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jaeho Kim, Joseph M. Bocek, Julie A. Thompson, Eric G. Lovett
  • Patent number: 8140153
    Abstract: Cardiac treatment methods and devices providing templates representative of past tachyarrhythmia events, each template associated with a therapy. A cardiac waveform is detected, and if it corresponds to a particular template associated with a previous therapy that was satisfactory in terminating a past event, the previous therapy is delivered again. If unsatisfactory, the previous therapy is eliminated as an option. If, for example, the previous therapy was an antitachycardia pacing therapy unsatisfactory in terminating the past tachyarrhythmia event, delivery of the antitachycardia pacing therapy is eliminated as an option. Instead of ATP therapy, one or more of a cardioversion, defibrillation, or alternate anti-tachycardia pacing therapy may be associated with the particular template.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 20, 2012
    Assignee: Cardiac Pacemakers Inc.
    Inventor: Shelley M. Cazares
  • Publication number: 20120065529
    Abstract: A method and system is provided for measuring current of injury (COI) during lead fixation. The method and system sense cardiac signals from a lead within a chamber of the heart while the lead is in a pre-fixation position and capture a baseline waveform from the cardiac signals while the lead is in the pre-fixation position. The baseline waveform is representative of an interface between the lead and a tissue region proximate a tip of the lead before the lead is actively attached to the tissue region of the heart. The method and system further sense cardiac signals from the lead within the chamber of the heart when the lead is in a post-fixation position and capture a post-fixation waveform from the cardiac signals when the lead is in the post-fixation position. The post-fixation waveform is representative of an interface between the lead and the tissue region proximate the tip of the lead after the lead is actively attached to the tissue region of the heart.
    Type: Application
    Filed: September 15, 2010
    Publication date: March 15, 2012
    Applicant: PACESETTER, INC.
    Inventor: Martin Cholette
  • Patent number: 8131351
    Abstract: A system and method for correlating health related data for display. The system includes a medical device recording data and a display producing device which correlates the data and simultaneously displays different types of data or displays two sets of the same type of data along with the circumstances at which the two sets of data were recorded. Such displays aid a physician in prescribing and ascertaining the efficacy of cardiac therapies.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: March 6, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: James Kalgren, Rene H. Wentkowski, Jeffrey E. Stahmann
  • Publication number: 20120053475
    Abstract: Embodiments of the present invention relate to implantable systems, and methods for use therewith, for assessing a patients' myocardial electrical stability. Implanted electrodes are used to obtain an electrogram (EGM) signal, which is used to identify periods when the patient experiences T-wave alternans. Additionally, the EGM signal is used to determine whether premature ventricular contractions (PVCs) cause phase reversals of the T-wave alternans. The patient's myocardial electrical stability is assessed based on whether, and in a specific embodiment the extent to which, PVCs cause phase reversals of the T-wave alternans. This abstract is not intended to be a complete description of, or limit the scope of, the invention.
    Type: Application
    Filed: May 31, 2011
    Publication date: March 1, 2012
    Inventor: Taraneh Ghaffari Farazi
  • Patent number: 8121674
    Abstract: A method and system for characterizing one beat of a patient's supraventricular rhythm are described. A plurality of templates is provided and updated using a plurality of qualified beats. Updating occurs by temporally aligning the shock channel waveforms of the template beats using rate channel fiducial points. The template beats are combined by point-by-point addition of the shock channel waveforms. The resultant updated template characterizes one of the patient's supraventricular conducted cardiac beats.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: February 21, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jaeho Kim, Joseph Bocek
  • Publication number: 20120022339
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating physiological signals in the patient. In one embodiment, a medical device evaluates two or more different physiological signals, such as phonocardiogram (PCG) signals, electrocardiogram (ECG) signals, patient impedance signals, piezoelectric signals, and accelerometer signals for features indicative of the presence of a cardiac pulse. Using these features, the medical device determines whether a cardiac pulse is present in the patient. The medical device may also be configured to report whether the patient is in a VF, VT, asystole, or PEA condition, in addition to being in a pulseless condition, and prompt different therapies, such as chest compressions, rescue breathing, defibrillation, and PEA-specific electrotherapy, depending on the analysis of the physiological signals. Auto-capture of a cardiac pulse using pacing stimuli is further provided.
    Type: Application
    Filed: September 29, 2011
    Publication date: January 26, 2012
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Publication number: 20120022386
    Abstract: This invention provides a method to discriminate between ventricular arrhythmia and supraventricular tachycardia by detecting an earliest arriving electrical signal following antitachycardia pacing. Also disclosed is an implantable cardiac defibrillator that is capable of simultaneous atrioventricular anti-tachycardia pacing bursts and detecting an earliest arriving electrical signal. The discrimination capability reduces the incidence of inappropriate shocks from dual-chamber implantable cardiac defibrillators to near zero and provides a method to differentially diagnose supraventricular tachycardia from ventricular tachycardia.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 26, 2012
    Inventor: Samir F. Saba