Beam Energy Control Or Monitoring Patents (Class 606/11)
  • Patent number: 8380291
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: February 19, 2013
    Inventors: Fred Wood, Ron Goldman, Stephen Conlon, Vincent Luciano
  • Patent number: 8366703
    Abstract: A dermatological treatment device is disclosed for generating a matrix of two dimensional treatment spots on the tissue. A handpiece carrier a laser which generates a beam of laser pulses. The pulses are focused onto the tissue with a lens system. A diffractive element is positioned between the laser and the lens system for splitting the laser beam into a plurality of sub-beams. A scanner translates the beam over the diffractive element to generate the two dimensional spot pattern. The laser has a semi-monolithic resonator design with one integral end mirror defining the output coupler and a second, independent mirror for adjustment.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: February 5, 2013
    Assignee: Cutera, Inc.
    Inventors: Scott A. Davenport, David A Gollnick
  • Patent number: 8366705
    Abstract: A cardiac ablation instrument capable of removing blood from a treatment area is provided. The instrument includes a catheter configured to deliver a distal end thereof to a patient's heart. The instrument can also include an expandable element coupled to the distal end of the catheter wherein the expandable member is configured to be positioned adjacent a target area thereby defining a treatment area between the expandable member and the target area. Further, the instrument can include an irrigation mechanism configured to dispense an irrigation fluid from the catheter thereby displacing blood from the treatment area. Additionally, the instrument includes an energy emitter configured to deliver energy to tissue within the treatment area. The instrument can also include a contact sensor configured to determine the presence of such blood within the treatment area. Methods for ablating tissue are also provided.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: February 5, 2013
    Assignee: Cardiofocus, Inc.
    Inventors: Jeffrey M. Arnold, Edward L. Sinofsky, Lincoln S. Baxter, Norman E. Farr
  • Patent number: 8317780
    Abstract: A dermatological treatment device is disclosed for generating a matrix of two dimensional treatment spots on the tissue. A handpiece carrier a laser which generates a beam of laser pulses. The pulses are focused onto the tissue with a lens system. A diffractive element is positioned between the laser and the lens system for splitting the laser beam into a plurality of sub-beams. A scanner translates the beam over the diffractive element to generate the two dimensional spot pattern. The laser has a semi-monolithic resonator design with one integral end minor defining the output coupler and a second, independent mirror for adjustment.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: November 27, 2012
    Assignee: Cutera, Inc.
    Inventors: Scott A. Davenport, David A. Gollnick
  • Patent number: 8318090
    Abstract: Disclosed are a germicidal system and method for deactivating pathogens on the surface of a bodily extremity protected by a prophylactic covering substantially opaque to UV-C radiation. The device includes an enclosure having one or more openings through which the extremity can be inserted. The enclosure contains a radiation source configured to produce germicidal radiation having a wavelength of about 253.7 nm. The openings are configured relative to the radiation source such that the inserted extremity is in close proximity to the radiation source. The prophylactic covered extremity is preferably a gloved hand thereby sanitizing the surface of the glove. The extremity inserted is preferably exposed for a predetermined period of time to ensure a desired level of sanitization. Optionally, the device can include detectors to determine the position of the hand, the spread of the fingers, and whether the hand is covered by a glove.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: November 27, 2012
    Assignee: Germgard Lighting, LLC
    Inventor: Eugene I. Gordon
  • Patent number: 8315280
    Abstract: A multiwavelength laser system for opthalmological applications. The system including a first semiconductor diode laser including a first working beam of a first wavelength; and at least one second semiconductor diode laser having a second working beam of a second wavelength. The second wavelength being different from the first wavelength.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: November 20, 2012
    Assignee: Carl Zeiss Meditec AG
    Inventors: Diego Zimare, Manfred Dick, Martin Wiechmann, Alexander Kalies, Regina Schuett
  • Patent number: 8303577
    Abstract: The invention relates to a method for determining an actual value of at least one system parameter or a deviation from a set value of at least one parameter of a system for the treatment of an eye using a treatment laser beam emitted by said system. According to the invention, the surface of a calibrating body is ablated with at least a partial beam of the treatment laser beam with a predetermined ablation program. The surface ablated by the treatment laser beam is examined by means of aberrometry and/or profilometry. The actual value of the system parameter or the deviation from the set value of the system parameter is determined on the basis of the examination data detected during the examination.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: November 6, 2012
    Assignee: Carl Zeiss Meditec AG
    Inventors: Manfred Dick, Hartmut Vogelsang
  • Patent number: 8282629
