Systems Patents (Class 606/10)
  • Publication number: 20130338651
    Abstract: The present invention presents novel methods for performing noninvasive vasectomies in animals, including humans, and vasectomy clamps for use in such procedures. The invention further presents an apparatus for use in noninvasive male sterilization procedures. More specifically, the invention presents the application of lasers for noninvasive thermal coagulation and occlusion of the vas. Non-contact cooling of the tissue surface, for example, via cryogen or other cooling spray, prevents scrotal skin burns during the procedure. Both the laser radiation and cooling spray are delivered in a non-contact mode to the tissue. This procedure also preserves the surgical field-of-view, potentially allowing the urologist to visually monitor the skin surface during subsurface heating of the vas and preventing the formation of scrotal skin burns.
    Type: Application
    Filed: July 29, 2013
    Publication date: December 19, 2013
    Applicant: UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Nathaniel M. Fried, Christopher M. Cilip
  • Patent number: 8603080
    Abstract: The present invention presents novel methods for performing noninvasive vasectomies in animals, including humans, and vasectomy clamps for use in such procedures. The invention further presents an apparatus for use in noninvasive male sterilization procedures. More specifically, the invention presents the application of lasers for noninvasive thermal coagulation and occlusion of the vas. Non-contact cooling of the tissue surface, for example, via cryogen or other cooling spray, prevents scrotal skin burns during the procedure. Both the laser radiation and cooling spray are delivered in a non-contact mode to the tissue. This procedure also preserves the surgical field-of-view, potentially allowing the urologist to visually monitor the skin surface during subsurface heating of the vas and preventing the formation of scrotal skin burns.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: December 10, 2013
    Assignee: University of North Carolina at Charlotte
    Inventors: Nathaniel M. Fried, Christopher M. Cilip
  • Patent number: 8603079
    Abstract: A method for treating presbyopia utilizes an Erbium based, pulsed laser to sever sub-conjunctival strictures located within the scleral matrix of the eye. Introduction of treatment energy into the scleral matrix increases or facilitates an increase in accommodation, thereby mitigating the effects of presbyopia. The treatment energy can be directed into the scleral matrix to form tunnel ablations in and through the strictures of the scleral matrix. The tunnel ablations can enhance the accommodation of the patient's eye, enabling the eye to refocus at near distances while not losing its ability to focus at a distance.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 10, 2013
    Assignee: Biolase, Inc.
    Inventor: Marcia Angela Van Valen
  • Patent number: 8603081
    Abstract: One or more treatment parameters are determined for a cornea reshaping procedure. The one or more treatment parameters are selected so as to reduce an amount of collagen shrinkage in a cornea of a patient's eye caused by the cornea reshaping procedure. For example, the one or more treatment parameters could be selected so as to minimize an amount of stromal collagen shrinkage in the cornea of the patient's eye caused by the cornea reshaping procedure. As another example, the cornea reshaping procedure could include irradiating multiple spots on the cornea of the patient's eye, where each spot is associated with an amount of stromal collagen. The one or more treatment parameters could be selected so that no more than 1% or 5% of the stromal collagen in the irradiated spots undergoes clinically significant shrinkage as a result of the cornea reshaping procedure.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: December 10, 2013
    Assignee: NTK Enterprises, Inc.
    Inventor: Michael J. Berry
  • Patent number: 8597282
    Abstract: Computer systems, programs, and methods can advantageously be used to process optical data. These approaches often involve modifying a first format data to a second format data, and are useful in simplifying the complications due to data from different wavefront systems, different aberrometer devices and aberrometer software versions, different clinical studies and different measurement conditions. A centralized database system can be used effectively in a clinical research setting, which can be a medical center, a college, or a research department in a company, or in other diagnosis or treatment facilities.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: December 3, 2013
    Assignee: AMO Manufacturing USA, LLC
    Inventors: Guangming Dai, Kingman Yee, Dimitri Chernyak
  • Publication number: 20130310819
    Abstract: An improved system for safe and efficient generation of plasmas and vapors bubbles with continuous wave radiations and low levels of power densities, sufficient to treat medical pathologies and to avoid the creation damage to healthy tissue is provided. Transmission means in different configurations are used to achieve a high absorption in water, which is able to initiate plasma with low levels of power density. Once plasma and vapor bubbles are formed, they absorb other wavelengths in addition to the one that initiated it. Other wavelengths, more efficiently generated by diodes or diode pumped lasers, are added into the beam to improve treatment efficiency. This modulated plasma produces fast tissue ablation and good hemostasis effect with minimal overheating of remaining tissue. After plasma and high-energy vapors are generated, only laser radiation that passes through the plasma bubble directly interacts with soft tissues.
