Condition Responsive Patents (Class 606/12)
  • Publication number: 20150088108
    Abstract: Image-guided therapy of a tissue can utilize magnetic resonance imaging (MRI) or another medical imaging device to guide an instrument within the tissue. A workstation can actuate movement of the instrument via a probe driver, and can actuate energy emission and/or cooling of the instrument to effect treatment to the tissue. The workstation and/or an operator of the workstation can be located outside a vicinity of an MRI device or other medical imaging device, and drive means for positioning the instrument can be located within the vicinity of the MRI device or the other medical imaging device. The instrument can be an MRI compatible laser probe that provides thermal therapy to, e.g., a tissue in a brain of a patient. The probe driver allows for precise positioning, stabilization and manipulation of a probe.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Applicant: MONTERIS MEDICAL CORPORATION
    Inventors: Richard TYC, Salman QURESHI, Mark Andrew GRANT, Luis Filipe Silva FERNANDES, Daniel Prazeres CARREIRA, John SCHELLHORN
  • Patent number: 8968280
    Abstract: Methods and systems for controlling selective targeting of retinal pigment epithelium (RPE) cells within a treatment region of the RPE. The methods include (a) depositing a selected amount of energy on a test region of the RPE; (b) determining an extent to which microcavitation has occurred in the test region; and (c) on the basis of the determination, either depositing the selected amount of energy on the treatment region, or depositing an increased amount of energy on the test region, and repeating steps (b) and (c).
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: March 3, 2015
    Assignee: The General Hospital Corporation
    Inventors: Charles P. Lin, Clemens Alt, Ho Lee
  • Publication number: 20150051497
    Abstract: The present invention is a confocal scanning system for the multispectral imaging of fluorescence from a tissue sample based on the mapping of the spectral components of the fluorescence into the time domain using coated fiber tips disposed on multimode optical fibers. A fiber grating spectrometer based on two serial arrays of coated fiber tips disposed on multi-mode fiber, and delay lines between them provide spectral slices of the florescence. The coated fiber tips are arranged such that the shortest wavelength spectral components are reflected first and the longest wavelength components last. Fiber-based delay lines delay the reflections from each successive fiber tip such that they are uniformly separated in time, and in the order of its spectral wavelength number. The spectral bins are used to colorize the images to show the presence of abnormal tissue at cellular spatial resolution. A second scan with increased laser flux can destroy the diseased tissue revealed by the first scan.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 19, 2015
    Inventors: Gary E. Carver, Sheetal K. Chanda, William A. Morrison, Sarah A. Locknar, Robert L. Johnson, JR.
  • Publication number: 20150045778
    Abstract: An object information acquiring apparatus is used which includes a laser medium that oscillates laser light, an excitation source that excites the laser medium, a voltage accumulator that applies a voltage to the excitation source, a voltage supplier that supplies a voltage to the voltage accumulator, a voltage controller that limits a maximum supplied voltage from the voltage supplier, a receiver that receives a photoacoustic wave generated by an object irradiated with the laser light, and a constructor that acquires characteristic information relating to the object in use of the photoacoustic wave, wherein the voltage controller compares a measured voltage value obtained by implementing division of a supplied voltage from the voltage supplier with a reference voltage value defining the maximum supplied voltage.
    Type: Application
    Filed: July 25, 2014
    Publication date: February 12, 2015
    Inventor: Shigeru Ichihara
  • Publication number: 20150038955
    Abstract: The invention relates to a skin contact detecting device (1) for a device (24) to be secured, comprising a contact piece (2) with a bearing surface (3) and comprising a safety circuit (7) with a light source (6), a photodetector (9), and an analyzing circuit (17). The bearing surface (3) has a light outlet portion (4) and a light inlet portion (5) which is delimited by the light outlet portion. Furthermore, the light source (6) has a main beam direction (8) of the emitted electromagnetic radiation, said main beam direction being oriented in the direction of the light outlet portion (4). The photodetector (9) has a detecting region (10) for electromagnetic radiation, said detecting region being oriented in the direction of the light inlet portion (5). The light source (6) is designed to emit light of a first (13) and at least one second (14) wavelength, and the photodetector (9) is sensitive to the first (13) and the second (14) wavelength.