    Abstract: A method for determining control information for controlling laser radiation irradiated onto the cornea of an eye to be treated photorefractively comprises correcting a corneal ablation profile, obtained by measuring optical properties of the eye, with the aid of correction information, the control information being formed on the basis of the corrected ablation profile thus produced. According to the invention, the correction of the ablation profile is performed in the spatial frequency domain. To this end, the ablation profile is transformed into a spatial frequency spectrum. Corrected amplitude or/and phase values are then determined for various discrete spectral components of the ablation profile on the basis of stored amplitude or/and phase correction information. Subsequently, the spatial frequency spectrum with the amplitude or/and phase corrected spectral components is backtransformed into the geometric spatial domain. The result is the corrected ablation profile.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: October 9, 2012
    Assignee: Wavelight AG
    Inventors: Michael Mrochen, Michael Bueler
  • Patent number: 8280099
    Abstract: A laser safety system providing a system for checking the presence, focus and integrity of a laser beam focusing lens is disclosed. The laser safety system checks the focusing lens properties by capturing an image of a target by viewing the target through the focusing lens from along the laser beam path. An initial, known good, image is compared to an image captured immediately before enablement of the laser beam source to determine if the focusing lens is present, focused and is not damaged. The system may also utilize a mask projected onto the target as well as a low-power visible light laser directed along the path of the processing laser to determine the focusing lens properties. The system can also provide target recognition.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: October 2, 2012
    Assignee: Telesis Technologies, Inc.
    Inventors: Michael Harrison, Joseph D. Ferrario, Ashot Mesropyan
  • Patent number: 8262648
    Abstract: The present invention relates to a laser beam control structure and method. A laser beam control structure of the present invention comprises a handpiece for irradiating laser beams output from a laser beam output device, on a predetermined part; at least one electrode unit positioned at a human body contact portion of the handpiece and receiving hum noise generated from a human body; and a control unit electrically connected to the electrode unit so as to measure the hum noise applied from the electrode unit and to cause the laser beams to be irradiated according to the measured hum noise. According to the present invention, there are advantages in that various types of hum noise generated from a human body are measured without applying an electric current to the human body, and a laser beam is irradiated according to the measured hum noise.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: September 11, 2012
    Assignee: Lutronics Corporation
    Inventors: Hak Ki Choi, Tae Ho Ha, Hae Lyung Hwang, Sung Huan Gong
  • Patent number: 8251984
    Abstract: An improved dental laser system includes a DC power section that rectifies its AC electrical input energy in a format suitable for both CW and pulsed operation, an RF power supply operating in a range of about 40 to 125 MHz and configured for both CW and high peak power pulsing operation, a sealed-off, RF excited CO2 waveguide or slab resonator laser filled to a gas at a pressure between about 260 to 600 Torr (or about 34,700-80,000 Pa), and a beam delivery system to steer the beam from the output of the laser to the mouth, such as the patient's mouth.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: August 28, 2012
    Assignee: Convergent Dental, Inc.
    Inventor: Nathan Monty
  • Patent number: 8246609
    Abstract: Method and system for modifying a refractive profile associated with an eye having a recipient cornea. The method includes obtaining a corneal tissue inlay from a donor cornea, forming a recipient bed in the recipient cornea, and positioning the corneal tissue inlay into the recipient bed to correct the refractive profile of the eye with the refractive profile of the corneal tissue. The system includes a laser assembly outputting a pulsed laser beam, and a controller coupled to the laser assembly. The controller directs the laser assembly to incise a corneal tissue inlay from a donor cornea, form a recipient bed in the recipient cornea having a contour matching the contour of the inlay, register the inlay with the recipient bed, determine a position of the inlay, and determine a position change for the inlay based on the position of the inlay to align the refractive profile of the inlay with the refractive profile of the eye.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: August 21, 2012
    Assignee: AMO Development, LLC.
    Inventors: Leander Zickler, Scott J. Catlin, Andrew Y Pang
  • Patent number: 8244333
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: August 14, 2012
    Inventors: Fred Wood, Ron Goldman, Stephen Conlon, Vincent Luciano
  • Patent number: 8231612
    Abstract: A method of photoaltering a material using a pulsed laser beam includes selecting a first pulse energy and a first focal point separation based on a relationship of pulse energy and focal point separation combinations enabling layer separation of the material by photoalteration, and scanning the pulsed laser beam along a scan region at the first pulse energy and the first focal point separation. The relationship has a slope and has a distinct change in the slope. The distinct change in the slope is associated with a second pulse energy of the relationships and the first pulse energy is equal to or less than the second pulse energy.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: July 31, 2012
    Assignee: AMO Development LLC.