    Type: Application
    Filed: November 9, 2012
    Publication date: November 21, 2013
    Applicant: Biolitec Pharma Marketing Ltd.
    Inventors: Wolfgang Neuberger, Walter Cecchetti, Leonardo Cecchetti, Filiberto Zattoni
  • Patent number: 8585686
    Abstract: A a device for the exact manipulation of material, especially of organic material. includes a pulsed laser system with a radiation source, said radiation source being a cavity-dumped fs oscillator.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: November 19, 2013
    Assignee: Carl Zeiss Meditec AG
    Inventors: Michael Bergt, Manfred Dick
  • Patent number: 8574224
    Abstract: Systems, apparatuses, and methods for a compact surgical device include a laser unit and one or more laser outlet assemblies. The laser unit has a power regulator, one or more diode laser assemblies, each having a single diode laser source, and a laser trigger mechanism. The laser unit can emit an aiming light beam and a treatment laser beam either both from the same single diode laser or from two separate single diode lasers. The beam can pass through the one or more laser outlet assemblies. The aiming light beam can have a first energy level. The treatment laser beam can have a second energy level that is substantially greater than the first energy level of the aiming light beam.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: November 5, 2013
    Inventors: Tarek A. Shazly, Mark A. Latina
  • Patent number: 8568394
    Abstract: An ophthalmic patient interface system includes an interface device and an ocular device. The interface device includes a frame having a first end and a second end, a lens disposed at the first end, and a skirt affixed to the first end. The second end is adapted to couple with a surgical laser system, and the skirt is adapted to seal against an anterior surface of an eye. The ocular device includes magnifying optics and is adapted to be removably seated within the second end. The magnifying optics image a region on a corneal side of the lens when the ocular device is seated within the second end.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: October 29, 2013
    Assignee: AMO Development LLC
    Inventors: Wesley Lummis, Ronald M. Kurtz
  • Patent number: 8571648
    Abstract: Methods and apparatuses to apply substances to a biological tissue are described. The tissue having an target below a surface is stretched to provide openings in a surface. Stretching forces a material from the target onto the surface. A first substance may be applied while stretching to promote cleaning the tissue. A second substance may be applied to the surface. Energy may be applied to the tissue. Then the tissue is relaxed to draw the second substance through the openings into the tissue. The tissue may be stretched by applying a negative pressure, and relaxed by removing the negative pressure. The first substance may be an abrasive material. The second substance is a medicine, a moisturizer, a lotion, or any combination thereof. The second substance may be applied to the biological tissue using a positive pressure. The apparatus to apply substances may be a handheld device.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: October 29, 2013
    Assignee: Aesthera
    Inventors: Robert S. Anderson, Steve Young
  • Patent number: 8556886
    Abstract: The invention relates to an apparatus and a method for providing data for vision correction utilizing a volumetric ablation and an intrastromal manipulation. The provided data may be used by a laser ablating the surface of the cornea in combination with a laser which operates intrastromal to optimize a corneal re-shaping procedure. One aspects of the invention relates to the minimization of the amount of corneal tissue to be removed.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: October 15, 2013
    Inventor: Gerhard Youssefi
  • Patent number: 8556885
    Abstract: A system and method are provided in which an iris or eye image is taken during a refractive diagnostic analysis. The image is employed for aligning data from the analysis with data from other refractive analysis instruments, as well as aligning a refractive surgical tool, such as a laser, with the eye for treatment. Further, the stored iris image is compared with the patient's iris before treatment, verifying that the correct eye is to be treated with a developed treatment pattern. A variety of refractive instruments can be used, such as corneal topography systems and wavefront aberration systems.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: October 15, 2013
    Assignee: Bausch & Lomb Incorporated
    Inventors: Kristian Hohla, Thomas Neuhann, Gerhard Youssefi, Roland Toennies
  • Patent number: 8540702
    Abstract: Facilitating a dermatologic treatment by providing a light source emitting optical radiation and having a plurality of wavelengths, reflecting some of the emitted optical radiation back to the light source to enhance the brightness of the optical radiation, and applying at least some of the enhanced optical radiation to a skin surface to facilitate a dermatologic treatment.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: September 24, 2013
    Assignee: Shaser, Inc.