    Type: Application
    Filed: November 16, 2012
    Publication date: February 5, 2015
    Applicant: PANTEC BIOSOLUTIONS AG
    Inventors: Thomas Bragagna, Clemens Hagen, Arne Heinrich, Peter Krammer, Stefan Summer
  • Patent number: 8945102
    Abstract: A method for performing wavefront-guided laser surgery on a cornea includes the step of calculating a corneal flap configuration based upon collected anatomical information on an eye and wavefront data on a cornea of the eye. Such data may be collected by, for example, an aberrometer, although this is not intended as a limitation. The calculated configuration is transmitted to a processor in controlling relation to a corneal flap-cutting device. The flap-cutting device is used to create a corneal flap based upon the calculated configuration. A system for performing wavefront-guided laser surgery on a cornea includes a processor for receiving the anatomical information and wavefront data. A software package is adapted to calculate the corneal flap configuration and to control a corneal flap-cutting device to cut a corneal flap commensurate with the calculated corneal flap configuration.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: February 3, 2015
    Assignee: Alcon Refractivehorizons, Inc.
    Inventors: Daniel S. Durrie, George H. Pettit, John A. Campin
  • Patent number: 8936593
    Abstract: An improved procedure for performing liposuction is obtained by utilizing a needle that includes a laser source conductor with one end of the needle being configured for insertion into a target adipose skin volume and the other end being coupled to a laser source. The needle may include one or more channels for extracting the treated adipose area. A vacuum source can be used in the extraction of the treated adipose. Further, the first end of the needle may include a cap or end-piece that reduces the build up of carbon deposits. A temperature sensor may be used as input to adjust the laser power and prevent over exposure.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: January 20, 2015
    Assignee: Syneron Medical Ltd.
    Inventors: Haim Epshtein, Boris Vaynberg
  • Publication number: 20150018807
    Abstract: A Raman-based resection system and methods of operation thereof are disclosed. The method includes producing, via an ablation laser, an interrogation electromagnetic radiation over a scanning point of a sample having been treated with a Raman reporter, the ablation laser illuminating the scanning point at an interrogation power level; acquiring, via a detector, a signal indicative of scattered photons emanating from the scanning point following the illumination; determining, via a processor, whether the acquired signal is indicative of the presence of the Raman reporter in and/or upon the scanning point; and, responsive to a determination of the presence of the Raman reporter in and/or upon the scanning point, producing, via the ablation laser, an ablation electromagnetic radiation over the scanning point to ablate tissue at the scanning point, wherein the ablation electromagnetic radiation is at a power level sufficient to ablate tissue.
    Type: Application
    Filed: August 20, 2014
    Publication date: January 15, 2015
    Inventors: Moritz Kircher, Ricardo Toledo-Crow
  • Patent number: 8926600
    Abstract: Systems and methods for removing an epithelial layer disposed over a stromal layer in a cornea irradiate a region of the epithelial layer with a pulsed beam of ablative radiation. The ablative radiation is scanned to vary the location of the beam within the region in accordance with a pulse sequence. The pulse sequence is arranged to enhance optical feedback based on a tissue fluorescence of the epithelial layer. The penetration of the epithelial layer is detected in response to the optical feedback. The use of scanning with the pulse sequence arranged to enhance optical feedback allows large areas of the epithelium to be ablated such penetration of the epithelial layer can be detected.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 6, 2015
    Assignee: AMO Manufacturing USA, LLC
    Inventors: Mark E. Arnoldussen, Jonathan Wong, Benjamin A. Logan, Leander Zickler
  • Patent number: 8926601
    Abstract: An improved system for safe and efficient generation of plasmas and vapors bubbles with continuous wave radiations and low levels of power densities, sufficient to treat medical pathologies and to avoid the creation damage to healthy tissue is provided. Transmission means in different configurations are used to achieve a high absorption in water, which is able to initiate plasma with low levels of power density. Once plasma and vapor bubbles are formed, they absorb other wavelengths in addition to the one that initiated it. Other wavelengths, more efficiently generated by diodes or diode pumped lasers, are added into the beam to improve treatment efficiency. This modulated plasma produces fast tissue ablation and good hemostasis effect with minimal overheating of remaining tissue. After plasma and high-energy vapors are generated, only laser radiation that passes through the plasma bubble directly interacts with soft tissues.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Wolfgang Neuberger, Walter Cecchetti, Leonardo Cecchetti, Filiberto Zattoni
  • Patent number: 8882752