    Inventors: Ruben Zadoyan, Michael Karavitis, Ronald M. Kurtz
  • Publication number: 20120157890
    Abstract: Body tissue ablation is carried out by inserting a probe into a body of a living subject, urging the probe into contact with a tissue in the body, generating energy at a power output level, and transmitting the generated energy into the tissue via the probe. While transmitting the generated energy the ablation is further carried out by determining a measured temperature of the tissue and a measured power level of the transmitted energy, and controlling the power output level responsively to a function of the measured temperature and the measured power level. Related apparatus for carrying out the ablation is also described.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Inventors: Assaf Govari, Yaron Ephrath, Andres Claudio Altmann
  • Patent number: 8190243
    Abstract: An apparatus is disclosed for monitoring a thermal surgical procedure including a thermal camera for monitoring temperature at a plurality of locations within at least a portion of a surgical field undergoing thermal surgical treatment and generating a series of thermal images based on said monitoring, a processor for processing the thermal images, and a display for displaying, in real time, a series of display images indicative of temperature at the plurality of positions.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: May 29, 2012
    Assignee: Cynosure, Inc.
    Inventors: Richard Shaun Welches, James Henry Boll
  • Patent number: 8187259
    Abstract: Systems and methods provide for stabilizing the amount of laser energy delivered to a target from a laser device. Generally, delivered laser energy is measured over multiple laser pulses or over time in the case of a constant wave laser. A decrease is then calculated in the delivered energy, the decrease being caused by accumulation of one or more substances, such as ozone, along the laser beam delivery path due to passage of the laser beam along the path. Using this calculated decrease, a laser device may be adjusted to compensate for the decrease in delivered energy due to the accumulated substance(s), thus stabilizing the amount of energy delivered to the target.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: May 29, 2012
    Assignee: AMO Manufacturing USA, LLC.
    Inventor: Keith Holliday
  • Patent number: 8152796
    Abstract: Apparatus and method of performing percutaneous laser spinal disc decompression with the patient retaining consciousness. The clear plastic hub of a discectomy needle has a translucent hub with a chamber which is filled with a saline solution prior to insertion of an optical fiber of a laser apparatus through the needle. Gas production from the vaporization of the nucleus of the disc by the optical fiber of the laser apparatus forms bubbles in the water or saline fluid interface thereby providing the physician with an indication of the rate of vaporization of the disc nucleus. In addition, the detection of gas bubbles in an awake, responsive patent facilitates (a) determining the appropriate amount of laser energy required, (b) confirmation of disc vaporization, (c) following the course of laser surgery, and (d) minimizing the potential for laser associated patient injury.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: April 10, 2012
    Inventor: Marion R. McMillan
  • Patent number: 8142713
    Abstract: A germicidal system and method for deactivating pathogens on the surface of a bodily extremity protected by a prophylactic covering substantially opaque to UV-C radiation. The device includes an enclosure having one or more openings through which the extremity can be inserted. The enclosure contains a radiation source configured to produce germicidal radiation having a wavelength of about 253.7 nm. The openings are configured relative to the radiation source such that the inserted extremity is in close proximity to the radiation source. The prophylactic covered extremity is preferably a gloved hand thereby sanitizing the surface of the glove. The extremity inserted is preferably exposed for a predetermined period of time to ensure a desired level of sanitization. Optionally, the device can include an orientation detector to determine the position of the user's hand and the spread of the user's fingers, and a surface detector to determine whether the user's hand is covered by a glove.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 27, 2012
    Assignee: Germgard Lighting, LLC
    Inventor: Eugene I. Gordon
  • Patent number: 8137340
    Abstract: The present invention discloses a high power diode-pumped laser for laser ablation of soft tissue. The present invention contemplates to operate the high power diode-pumped solid-state laser at a continuous Q-switching mode and at a big number of transverse modes. The present invention also contemplates to reduce beam divergence and beam spot size and thus to increase power density of the laser on target tissue to improve the speed of tissue ablation. The present invention further contemplates to minimize power consumption such that external water-cooling or secondary cooling loop can be eliminated. The present invention even further contemplates to implement combined mechanisms to protect intracavity optics from power damage. Finally, the present invention contemplates hospitals and surgeon offices to use the high power diode-pumped laser for soft tissue ablation with standard electrical wall-plug outlet and elimination of inconvenient external water-cooling or secondary cooling loop.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: March 20, 2012
    Assignee: Applied Harmonics Corporation
    Inventors: Ming Lai, Liyue Mu, Kangze Cai, Weiguo Luo
  • Publication number: 20120022511
    Abstract: An apparatus (100) has a pump module (104) providing pump energy, a resonator (106) and a controller (187). The resonator (106) includes a gain medium (102) receiving the pump energy from the pump module and producing light; reflective surfaces (110, 156, 158, 160, 162) reflecting light produced by the gain medium back toward the gain medium; and a variable light attenuator (152) receiving light produced by the gain medium. The controller (187) controls the amount of light attenuated by the variable light attenuator such that the apparatus emits windows (306, 308, 310) of pulses of laser light at spaced time intervals, each window containing a plurality of pulses of laser light and each interval (326, 327) between windows being larger than an interval (318) between pulses within a window. The emitted windows of pulses (320, 322) of laser light heat tissue to a temperature that causes coagulation without vaporization.