    Inventors: Doug Ely, Elias Behrakis, Daniel L. Roth
  • Patent number: 8535905
    Abstract: A film (14) with a tissue section (10) is placed with the tissue section (10) downward on a microscope slide (18) and the microscope slide (18) positioned in the object plane of an inverse microscope; where an adhesive tape (20) is arranged, with a bonding agent (22) downward, above the film (14) and therefore above the tissue section (10); wherein the next step, tissue (36) to be isolated is excised by a focused laser beam, which also divides the film (14); whereupon removal of the adhesive tape (20) from the microscope, the excised tissue pieces (36) adhere to the adhesive tape (20), and the remnant of the film (14) and of the tissue section (10) remains adhering/to the microscope slide (18).
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: September 17, 2013
    Assignee: Molecular Machines and Industries AG
    Inventor: Norbert Leclerc
  • Patent number: 8529560
    Abstract: Embodiments of methods and systems for hair treatment are disclosed. According to various embodiments, light is used to shave, trim, or otherwise modify hair shafts.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: September 10, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Patent number: 8528566
    Abstract: A method for ocular surgery requires use of a delivery system for generating and guiding a surgical laser beam to a focal point in a treatment area of an eye. Additionally, a contact device is employed for using the eye to establish a reference datum. Further, an optical detector is coupled to the beam path of the surgical laser to create a sequence of cross-sectional images. Each image visualizes both the reference datum and the focal point. Operationally, a computer then uses these images to position and move the focal point in the treatment area relative to the reference datum for surgery.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: September 10, 2013
    Assignee: Technolas Perfect Vision GmbH
    Inventors: Frieder Loesel, Mathias Glasmacher, Ulrich von Pape
  • Patent number: 8523848
    Abstract: The present invention presents novel methods for performing noninvasive vasectomies in animals, including humans, and vasectomy clamps for use in such procedures. The invention further presents an apparatus for use in noninvasive male sterilization procedures. More specifically, the invention presents the application of lasers for noninvasive thermal coagulation and occlusion of the vas. Non-contact cooling of the tissue surface, for example, via cryogen or other cooling spray, prevents scrotal skin burns during the procedure. Both the laser radiation and cooling spray are delivered in a non-contact mode to the tissue. This procedure also preserves the surgical field-of-view, potentially allowing the urologist to visually monitor the skin surface during subsurface heating of the vas and preventing the formation of scrotal skin burns.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: September 3, 2013
    Assignee: The University of North Carolina at Charlotte
    Inventors: Nathaniel M. Fried, Christopher M. Cilip
  • Patent number: 8518030
    Abstract: Devices, systems, and methods control pulse energies of excimer and other lasers, particularly for refractive correction in which a pulse rate, pulse energy, or other parameters of a pulsed laser is varied during use. A calibration laser mode may be used to fire a series of laser pulses to characterize a correlation between laser energy and a laser operation parameter (typically discharge high voltage) throughout a range. During an operation mode, subsequent voltages may be set based on energies of prior pulses while accounting for a curve or change in rate of the correlation.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: August 27, 2013
    Assignee: AMO Manufacturing USA, LLC
    Inventor: Keith Holliday
  • Patent number: 8518027
    Abstract: A phototherapy device includes a light source; a light emanation block; and a heat exchanger for the dissipation of heat from one or more heat loads associated with the device. Heat may be transferred via the heat exchanger from the light source independently of the dissipation of heat from one or more of the other device heat loads. Substantially thermally isolated heat transfer regions may be provided, and such regions may be maintained at different operating temperatures, to control the transfer of heat in conjunction with a phototherapy method and to promote efficient and enhanced device operation and performance.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 27, 2013
    Assignee: Tria Beauty, Inc.