    Abstract: An aesthetic treatment device and method for treating the skin of a patient, the device comprising at least one of a plurality of arc lamps, each arc lamp provided with a reflector for obtaining a substantially collimated beam; a pulse generator for generating a train of pulses of electrical energy for energizing said at least one of a plurality of arc lamps; a control unit for controlling pulse shape, amplitude, width, frequency and timing, for obtaining controllable spectral output and energy of the collimated beam through an application end of the device to a designated area of skin of the patient. The device can further comprise secondary light sources with different spectrum characteristics than the arc lamp as well as various attachments including a position feedback, material dispenser, skin cooler, and docking station for optical fiber.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: November 11, 2014
    Assignee: Epilady 2000 LLC
    Inventor: Oren Aharon
  • Patent number: 8852176
    Abstract: An apparatus for ophthalmological, in particular refractive, laser surgery includes a laser-beam source (20) for emitting a focused treatment laser beam (20?) and also includes an optical-coherence interferometric measuring device (34), for example an OLCR pachymeter, for measuring the z-position of a predetermined point of an eye to be treated in the coordinate system of the laser-surgery apparatus. A computer (C) serving as evaluating and control unit has been set up to assess, on the basis of the measured z-position, whether a desired treatment point of the eye in the z-direction falls in the focal plane of the treatment laser beam or is offset in relation to said plane. Depending on whether or not the patient is correctly positioned in relation to the focal plane, the computer (C) can bring about a range of actions.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: October 7, 2014
    Assignee: WaveLight GmbH
    Inventors: Peter Riedel, Christof Donitzky
  • Publication number: 20140288542
    Abstract: A method of using a probe that emits energy to coagulate lesions is disclosed. The probe is constructed and arranged to emit light from its distal end, either at an angle to its longitudinal axis, or along its longitudinal axis. Optionally, an end reflector may be used to direct the energy in a beam to one side of the fiber end. A reinforcing sleeve for the fiber is mounted to a shielded, Piezo-electric motor constructed and arranged to move the fiber both longitudinally and rotationally within an optional elongate cannula. An MRI system is arranged to generate a series of output signals indicative of temperature in the targeted area. The application of energy is stopped when the temperature at the boundary of the lesion reaches the required hyperthermic temperature. Cooling of the tip portion of the probe is effected by expansion of a supplied cooling fluid through a restrictive orifice into an expansion zone at the probe end.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 25, 2014
    Applicant: Monteris Medical Corporation
    Inventors: Mark G. TORCHIA, Richard Tyc, John S. Pacak, Ken J. McTaggart
  • Publication number: 20140288434
    Abstract: A system for direct imaging and diagnosing of abnormal cells in a target tissue includes a disposable optical speculum and an image acquisition system having the speculum assembled on and mechanically secured thereto. The image acquisition system is arranged to capture at least one of a single image or multiple images or video of cells within the target tissue using at least one of bright field or dark field ring illumination divided into independently operated segments to obtain a plurality of data sets. An image analysis and control unit in communication with the image acquisition system analyzes the data sets and applies algorithms to the data sets for diagnosing abnormal cells.
    Type: Application
    Filed: May 2, 2014
    Publication date: September 25, 2014
    Applicant: Illumigyn Ltd.
    Inventors: Lior Greenstein, Gilad A. Davara, Gad Ganon, David Aviv
  • Publication number: 20140276690
    Abstract: A system can include a microprocessor executable controller configured, based on one or more of total fiber active area of a laser catheter, imaging information regarding the target and/or non-target endovascular structure(s), target endovascular structure characterization information, current location and/or orientation of a distal tip of the laser catheter, and area of contact of the distal tip with the target and/or non-target endovascular structure to select at least one of a fiber active area for each optical channel, a number of optical channels, a configuration of fibers in an optical channel, an optical channel to be irradiated, and an ordering of optical channel irradiation.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: The Spectranetics Corporation
    Inventor: Kenneth P. Grace
  • Publication number: 20140276691
    Abstract: A method of treating diseased cells including the steps of instilling an optical imaging agent to a tissue of a patient, accessing the tissue with a device comprising a fiber tip, emitting a first light from the fiber tip and photodynamically diagnosing abnormal cells, and emitting a second light from the fiber tip to treat the abnormal cells. The first light can be a first power blue light and the second light can be a second power blue light, where the first power blue light can be a lower power than the second power blue light.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventor: Lauretta A. Iwamasa
  • Publication number: 20140272771
    Abstract: A medical treatment apparatus includes a power and control (PAC) device. The PAC device provides electrical power through a cable to a laser handpiece assembly to electrically power a laser source within the handpiece assembly. The PAC device controls operation of the handpiece assembly and detects an identification of the handpiece assembly. The PAC device also monitors data relating to operation of the handpiece assembly. The PAC device uploads, through a communication network to a user assistance center remote from the PAC device, the handpiece assembly identification and the monitored data.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Inventors: Dmitri Boutoussov, David Tuck