    Type: Application
    Filed: March 26, 2010
    Publication date: January 26, 2012
    Applicant: AMS RESEARCH CORPORATION
    Inventors: Hyun Wook Kang, Michael Ray Hodel, Raymond Adam Nemeyer
  • Patent number: 8088124
    Abstract: A system and method for ocular surgery includes a delivery system for generating and guiding a surgical laser beam to a focal point in a treatment area of an eye. Additionally, a contact device is employed for using the eye to establish a reference datum. Further, an optical detector is coupled to the beam path of the surgical laser to create a sequence of cross-sectional images. Each image visualizes both the reference datum and the focal point. Operationally, a computer then uses these images to position and move the focal point in the treatment area relative to the reference datum for surgery.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: January 3, 2012
    Assignee: Technolas Perfect Vision GmbH
    Inventors: Frieder Loesel, Mathias Glasmacher, Ulrich von Pape
  • Publication number: 20110300504
    Abstract: Method and laser processing device to process tissue. In a general aspect, the method to process tissue may include applying a photosensitizer into an area surrounding a region of the tissue to be processed, and irradiating the region of the tissue to be processed with the pulsed processing laser beam, the laser beam emitting laser pulses with a temporal full width at half maximum in a range between about 100 femtosecond and about 1 nanosecond. In another general aspect, the laser processing device to process tissue may include a laser radiation source to provide a pulsed processing laser beam providing emitting laser pulses, a laser beam decoupling unit to decouple the laser beam towards a region of the tissue to be processed, and an output device to output a photosensitizer in a direction of an area surrounding the region of the tissue to be processed, the output device being connected to the decoupling unit.
    Type: Application
    Filed: April 29, 2011
    Publication date: December 8, 2011
    Applicants: Lumera Laser GmbH
    Inventor: Anton KASENBACHER
  • Publication number: 20110196355
    Abstract: A laser can produce pulses of light energy to eject a volume of the tissue, and the energy can be delivered to a treatment site through a waveguide, such as a fiber optic waveguide. The incident laser energy can be absorbed within a volume of the target tissue with a tissue penetration depth and pulse direction such that the propagation of the energy from the tissue volume is inhibited and such that the target tissue within the volume reaches the spinodal threshold of decomposition and ejects the volume, for example without substantial damage to tissue adjacent the ejected volume.
    Type: Application
    Filed: April 22, 2011
    Publication date: August 11, 2011
    Applicant: Precise Light Surgical, Inc.
    Inventors: Gerald Mitchell, Kenneth J. Arnold
  • Publication number: 20110190746
    Abstract: Apparatus and methods are described for laser ablation of tissue. The apparatus and methods utilize a laser source coupled to a fiberoptic laser delivery device and a laser driver and control system with features for protection of the laser delivery device, the patient, the operator and other components of the laser treatment system. Advantageously, the laser source may utilize laser diodes operating at approximately 975 nm, 1470 nm, 1535 nm or 1870 nm wavelengths with a laser power output of at least 60 watts, preferably greater than 80 watts and most preferably 120-150 watts or higher. The invention, which has broad medical and industrial applications, is described in relation to a method for treatment of benign prostatic hyperplasia (BPH) by contact laser ablation of the prostate (C-LAP).