    Inventors: Mark V. Weckwerth, Charles A. Schuetz, Harvey I. Liu, Patrick Reichert, Tobin C. Island, Robert E. Grove
  • Patent number: 8512319
    Abstract: An ophthalmic laser treatment apparatus comprises: a main unit; a laser source; a hand-held cabinet; a laser delivery optical system for irradiating the laser beam in a predetermined irradiation pattern onto tissues of the patient's eye, the laser delivery optical system including: a fiber unit connecting the hand-held cabinet to the main unit; a scanner for deflecting an optical axis of the laser beam; and an image forming optical system for forming an image of the laser beam in the form of a spot on the tissues of the patient's eye; an irradiation pattern setting unit for setting an irradiation pattern of the treatment laser beam; a control unit for controlling drive of the scanner; and a beam combiner provided in the hand-held cabinet to make an observation optical path and an optical path of the laser delivery optical system coincident with each other.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: August 20, 2013
    Assignee: Nidek Co., Ltd.
    Inventor: Hiroki Yokosuka
  • Publication number: 20130211391
    Abstract: Provided herein are devices, systems and methods for treating a vocal fold pathology by forming a substantially planar void below the epithelium of the vocal fold using optical energy. Also provided are devices, systems, and methods for combined imaging and treating of a vocal fold pathology.
    Type: Application
    Filed: January 21, 2011
    Publication date: August 15, 2013
    Applicants: THE GENERAL HOSPITAL CORPORATION, BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Adela BenYakar, Christopher L. Hoy, William Neil Everett, James B. Kobler, Richard Rox Anderson, William A. Farinelli, Steven M. Zeitels
  • Publication number: 20130190738
    Abstract: The invention relates to a laser system for the treatment of body tissue (1) on an inner circumferential tissue surface (2). The laser system comprises a laser source (1) for the generation of a laser beam (3) and a handpiece (4) with a treatment head (5). The treatment head (5) extends along a longitudinal axis (6) and is adapted in an manner, that the longitudinal axis (6) of the treatment head (5) during operation is at least approximately parallel to the inner circumferential tissue surface (2). During operation the laser beam (3) enters the treatment head (5) in the direction of the longitudinal axis (6). A deflection mirror (7) is disposed in the treatment head (5) and guides the laser beam (3) radially outwards out of the treatment head (5) onto the inner circumferential tissue surface (2). Movable deflection means (8) for the laser beam (3) are provided to scan the inner circumferential tissue surface (2) within a treatment area (9) at least in a circumferential direction.
    Type: Application
    Filed: September 24, 2010
    Publication date: July 25, 2013
    Applicant: FOTONA D.D.
    Inventors: Matjaz Lukac, Marko Kazic
  • Publication number: 20130184693
    Abstract: A device and a method for thermal treatments of target material with various thermal interactions are disclosed. A device for treating hair on the skin comprises a treatment head coupled to a housing; a hair remover for removing the hair from a target area of the skin; a light source for transmitting a predetermined amount of energy to the skin. A device and method for treatment of tissue. The device comprises of an energy source for treatment of surface and subsurface tissue, And of a mechanical source of energy for mechanically deforming the treated tissue. Both the Mechanical Energy (ME) and the Treatment Energy (TE) may be either continuously operating (CO) or modulated in time and space.