  • Publication number: 20140276689
    Abstract: A system includes a laser catheter and a rotating optical member to receive a laser beam along an optical path and rotate to a selected position to redirect the laser beam from the optical path onto one or more selected optical fibers of a laser catheter, wherein a distal end of the laser catheter irradiates an endovascular structure.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: The Spectranetics Corporation
    Inventor: Kenneth P. Grace
  • Publication number: 20140277455
    Abstract: An apparatus for integrating bone and implant material and a method for fabricating an implant material are provided. The apparatus includes a laser applying unit that applies the laser beam to a junction of the bone and the implant material to drill a hole in the bone and melt the implant material, a processing-condition setting unit that sets a processing condition for at least one of the bone and the implant material, and a control unit that controls an application of the laser beam based on the processing condition. The method includes burning a bone by applying a heat source to the bone, foamed-layer forming including melting sintered implant material by applying the heat source to the implant material in a gas atmosphere produced by burning the bone, and forming a foamed layer on melted implant material in which foamed air bubbles are confined and coagulated.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicants: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, Mitsubishi Electric Corporation
    Inventors: Masaru KANAOKA, Taira OGITA, Tooru MURAI, Shigeru TADANO, Masahiro TODOH
  • Patent number: 8814923
    Abstract: There is provided an apparatus, a method and a computer program. The apparatus comprises medical imaging unit for generating a group of voxel values of a patient, a voxel value representing an electromagnetically detectable functional state in a brain voxel of the patient, data processing unit for generating from the group of voxel values of the patient an indication that represents a level of a specific medical disorder of the patient, and illumination unit for directing non-invasively a dose of light to the brain of the patient.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 26, 2014
    Assignee: Valkee Oy
    Inventors: Juuso Nissilä, Antti Aunio
  • Publication number: 20140214015
    Abstract: This invention provides a method and a system for preventing charring at a laser beam emitting site during treatment or diagnosis using a laser catheter for applying a laser beam. The method is intended to control laser beam irradiation of an apparatus equipped with a laser catheter comprising a laser beam transmission means and a laser beam emitting site used for diagnosis or treatment with the irradiation of the inside of a blood vessel or heart cavity with a laser beam. The method for controlling laser beam irradiation is intended to prevent blood charring at a laser emission site of an apparatus equipped with a laser catheter, and the method comprises a step of controlling a laser beam output in accordance with temporal changes in the intensity of the diffuse reflected light beam by erythrocytes applied to the inside of a blood vessel or heart cavity.
    Type: Application
    Filed: April 2, 2014
    Publication date: July 31, 2014
    Applicant: KEIO UNIVERSITY
    Inventors: Tsunenori Arai, Arisa ITO, Mei TAKAHASHI
  • Publication number: 20140207129
    Abstract: The invention provides systems and method for the removal of diseased cells during surgery
    Type: Application
    Filed: March 19, 2014
    Publication date: July 24, 2014
    Applicant: Lumicell, Inc.
    Inventor: W. David Lee
  • Patent number: 8777935
    Abstract: A sensor for detecting the presence of skin is disclosed, one configuration of which uses multiple light emitting diodes, each of a unique wavelength band, and a broad-band photodetector to measure the remission of light at multiple wavelengths from a material being analyzed. Characteristics of the spectral remission of the material are used to discriminate human skin from materials that are not human skin. Further, an aesthetic medical device utilizing such a sensor in which the device is inhibited from operation if skin has not been detected. The incorporation of a skin sensor improves the safety of devices that emit radiation that otherwise would pose a hazard if not directed onto skin.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: July 15, 2014
    Assignee: Tria Beauty, Inc.
    Inventors: Mark V. Weckwerth, Tobin C. Island, Robert E. Grove
  • Publication number: 20140187967
    Abstract: A fluorescence imaging device detects fluorescence in parts of the visible and invisible spectrum, and projects the fluorescence image directly on the human body, as well as on a monitor, with improved sensitivity, video frame rate and depth of focus, and enhanced capabilities of detecting distribution and properties of multiple fluorophores. Direct projection of three-dimensional visible representations of florescence on three-dimensional body areas advantageously permits view of it during surgical procedures, including during cancer removal, reconstructive surgery and wound care, etc. A NIR laser and a human visible laser (HVL) are aligned coaxially and scanned over the operating field of view. When the NIR laser passes over the area where the florescent dye is present, it energizes the dye which emits at a shifted NIR frequency detected by a photo diode. The HVL is turned on when emission is detected, providing visual indication of those positions.