    Type: Application
    Filed: March 4, 2009
    Publication date: August 4, 2011
    Inventors: John L. Rink, Marilyn M. Chou, Jasen Eric Petterson, Mark H.K. Chim
  • Publication number: 20110189628
    Abstract: An improved dental laser system has been developed to cut enamel quickly and precisely, without detrimental residual energy, to provide a replacement for conventional high speed rotary burrs and commercially available dental laser systems.
    Type: Application
    Filed: February 2, 2011
    Publication date: August 4, 2011
    Applicant: Convergent Dental, Inc.
    Inventor: Nathan Paul Monty
  • Patent number: 7970030
    Abstract: A medical laser device is described that generates a laser beam controllable with presets as to pulse duration, pulse repetition rate, power and energy per pulse. The device also provides presets with respect to water and air outputs. Parametric values for power, pulse duration, pulse repetition rate, and energy per pulse as well as for water and air settings may be programmed by an end user and stored as presets.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: June 28, 2011
    Assignee: Biolase Technology, Inc.
    Inventors: Ioana M. Rizoiu, Dmitri Boutoussov
  • Patent number: 7963958
    Abstract: The present invention includes an apparatus and method of surgical ablative material removal “in-vivo” or from an outside surface with a short optical pulse that is amplified and compressed using either an optically-pumped-amplifier and air-path between gratings compressor combination or a SOA and chirped fiber compressor combination, wherein the generating, amplifying and compressing are done within a portable system.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: June 21, 2011
    Assignee: Raydiance, Inc.
    Inventors: Richard Stoltz, Jeff Bullington
  • Patent number: 7957440
    Abstract: A laser device that includes a dual pulse-width laser-pumping circuit generates long and short laser pulses. The laser-pumping circuit employs a single power supply with dual high voltage outputs that are selectable under control of a user. The laser device conveniently generates long and short laser pulses or a mix of the two for performing specialized surgical procedures.
    Type: Grant
    Filed: February 10, 2008
    Date of Patent: June 7, 2011
    Assignee: Biolase Technology, Inc.
    Inventor: Dmitri Boutoussov
  • Patent number: 7951139
    Abstract: A laser surgical apparatus for performing treatment by irradiating a part to be treated by a laser beam is disclosed. This apparatus includes a laser source which emits the treatment laser beam; a multi-articulated arm for delivering the treatment laser beam emitted from the laser source, the arm including a plurality of light delivery pipes, a joint part for jointing the light delivery pipes, the joint part being rotatable with respect to at least one of the pipes jointed by the joint part, a reflection mirror disposed in the joint part; and a surgical instrument is connected to an end of the arm and used for irradiating the treatment laser beam delivered therein through the arm to the treatment part.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: May 31, 2011
    Assignee: Inlight Corporation
    Inventors: Shlomo Assa, Steven Jerome Meyer, John F. Stine
  • Publication number: 20110106068
    Abstract: The present invention provides a surgical footswitch that includes a base, a pedal, an encoder assembly, a wireless interface, and an internal power generator. The pedal mounts upon the base and pivots. The encoder assembly couples to the pedal. As the pedal pivots, the encoder assembly translates the mechanical signal of the pedal into a control signal based on the pedals position and/or orientation. The wireless interface couples the encoder assembly to receive the control signal. The wireless interface also couples the surgical footswitch to a surgical console operable to control and direct surgical equipment. The wireless interface passes the control signal from the encoder to the surgical console, which then directs the surgical equipment based on the control signal. This wireless interface eliminates the tangle of wires or tethers, which may be a hazard in the surgical theater.
    Type: Application
    Filed: July 15, 2010
    Publication date: May 5, 2011
    Inventors: Christopher Horvath, Mark Buczek, T. Scott Rowe
  • Patent number: 7918846
    Abstract: An ophthalmological surgery system and method for performing ablative photodecomposition of the corneal surface by offset image scanning. The image of a variable aperture, such as a variable width slit and variable diameter iris diaphragm, is scanned in a preselected pattern to perform ablative sculpting of predetermined portions of a corneal surface. The scanning is performed with a movable image offset displacement mechanism capable of effecting radial displacement and angular rotation of the profiled beam exiting from the variable aperture. The profiled beam is rotated by rotating the aperture in conjunction with the offset displacement mechanism. The invention enables wide area treatment with a laser having a narrower beam, and can be used in the treatment of many different conditions, such as hyperopia, hyperopic astigmatism, irregular refractive aberrations, post ablation smoothing and phototherapeutic keratectomy.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: April 5, 2011
    Assignee: AMO Manufacturing USA, LLC
    Inventors: John K. Shimmick, William B. Telfair, Charles R. Munnerlyn, Herrmann J. Glocker
  • Publication number: 20110077627
    Abstract: The present invention generally relates to the field of laser treatment of tissue, and particularly, to a system and method for creating microablated channels in skin. The present invention is more particularly directed to treating subsurface tissue through the created channels.