    Type: Application
    Filed: December 13, 2012
    Publication date: July 18, 2013
    Inventor: Joseph Neev
  • Patent number: 8486056
    Abstract: Skin disorders such as, for example, atopic dermatitis, dyshidrosis, eczema, lichen planus, psoriasis, and vitiligo, are treated by applying high doses of ultraviolet light to diseased regions of a patients skin. The dosage employed exceeds 1 MED, an MED being determined for the particular patient being treated, and may range from about 1 MED to about 20 MED or higher. The ultraviolet light has a wavelength within the range of between about 295 nanometers to about 320 nanometers and preferably is between about 300 nanometers and about 310 nanometers. High doses of ultraviolet light are restricted to diseased tissue areas so as to avoid risk of detrimental side affects in healthy skin, which is more susceptible to damage from UV light. Cooling the skin prior to and/or while exposing the skin to the UV light can be used to minimize tissue damage resulting from exposure to the UV light. Higher doses of UV light can therefore be employed without injurious affects.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: July 16, 2013
    Assignee: Photomedex
    Inventor: Dean S. Irwin
  • Patent number: 8480660
    Abstract: An apparatus for the treatment of biological, in particular living tissue comprising a treatment laser device 1 for generating a pulsed treatment radiation directed on to a target tissue, in an embodiment additionally including a measurement laser device 2, 3 for generating a pulsed measurement radiation directed on to the target tissue of lower energy and shorter pulse duration than the treatment radiation, a detector device 4 for measuring pressure transients induced by the measurement radiation and a control device 6 for controlling the treatment radiation in dependence on the pressure transients evaluated in respect of a tissue change, wherein a regulating or control algorithm for controlling the treatment radiation is formed from the pressure transients.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: July 9, 2013
    Assignee: Medizinisches Laserzentrum Luebeck GmbH
    Inventor: Ralf Brinkmann
  • Patent number: 8465478
    Abstract: There is provided a system, apparatus and methods for developing laser systems that can create a precise predetermined jigsaw capsulotomy. The systems, apparatus and methods further provide laser systems that can use a single laser as a therapeutic laser and as laser radar and that reduce the patient-to-patient variability and doctor-to-doctor variability associated with hand held apparatus for performing capsulorhexis and capsulotomies. There is further provided a precise predetermined jigsaw shot pattern and shaped capsulotomy that is based at least in part on the shape of an IOL and in particular an accommodating IOL.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: June 18, 2013
    Assignee: LensAR, Inc.
    Inventors: Rudolph W. Frey, Gary P. Gray, Neil Zepkin
  • Patent number: 8460280
    Abstract: A flashlamp device having a small diameter waveguide is disclosed for use in localized dermatological applications. A preferred waveguide has a curvilinear wall surface. The waveguide is supported by a plurality of spaced apart thermally-conductive elements in contact with the curvilinear wall surface allowing sufficient cooling of the waveguide while minimizing the amount of high angle light stripped from the waveguide at points of contact with the contact elements.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 11, 2013
    Assignee: Cutera, Inc.
    Inventors: Scott A. Davenport, Gregory J. R. Spooner, David A. Gollnick, Steven Christensen
  • Patent number: 8452372
    Abstract: An integral laser imaging and coagulation apparatus, and associated systems and methods that allow an ophthalmologist to perform laser retinal surgical procedures with an integral laser imaging and coagulation apparatus disposed at a first (i.e. local) location from a control system disposed at a second (i.e. remote) location, e.g., a physician's office. In some embodiments, communication between the integral laser imaging and coagulation apparatus and control system is achieved via the Internet®.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: May 28, 2013
    Inventor: Gholam Peyman
  • Publication number: 20130131513
    Abstract: A method and systems for treating chronic total occlusions, particularly those that are difficult to treat, is disclosed. In this approach, recanalizing the CTO is achieved using a combined antegrade and retrograde approach. The proximal end of the occlusion is penetrated using an antegrade wire, using a traditional approach. Using collateral vessels, the distal end of the occlusion is crossed in a retrograde fashion. By appropriately maneuvering each member and applying radiofrequency energy between the proximal and distal ends of the occlusion, a continuous channel is created.
    Type: Application
    Filed: April 1, 2011
    Publication date: May 23, 2013
    Applicant: Retrovascular, Inc.
    Inventors: Osamu Katoh, Wayne Ogata
  • Publication number: 20130131656
    Abstract: A laser system for hard body tissue ablation has a pumped laser, wherein the laser system is operated in pulsed operation with several individual pulses of a temporally limited pulse length and wherein the individual pulses follow one another with temporal pulse spacing. The pumped laser has an inversion population remaining time, the inversion population remaining time being the time within which, in the absence of pumping, the remaining inversion population of the laser energy status is reduced by 90%. The pulse spacing is in the range from 50 ?s, inclusive, to the inversion population remaining time of ?50 ?s. The pulse length is selected to be in a pulse length range of ?10 ?s to ?120 ?s.