    Type: Application
    Filed: December 5, 2013
    Publication date: July 3, 2014
    Inventors: Fred Wood, Dmitry Yavid, Joe Zott, Ron Goldman
  • Publication number: 20140187879
    Abstract: A fluorescence imaging device detects fluorescence in parts of the visible and invisible spectrum, and projects the fluorescence image directly on the human body, as well as on a monitor, with improved sensitivity, video frame rate and depth of focus, and enhanced capabilities of detecting distribution and properties of multiple fluorophores. Direct projection of three-dimensional visible representations of florescence on three-dimensional body areas advantageously permits view of it during surgical procedures, including during cancer removal, reconstructive surgery and wound care, etc. A NIR laser and a human visible laser (HVL) are aligned coaxially and scanned over the operating field of view. When the NIR laser passes over the area where the florescent dye is present, it energizes the dye which emits at a shifted NIR frequency detected by a photo diode. The HVL is turned on when emission is detected, providing visual indication of those positions.
    Type: Application
    Filed: December 5, 2013
    Publication date: July 3, 2014
    Inventors: Fred Wood, Dmitry Yavid, Joe Zott, Ron Goldman
  • Patent number: 8764737
    Abstract: Techniques, apparatus and systems for laser surgery including imaging-guided surgery techniques, apparatus and systems.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: July 1, 2014
    Assignee: Alcon LenSx, Inc.
    Inventors: Ronald M. Kurtz, Ferenc Raksi, Michael Karavitis
  • Patent number: 8762021
    Abstract: A curve information acquisition unit configured to acquire information on a shape of a curvature changing portion of which a radius of curvature changes according to a predetermined function, a driving support unit configured to perform driving support for the driver at the time when the vehicle moves in the curvature changing portion, and a driving support control unit configured to decide timing at which the driving support unit performs driving support, based on the information on the shape of the curvature changing portion acquired by a curvature changing information acquisition unit.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: June 24, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuki Yoshihama
  • Publication number: 20140171808
    Abstract: A system for direct imaging and diagnosing of abnormal cells in a target tissue includes a disposable optical speculum and an image acquisition system having the speculum assembled on and mechanically secured thereto. The image acquisition system is arranged to capture at least one of a single image or multiple images or video of cells within the target tissue using at least one of bright field or dark field ring illumination divided into independently operated segments to obtain a plurality of data sets. An image analysis and control unit in communication with the image acquisition system analyzes the data sets and applies algorithms to the data sets for diagnosing abnormal cells.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Illumigyn Ltd.
    Inventors: Lior Greenstein, Gilad A. Davara, Gad Ganon, David Aviv
  • Patent number: 8740958
    Abstract: A platform Smart Scalpel system using rapid real-time feedback for effecting laser treatment. The platform system includes an imaging system for rapid real-time detection of tissue characteristics, a processing system for processing the detected characteristics, and a treatment system for effecting treatment in accordance with results of the processing. The platform system provides for preprogramming and real-time inputting conditions and parameters for diagnosis using the imaging system and/or treatment using the treatment system.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: June 3, 2014
    Assignees: Massachusetts Institute of Technology, General Hospital Corporation
    Inventors: Richard Rox Anderson, Ian W. Hunter, Colin J. H. Brenan, Keng Hui Lim, Elizabeth Sebem
  • Patent number: 8734433
    Abstract: A system and method for treating ophthalmic target tissue, including a light source for generating a beam of light, a beam delivery system that includes a scanner for generating patterns, and a controller for controlling the light source and delivery system to create a dosimetry pattern of the light beam on the ophthalmic target tissue. One or more dosage parameters of the light beam vary within the dosimetry pattern, to create varying exposures on the target tissue. A visualization device observes lesions formed on the ophthalmic target tissue by the dosimetry pattern. The controller selects dosage parameters for the treatment beam based upon the lesions resulting from the dosimetry pattern, either automatically or in response to user input, so that a desired clinical effect is achieved by selecting the character of the lesions as determined by the dosimetry pattern lesions.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 27, 2014
    Assignee: Topcon Medical Laser Systems, Inc.