    Type: Application
    Filed: April 15, 2010
    Publication date: March 31, 2011
    Inventors: Vladimir Lemberg, Ray Choye
  • Publication number: 20110040295
    Abstract: A system for cancer treatment comprises a processor and a memory. The processor is configured to receive a target type and a host type and determine one or more illumination source characteristics such that: an illumination of the target type employing the one or more illumination source characteristics induces apoptosis in the target type without initiating thermolysis or ablation of the target type; and an illumination of the host type employing the one or more illumination source characteristics does not substantially induce apoptosis, thermolysis, or ablation in the host type. The memory is coupled to the processor and configured to provide the processor with instructions.
    Type: Application
    Filed: September 22, 2009
    Publication date: February 17, 2011
    Inventor: Brian Pierce
  • Patent number: 7869016
    Abstract: A medical laser system and related methods of monitoring optical fibers to determine if an optical fiber cap on the optical fiber is in imminent danger of failure. The laser system includes a photodetector for converting returned light from the optical fiber cap to an electronic signal for comparison to a trigger threshold value known to be indicative imminent fiber cap failure. The returned light can be the main laser treatment wavelength, an auxiliary wavelength such as an aiming beam or infrared wavelengths generated by a temperature of the optical fiber cap. In the event the electronic signal reaches the trigger threshold value, the laser system can be temporarily shut-off or the power output can be reduced.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: January 11, 2011
    Assignee: AMS Research Corporation
    Inventors: Gerald M. Mitchell, Douglas G. Stinson, Michael W. Sasnett, David S. Jebens, Michael R. Hodel
  • Patent number: 7842029
    Abstract: Devices and methods having a cooling material and reduced pressures to treat biological external tissue using at least one energy source are disclosed. The cooling material may be water, ethyl alcohol, and/or any other material having a vapor pressure below atmospheric pressure. The energy source may be incoherent light, coherent light, a radio frequency, ultrasound, a laser, and/or any other type of energy that can be applied through the device. The features of various embodiments of the device include the generation of positive pressure and/or negative pressure through one or more pressure conduits, the application of an object within a recess of the device, and measurements through various sensors on the device. These sensors may be monitored and/or controlled through a display element having rows and columns of pixels on the device.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: November 30, 2010
    Assignee: Aesthera
    Inventors: Robert S. Anderson, Alon Maor, Steve Young
  • Publication number: 20100292679
    Abstract: A method and apparatus to produce controlled ablation of material through the use of laser pulses of short pulse widths at short wavelengths.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 18, 2010
    Inventors: Paul Hoff, Donald Ronning
  • Publication number: 20100280504
    Abstract: A tissue ablation device employs one or more energy emitters (21) and one or more photoacoustic sensors (22) in a cooperative arrangement for applying a tissue ablation therapy to a tissue (60). In operation, the energy emitters (21) emit a tissue ablation beam (TA) into a target portion of the tissue (60) to form a lesion (61) therein, and alternatively or concurrently emit a photoexcitation beam (PE) into the target portion of the tissue (60) to excite a photoacoustic response from the tissue (60). The photoacoustic sensor(s) (22) sense the photoacoustic response of the tissue (60).
    Type: Application
    Filed: December 15, 2008
    Publication date: November 4, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Robert Manzke, Raymond Chan, Ladislav Jankovic, Daniel R. Elgort, Khalid Shahzad
  • Publication number: 20100217248
    Abstract: Disclosed herein are methods and systems for treatment, such as skin rejuvenation treatment, use non-uniform laser radiation. A high-intensity portion of the laser radiation causes collagen destruction and shrinkage within select portions of the treatment area, while a lower-intensity portion of the radiation causes fibroblast stimulation leading to collagen production across other portions of the treatment area. An output beam from a laser source, such as an Nd:YAG laser, is coupled into an optical system that modifies the beam to provide a large-diameter beam having a nonuniform energy profile, comprised of a plurality of high-intensity zones surrounded by lower-intensity zones within the treatment beam. The higher-intensity zones heat select portions of the target tissue to temperatures sufficient for a first treatment (e.g. collagen shrinkage), while the lower-intensity zones provide sufficient energy for a second treatment (e.g. stimulated collagen production).