    Type: Application
    Filed: January 18, 2013
    Publication date: May 23, 2013
    Applicant: FOTONA D.D.
    Inventor: Fotona d.d.
  • Patent number: 8439903
    Abstract: An ophthalmic surgery system for delivering light to a surgical site includes an ophthalmic surgical console including a light source to generate light and a processor operably coupled to the light source and a surgical handpiece operably coupled to the ophthalmic surgical console via an optical fiber for delivering light from the from the light source to a surgical site. The processor is configured to adjust the light source to ensure an output light level at the surgical site is substantially consistent over a period of time.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: May 14, 2013
    Assignee: Bausch & Lomb Incorporated
    Inventor: Lutz Andersohn
  • Patent number: 8439902
    Abstract: An apparatus for processing material with focused electromagnetic radiation, comprises: a source emitting electromagnetic radiation, means for directing the radiation onto the material, means for focusing the radiation on or in the material, a unit for generating a pattern in the optical path of the electromagnetic radiation, an at least partially reflective surface in the optical path before the focus of the focused radiation, said pattern being imaged onto said at least partially reflective surface through at least part of said directing means and said focusing means, at least one detector onto which an image of the pattern is reflected by said surface and which generates electrical signals corresponding to said image, said image containing information on the position of the focus, a computer receiving said electrical signals and programmed to process said image so as to generate an electrical signal depending on the focal position, and a divergence adjustment element arranged in said optical path and adapt
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 14, 2013
    Assignee: Wavelight GmbH
    Inventors: Berndt Warm, Peter Riedel, Claudia Gorschboth, Franziska Woittennek
  • Patent number: 8439959
    Abstract: A full-body non-invasive laser scanner for mapping or measuring a patient's body and for treating a patient's body with laser energy comprises a patient support, one or more laser devices, a laser guidance system, a control center, and optionally feedback sensors. The patient support aids in maintaining body alignment during treatment, and the laser devices are moveably positioned on a laser guidance system such that they can be driven about a stationary patient. To map and contour a patient's body, the patient aligns himself on the patient support. With the control center, an operator chooses whether to map, contour, or map and contour the patient's body either manually or according to preprogrammed treatment protocols. The carriage assembly translates and the laser devices apply laser energy to the surfaces of the patient's body according to the chosen protocol. Feedback sensors provide data for mapping the contours of the patient's body.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: May 14, 2013
    Assignee: Erchonia Corporation
    Inventors: Kevin Tucek, Charles Shanks
  • Patent number: 8435234
    Abstract: The present invention relates to a method and apparatus for using an imaging detector to image an optical pattern created by illumination of a viscous material that is applied to the skin. The viscous material forms a detectable pattern that can be imaged by the imaging detector. In some examples, the viscous material is reflective and allows reflection from an illumination source to create an optical pattern on the imaging detector. In other cases, the variation in thickness of an absorbing or scattering viscous substance can be imaged by the detector. Polarized illumination and detection can be used to enhance the response.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: May 7, 2013
    Assignee: Reliant Technologies, Inc.