    Inventors: Daniel A. Palanker, Dan Andersen
  • Patent number: 8728135
    Abstract: Aspects for treating spinal cord injuries are disclosed. In a particular aspect, a method includes identifying a neurological level of a spinal cord injury, and activating neurons via laser therapy in which a laser beam is applied to an area proximate to the neurological level. In another aspect, a computer-readable storage medium includes computer-readable instructions for performing various acts. Such acts comprise ascertaining a neurological level of a spinal cord injury, and receiving data corresponding to a severity of the spinal cord injury. The acts further comprise outputting a laser calibration according to the neurological level and the severity. A medical device apparatus is also provided, which includes various computer executable components. The computer executable components include an assessment component configured to receive parameters corresponding to a spinal cord injury, and a calibration component configured to ascertain a laser calibration according to the at least one parameter.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: May 20, 2014
    Assignee: Luberski Inc.
    Inventor: Steven Shaffer
  • Publication number: 20140128881
    Abstract: Image-guided therapy of a tissue can utilize magnetic resonance imaging (MRI) or another medical imaging device to guide an instrument within the tissue. A workstation can actuate movement of the instrument, and can actuate energy emission and/or cooling of the instrument to effect treatment to the tissue. The workstation and/or an operator of the workstation can be located outside a vicinity of an MRI device or other medical imaging device, and drive means for positioning the instrument can be located within the vicinity of the MRI device or the other medical imaging device. The instrument can be an MRI compatible laser probe that provides thermal therapy to, e.g., a tissue in a brain of a patient.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 8, 2014
    Applicant: Monteris Medical Inc.
    Inventors: Richard Tyc, Salman Qureshi, Mark Andrew Grant, Luis Filipe Silva Fernandes, Daniel Prazeres Carreira, John Schellhorn
  • Publication number: 20140121508
    Abstract: Surgical devices and methods for utilizing optical coherence tomography (OCT) to monitor and control tissue sealing are disclosed. The surgical device includes an end effector assembly that includes first and second jaw members that are movable between a first, spaced-apart position and a second proximate position. An OCT system, at least a portion of which is incorporated into the end effector assembly, is configured to sense properties of the tissue, e.g., the structural density of the tissue, disposed between the first and second jaw members. A tissue-sealing energy source may be disposed within at least one of the jaw members and may provide tissue-sealing energy to tissue disposed between the jaw members. A controller, which is coupled to the OCT system and the tissue-sealing energy source, controls the tissue-sealing energy generated by the tissue-sealing energy source based on the properties of the tissue sensed by the OCT system.
    Type: Application
    Filed: October 14, 2013
    Publication date: May 1, 2014
    Applicant: COVIDIEN LP
    Inventors: Cassandra LATIMER, William H. NAU, JR.
  • Patent number: 8706200
    Abstract: The present invention is a Miniature Vein Enhancer that includes a Miniature Projection Head. The Miniature Projection Head may be operated in one of three modes, AFM, DBM, and RTM. The Miniature Projection Head of the present invention projects an image of the veins of a patient, which aids the practitioner in pinpointing a vein for an intravenous drip, blood test, and the like. The Miniature projection head may have a cavity for a power source or it may have a power source located in a body portion of the Miniature Vein Enhancer. The Miniature Vein Enhancer may be attached to one of several improved needle protectors, or the Miniature Vein Enhancer may be attached to a body similar to a flashlight for hand held use. The Miniature Vein Enhancer of the present invention may also be attached to a magnifying glass, a flat panel display, and the like.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 22, 2014
    Inventors: Ron Goldman, Stephen P. Conlon, Vincent Luciano, Fred Wood
  • Patent number: 8702769
    Abstract: A technique for detecting and providing alerts or indications that can be used for controlling or altering the displacement speed of an applicator coupling skin heating energy across a treated skin. A temperature sensor monitors the rate of skin temperature change and provides feedback related to altering the applicator displacement speed according to the rate of skin temperature change. Disclosed is also an applicator for implementing this method.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: April 22, 2014
    Assignee: Syneron Medical Ltd
    Inventors: Shimon Eckhouse, Lion Flyash, Boris Vaynberg
  • Patent number: 8702422
    Abstract: Devices and methods for cleaning an oral cavity by positioning a device suitable for detecting and removing plaque from the surface within the oral cavity having applied thereto a fluorescent agent capable of binding to plaque on the surface. The surface is substantially simultaneously cleaned and irradiated with a light of a wavelength effective to provide a fluorescent emission when contacted with said fluorescent agent. A portion of the fluorescent emission is collected (APV1), and compared to a predetermined threshold value (PPTV). If APV1 is less than PPTV, the device is moved to another section. If APV1 is greater than or equal to PPTV, then another portion of fluorescent emission is collected (APV2). The percent reduction from APV1 to APV2 determines when the device is moved to another section.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: April 22, 2014
    Assignee: McNeil-PPC, Inc.