    Type: Application
    Filed: December 10, 2009
    Publication date: August 26, 2010
    Inventors: Mirko Georgiev MIRKOV, Rafael Armando Sierra, George E.S. Cho
  • Publication number: 20100145320
    Abstract: Embodiments of the present invention provide a laser surgical system with a basic set of functionality which is remotely controllable to implement an advanced set of functionality. According to one embodiment of the present invention, a basic laser surgical system may be coupled to an advanced control unit such that the basic laser surgical system may be controllable by the advanced control unit to implement a broader set of functionality. By moving less frequently used functionality to an advanced unit, the basic unit may be streamlined with regards to both cost and size, and the learning curve required to utilize the basic unit may be reduced relative to a more feature-ladened unit, allowing the basic unit to be utilized in myriad situations or procedures where an “all-in-one” unit would be less than desirable.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 10, 2010
    Inventors: Christopher Horvath, Laszlo Otto Romoda
  • Patent number: 7717908
    Abstract: A method for performing intrastromal ophthalmic laser surgery requires Laser Induced Optical Breakdown (LIOB) of stromal tissue without compromising Bowman's capsule (membrane). In detail, the method creates cuts in the stroma along planes radiating from the visual axis of the eye. Importantly, these cuts are all distanced from the visual axis. The actual location and number of cuts in the surgery will depend on the degree of visual aberration being corrected. Further, the method may include the additional step of creating cylindrical cuts in the stroma. The radial cuts and cylindrical cuts may be intersecting or non-intersecting depending on the visual aberration being treated.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: May 18, 2010
    Assignee: Technolas Perfect Vision GmbH
    Inventors: Luis Antonio Ruiz, Josef F. Bille
  • Patent number: 7717907
    Abstract: A method for performing intrastromal ophthalmic laser surgery requires Laser Induced Optical Breakdown (LIOB) of stromal tissue without compromising Bowman's capsule (membrane). In detail, the method creates cuts in the stroma over all, or portions of, a plurality of concentric cylindrical surfaces (circular or oval). Importantly, these cuts are all centered on the visual axis of the patient's eye. In accordance with the present invention, cuts can be made either alone or in conjunction with the removal of predetermined volumes of stromal tissue. The actual location of cuts in the surgery will depend on whether the treatment is for presbyopia, myopia, hyperopia or astigmatism.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 18, 2010
    Assignee: Technolas Perfect Vision GmbH
    Inventors: Luis Antonio Ruiz, Josef F. Bille
  • Patent number: 7695468
    Abstract: An endoscopic surgery device for the insertion and recovery of a haemostatic plug at the surgical site. The device comprises a tubular body suitable for slidingly housing the plug, and a plunger slidingly engageable within the tubular body so as to push the plug outside the body, and to position it at the surgical site. The plug is connected to a locator that is radio-opaque, has a suitable color, and has a specific weight that allows it to float relative to the internal organs, blood or other fluids present at the surgical site. A loop is provided at a distal end of the plunger and at a proximal end of the plunger, a first handle is provided for actuating the plunger so as to grip the ball and recover the plug after use by retracting the plunger inside the tubular body.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: April 13, 2010
    Assignee: Microtech S.R.L.
    Inventors: Paolo Dario, Andrea Pietrabissa, Bernardo Magnani, Cesare Stefanini
  • Publication number: 20100087804
    Abstract: A method and system for tissue treatment, wherein the method includes transmitting energy onto tissue to be treated, and maintaining a required distance, during the tissue treatment, between a hand piece and the tissue. The method may further include applying a soldering agent for facilitating tissue soldering, used as adhesive to various types of protein in human tissue, wherein the transmitting energy activates the soldering agent applied on the tissue.