    Inventors: Kin F. Chan, Leonard C. DeBenedictis
  • Patent number: 8430869
    Abstract: A laser device, in particular for ophthalmological laser surgery, comprising a laser source (14) for providing laser radiation, controllable scan components (20) for setting a focus position of the laser radiation, measuring components (30) for registering information that is representative of an actual position of the radiation focus, and also a control arrangement (22) controlling the laser source and the scan components.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 30, 2013
    Assignee: Wavelight GmbH
    Inventors: Mathias Wölfel, Olaf Kittelmann, Daniel Thürmer
  • Patent number: 8419718
    Abstract: A protective handle for a mobile laser unit wherein the protective handle provides protection to a front section of the mobile laser unit from damage due to bumps and other impacts as the mobile laser unit is transported between treatment locations. The protective handle simultaneously acts to protect an attached optical fiber from damage during transport by limiting a bend radius of the laser fiber. The protective handle includes a U-shaped central segment having rear and forward surfaces defining a fiber optic support structure. The protective handle is attached to the mobile laser unit such that an optical fiber connector is centered within the U-shaped central segment and the optical fiber can rest on the fiber optic support structure.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: April 16, 2013
    Assignee: AMS Research Corporation
    Inventor: Lowell D. Hunter
  • Patent number: 8419781
    Abstract: A handpiece can treat biological tissue using electromagnetic radiation, which can be substantially fluorescent light. The handpiece includes a source of electromagnetic radiation and a waveguide. The waveguide is adjacent the source, receives electromagnetic radiation from the source, and delivers the electromagnetic radiation to the biological tissue. The handpiece also includes a system for circulating a fluorescent substance through the waveguide. The fluorescent substance is capable of modulating at least one property of the electromagnetic radiation.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: April 16, 2013
    Inventor: Morgan Lars Ake Gustavsson
  • Patent number: 8414567
    Abstract: A method for controlling a device for the treatment or refractive correction of the human eye using an electronic data processing system provides a simple overview of the influence of all of the parameters. To this end, once the operating parameters have been determined, a graphical simulation of the operating procedure is carried out in the form of a graphical visualization.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 9, 2013
    Assignee: Carl Zeiss Meditec AG
    Inventors: Manfred Dick, Holger Maeusezahl, Dan Reinstein, Eckhard Schroeder, Hartmut Vogelsang
  • Patent number: 8414504
    Abstract: A blood test device using a laser as a puncture member. More specifically, in a blood test device using a laser as a puncture member, the skin can be fixed at a definite position by raising the punctured skin under negative pressure, and thus the skin is brought into close contact with a blood sensor and the laser is focused on the vicinity of the blood sensor face. Thus, it is possible to provide a blood test device of the laser puncture type in which the skin can be surely punctured while giving little pain to a patient.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: April 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Masaki Fujiwara, Yoshinori Amano, Takeshi Nishida, Toshihiro Akiyama, Masataka Nadaoka, Toshiki Matsumoto, Kenichi Hamanaka, Kiyohiro Horikawa, Koji Miyoshi
  • Patent number: 8414564
    Abstract: Optical imaging techniques and systems provide high-fidelity optical imaging based on optical coherence tomographic imaging and can be used for optical imaging in ophthalmic surgery and imaging-guided surgery. One method for imaging an eye includes positioning the eye relative to a Spectral Domain Optical Coherence Tomographic (SD-OCT) imaging system, the eye having a first and a second structure, and imaging the eye with the SD-OCT imaging system by selecting one of a direct image and a mirror image of the first eye-structure and generating a first image-portion corresponding to the selected image of the first eye-structure, selecting one of a direct image and a mirror image of the second eye-structure and generating a first image-portion corresponding to the selected image of the second eye-structure, and suppressing the non-selected images of the first and second structures.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 9, 2013
    Assignee: Alcon LenSx, Inc.
    Inventors: Ilya Goldshleger, Guy Holland, Ferenc Raksi
  • Patent number: 8409180
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: April 2, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Publication number: 20130072915
    Abstract: A system and method are provided wherein an operational characteristic of a laser beam is identified. A predetermined ophthalmic reference datum is also identified. The identified laser beam characteristic is then used in its relationship with the reference datum for guidance and control of the laser beam's focal point. In operation, the laser beam's focal point is moved through eye tissue while minimizing any deviations of the operational characteristic of the laser beam from the reference datum.
    Type: Application
    Filed: February 24, 2012
    Publication date: March 21, 2013
    Inventors: Robert Edward Grant, David Haydn Mordaunt, Kristian Hohla, Gwillem Mosedale
  • Patent number: 8398622
    Abstract: The present invention includes an apparatus and method of surgical ablative material removal “in-vivo” or from an outside surface with a short optical pulse that is amplified and compressed using either an optically-pumped-amplifier and air-path between gratings compressor combination or a SOA and chirped fiber compressor combination, wherein the generating, amplifying and compressing are done within a portable system.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: March 19, 2013
    Assignee: Raydiance, Inc.