    Inventors: Curt Binner, Megha Reddy
  • Publication number: 20140088384
    Abstract: A system for detecting tumor margins includes a topical protease-specific, fluorescence imaging probe that is activatable by enzymatic activation to produce a visually differentiated signal upon topical application to a targeted cancer cell that secretes an enzyme that activates the protease-specific, fluorescence imaging probe, means for topically administering the imaging probe to the cancer cell; and an imaging device to detect activation of the imaging probe administered to the cancer cell.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 27, 2014
    Applicant: Case Western Reserve Avenue
    Inventor: James Basilion
  • Publication number: 20140074076
    Abstract: A system for applying energy to nerves surrounding blood vessel can include a piezoelectric array comprising a plurality of ultrasound elements, a controller configured to individually control a phasing of each of the ultrasound elements, a platform on which the ultrasound elements are coupled, wherein the platform is configured to support at least a part of the patient, a programmable generator configured to generate an output power for at least one of the ultrasound elements, and a programmable processor configured to process a signal transmitted from one of the ultrasound elements and reflected back from tissue, and determine a tissue characteristic based on the reflected signal.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 13, 2014
    Applicant: Kona Medical, Inc.
    Inventor: Michael GERTNER
  • Patent number: 8657862
    Abstract: A light system for medical photodynamic applications comprises an incoherent light source emitting a light with a power and a light guide which has a distal end and an entrance interface. The entrance interface and the light source have a position relative to one another and are able to be positioned relative to one another. The light system further comprises a luminous power meter for measuring a luminous power emitted at the distal end of the light guide, a motorized positioning unit for positioning the entrance interface and the light source relative to one another, and a control unit which controls the positioning unit as a function of the luminous power measured by the luminous power meter.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: February 25, 2014
    Assignee: Karl Storz GmbH & Co. KG
    Inventors: Klaus M. Irion, André Ehrhardt, Andreas Schmal
  • Publication number: 20140012241
    Abstract: In vivo hyperthermia treatment of a target tissue can include imaging the target tissue with a magnetic resonance imaging (MRI) system, positioning a hyperthermia treatment probe in or proximate to the target tissue based on the imaging, and heating the target tissue by the probe. During the heating, changes in temperature of a volume of tissue that includes the target tissue can be monitored with the MRI system to determine an amount of the heating applied to the target tissue, and the heating can be terminated when the amount of the heating reaches a predetermined amount.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 9, 2014
    Inventors: Mark G. TORCHIA, Richard TYC, John S. PACAK, Ken J. McTaggart
  • Publication number: 20130310820
    Abstract: A method/device are disclosed for performing procedures in body lumens using a local energy source, with quantitative information to determine treatment parameters, to accomplish efficient, safe body lumen treatment. In one embodiment, the system comprises a special optical fiber connected to a laser device capable of emitting laser radiation, receiving reflected laser radiation and processing signals as fiber is inserted into body lumen. Quantitative measurements are carried out, while advancing the optical fiber along the lumen. In another embodiment, lumen diameter and tissue reflectivity are measured along lumen's length. The system uses accumulated data to calculate/set optimal treatment parameters, such as radiation parameters and withdrawal speed, employing physical-mathematical models relating lumen characteristics to the energy/length required to efficiently treat the lumen. Once optical fiber reaches start position, lumen characteristics have been mapped along its complete length.