    Type: Application
    Filed: November 1, 2007
    Publication date: April 8, 2010
    Inventors: Ofer Fridman, Ishay Attar, Ziv Attar
  • Publication number: 20100057061
    Abstract: A radiotherapeutic apparatus comprises a source of therapeutic radiation, a source of visible light arranged to cast a light field corresponding to the beam of radiation, and a multileaf collimator for shaping the beams, wherein a filter is disposed in the path of the visible light beam having a plurality of linear dark sections corresponding to leaves of the collimator. This prevents the incident light from falling on the leaves and removes the ghost images at source. By placing the filter in the head, the line can be very narrow and will be blurred into penumbra at the isocentre. This is therefore a very inexpensive yet effective method of reducing ghosting. A mirror can deflect the path of the visible light to correspond to that of the radiation beam, and the filter can be disposed anywhere in the beam path, such as prior to the mirror, subsequent to the mirror and prior to the collimator, or subsequent to the collimator.
    Type: Application
    Filed: November 10, 2006
    Publication date: March 4, 2010
    Applicant: Elekta AB (publ)
    Inventor: Duncan Neil Bourne
  • Publication number: 20100049179
    Abstract: A method of integrating bone and implant material includes drilling a hole in either one of the bone and the implant material through to a junction of the bone and the implant material by applying a laser beam to either one of the bone and the implant material and integrating the bone and the implant material by applying a laser beam to the junction through the hole drilled at the drilling.
    Type: Application
    Filed: August 21, 2007
    Publication date: February 25, 2010
    Inventors: Masaru Kanaoka, Taira Ogita, Tooru Murai, Shigeru Tadano, Masahiro Todoh
  • Publication number: 20100049180
    Abstract: Systems and methods for prophylactic measures aimed at improving wound repair. In some embodiments, laser-mediated preconditioning would enhance surgical wound healing that was correlated with hsp70 expression. Using a pulsed laser (?=1850 nm, Tp=2 ms, 50 Hz, H=7.64 mJ/cm2) the skin of transgenic mice that contain an hsp70 promoter-driven luciferase were preconditioned 12 hours before surgical incisions were made. Laser protocols were optimized using temperature, blood flow, and hsp70-mediated bioluminescence measurements as benchmarks. Bioluminescent imaging studies in vivo indicated that an optimized laser protocol increased hsp70 expression by 15-fold. Under these conditions, healed areas from incisions that were laser-preconditioned were two times stronger than those from control wounds.
    Type: Application
    Filed: October 20, 2008
    Publication date: February 25, 2010
    Applicants: LOCKHEED MARTIN CORPORATION, VANDERBILT UNIVERSITY
    Inventors: Jonathon D. Wells, E. Duco Jansen, Gerald J. Wilmink, Jeffrey M. Davidson, Charles A. Lemaire
  • Publication number: 20100016842
    Abstract: A catheter tip is provided according to various embodiments of the disclosure. The catheter tip may comprise a distal end, a proximal end, and tubular walls. The distal end includes a distal aperture with a distal inside diameter, and the proximal end includes a proximal aperture with a proximal inside diameter. The proximal inside diameter may be greater than the distal inside diameter. The proximal end comprises attachment means configured to couple the proximal end with a distal end of a laser catheter. The tubular walls may include at least an inside taper from the proximal end to the distal end such that the inner tubular walls generally taper from the proximal inside diameter to the distal inside diameter. Moreover, the tubular walls may be configured to direct at least a liquid medium, for example, a biocompatible solution, toward the distal aperture.
    Type: Application
    Filed: July 21, 2008
    Publication date: January 21, 2010
    Applicant: Spectranetics
    Inventor: Clint Fix
  • Publication number: 20100016841
    Abstract: An apparatus is provided for irradiating at least a portion of a patient's brain with electromagnetic radiation to treat stroke, Parkinson's Disease, Alzheimer's Disease, or depression. The apparatus includes a source of the electromagnetic radiation. The apparatus further includes an output optical element including a rigid and substantially thermally conductive material and a surface configured to be in thermal communication with the patient's body. The apparatus further includes a cooler thermally coupled to the output optical element to remove heat from the output optical element. The apparatus further includes a heat sink thermally coupled to the cooler, wherein the heat sink is positioned so that the electromagnetic radiation from the source propagates through the heat sink and through the output optical element.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 21, 2010
    Inventors: Luis De Taboada, Jackson Streeter
  • Publication number: 20090281531
    Abstract: Output optical energy pulses having relatively high energy magnitudes and short durations are combined with optical energy pulses having relatively low energy magnitudes and long durations.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 12, 2009
    Inventors: Ioana M. Rizoiu, Peter Chueh, Manvel Artyom Andriasyan, Dmitri Boutoussov