    Inventors: Richard Stoltz, Jeff Bullington
  • Patent number: 8395363
    Abstract: A high voltage generation circuit for laser puncture in which the voltage for laser puncture can be boosted up to the laser oscillation level in a short time with low power loss. The high voltage generation circuit drives a laser unit for puncturing the skin by oscillating laser light. In the high voltage generation circuit, a capacitor is charged to supply power to the laser unit. A booster circuit supplies a current to the capacitor, and a voltage measurer measures the voltage of the capacitor. A controller controls the booster circuit based on an instruction from a user or the voltage of the capacitor to start precharge of the capacitor with a first current value at a first timing, and to start main charging of the capacitor with a second current value higher than the first current value at a second timing, later than the first timing.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 12, 2013
    Assignee: Panasonic Corporation
    Inventors: Keisuke Matsumura, Toshiki Matsumoto
  • Patent number: 8388610
    Abstract: The invention relates to an apparatus and a method for determining the applicability of a treatment pattern for manipulation of a cornea of an eye using a laser. The concept of the present invention is based on the determination of an actual volumetric profile based on a set of input data and a theoretical volumetric profile which is created independently based on only the basic optical parameters. On the basis of a comparison of the determined volumetric profiles it is determined whether the actual volumetric profile is within predetermined tolerances.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: March 5, 2013
    Assignee: Technolas Perfect Vision GmbH
    Inventors: Gerhard Youssefi, Anton Hilger
  • Patent number: 8389890
    Abstract: In one aspect the invention provides a method for laser induced breakdown of a material with a pulsed laser beam where the material is characterized by a relationship of fluence breakdown threshold (Fth) versus laser beam pulse width (T) that exhibits an abrupt, rapid, and distinct change or at least a clearly detectable and distinct change in slope at a predetermined laser pulse width value. The method comprises generating a beam of laser pulses in which each pulse has a pulse width equal to or less than the predetermined laser pulse width value. The beam is focused above the surface of a material where laser induced breakdown is desired.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: March 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Richard Alan Haight, Peter P. Longo, Daniel Peter Morris, Alfred Wagner
  • Patent number: 8391960
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: March 5, 2013
    Inventors: Fred Wood, Ron Goldman, Stephen Conlon, Vincent Luciano
  • Patent number: 8382743
    Abstract: An ophthalmic laser treatment apparatus for irradiating a laser beam to a patient's eye, comprises: a delivery optical system for forming the laser beam emitted from a laser source into a plurality of spots on a target surface, the delivery optical system including: a diffraction optical element for dividing the laser beam incident thereon into a plurality of diffraction beams in a predetermined spot pattern; a first zoom optical system placed on a side closer to the laser source than the diffraction optical element, the first zoom optical system being configured to change a spot size without changing a spot interval on the target surface; and an objective lens.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: February 26, 2013
    Assignee: Nidek Co., Ltd.
    Inventor: Naho Murakami
  • Patent number: 8382745
    Abstract: There is provided a system, apparatus and methods for developing laser systems that can create precise predetermined clear corneal incisions that are capable of reducing astigmatism. The systems, apparatus and methods further provide laser systems that can provide these incisions at or below Bowman's membrane and in conjunction a precise predetermined capsulotomy shot pattern.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: February 26, 2013
    Assignee: LensAR, Inc.
    Inventors: Ramón Naranjo-Tackman, Jorge Octavio Villar Kuri, Rudolph W. Frey
  • Publication number: 20130043392
    Abstract: A mid- to far-infrared solid state Raman laser system comprising a resonator cavity comprising: an input reflector adapted to be highly transmissive for light with a first wavelength in the range of about 3 to about 7.5 micrometers for admitting the first beam to the resonator cavity; and an output reflector adapted to be partially transmissive for light with a second wave-length greater than about 5.5 micrometers for resonating the second wavelength in the resonator and for outputting an output beam, the input reflector further being adapted to be highly reflective at the second wavelength for resonating the second wave-length in the resonator; and a solid state diamond Raman material located in the resonator cavity for Raman shifting the pump beam and generating the second wavelength.
    Type: Application
    Filed: February 24, 2011
    Publication date: February 21, 2013
    Inventor: Richard Paul Mildren