    Type: Application
    Filed: February 2, 2012
    Publication date: November 21, 2013
    Inventors: Juan A. Fernandez, Ramiro Pozzo
  • Patent number: 8548562
    Abstract: An imaging and diagnostic system and method to differentiate between malignant and non-malignant tissue of a prostate and surrounding region. The system acquires imaging data from the prostate and surrounding proximal region, and processes the data to differentiate areas of tissue malignancy from non-malignant tissue. A sectioning device or ablative device is provided. The ablative device is operable by automation for receiving the imaging output coordinates and defining the trajectory and quantity of energy or power to be delivered into the malignant tissue. A control system determines calculated energy or power to be deposited into the malignant tissue during ablation, to minimize destruction of the non-malignant tissue within the prostate and surrounding tissue. The system operates on generated ablative device output data.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: October 1, 2013
    Inventors: John Trachtenberg, Masoom A. Haider, Brian Campbell Wilson
  • Patent number: 8512236
    Abstract: A system for securing a patient eye at a known position in an external coordinate system is disclosed. The system includes a head support for supporting the patient's head, an eye-contact device including a concave contact surface adapted to be placed against the front surface of a patient's eye, and a port in fluid communication with the contact surface, by which a vacuum can be applied to the device to remove air between the eye and the contact surface, to stabilize the position of the eye with respect to the contact device, and a biasing mechanism operatively connected to the contact device for biasing the contact device against the eye with a force sufficient to the hold the contact device against the eye, when the eye is stabilized with respect to the device by removal of air between the eye and the device's contact surface.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: August 20, 2013
    Assignee: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Matt Herron
  • Patent number: 8506558
    Abstract: A method and system for performing an ocular irradiation procedure on a patient's eye is disclosed. The system includes a head support for supporting the patient's head, an eye-contact device attachable to the front portion of the patient's eye, to stabilize the position of the eye; and a position detector for determining the position of the contact device in the external coordinate system. A source of a collimated electromagnetic radiation beam in the system is controlled by a beam-positioning assembly for positioning the beam source such that the beam, when activated, is aimed along a selected path at a selected coordinate in the external coordinate system corresponding to a selected target region in the patient's eye.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: August 13, 2013
    Assignee: Oraya Therapeutics, Inc.
    Inventors: Michael Gertner, Mark Arnoldussen, Matt Herron
  • Patent number: 8480660
    Abstract: An apparatus for the treatment of biological, in particular living tissue comprising a treatment laser device 1 for generating a pulsed treatment radiation directed on to a target tissue, in an embodiment additionally including a measurement laser device 2, 3 for generating a pulsed measurement radiation directed on to the target tissue of lower energy and shorter pulse duration than the treatment radiation, a detector device 4 for measuring pressure transients induced by the measurement radiation and a control device 6 for controlling the treatment radiation in dependence on the pressure transients evaluated in respect of a tissue change, wherein a regulating or control algorithm for controlling the treatment radiation is formed from the pressure transients.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: July 9, 2013
    Assignee: Medizinisches Laserzentrum Luebeck GmbH
    Inventor: Ralf Brinkmann
  • Publication number: 20130172863
    Abstract: A photodynamic therapy apparatus as a determining apparatus is the photodynamic therapy apparatus for irradiating a tissue having absorbed photo-sensitive pharmaceutical, the photo-sensitive pharmaceutical absorbing an excitation light and emitting fluorescence, or a tissue absorbing the excitation light and emitting fluorescence, with the excitation light emitted from a tip portion of a laser catheter, including a connector, a light source, and a light detection unit. The laser catheter is capable of being attached/detached to/from the connector. The light source outputs the excitation light to the laser catheter via the connector. The light detection unit detects intensity or a spectrum of the fluorescence, the fluorescence being entered from the laser catheter via the connector, to determine whether the tip portion of the laser catheter contacts the tissue or not.
    Type: Application
    Filed: March 7, 2011
    Publication date: July 4, 2013
    Applicants: KEIO UNIVERSITY, SONY CORPORATION
    Inventors: Shiho Hakomori, Takashi Yamaguchi, Koshi Tamamura, Tsunenori Arai, Arisa Ito
  • Publication number: 20130123763
    Abstract: The present invention relates to a laser beam control structure and method. A laser beam control structure of the present invention comprises a handpiece for irradiating laser beams output from a laser beam output device, on a predetermined part; at least one electrode unit positioned at a human body contact portion of the handpiece and receiving hum noise generated from a human body; and a control unit electrically connected to the electrode unit so as to measure the hum noise applied from the electrode unit and to case the laser beams to be irradiated according to the measured hum noise. According to the present invention, there are advantages in that various types of hum noise generated from a human body are measured without applying an electric current to the human body, and a laser beam is irradiated according to the measured hum noise.
    Type: Application
    Filed: September 10, 2012
    Publication date: May 16, 2013
    Applicant: LUTRONIC CORPORATION
    Inventors: Hak Ki Choi, Tae Ho Ha, Hae Lyung Hwang, Sung Huan Gong
  • Patent number: 8439902
    Abstract: An apparatus for processing material with focused electromagnetic radiation, comprises: a source emitting electromagnetic radiation, means for directing the radiation onto the material, means for focusing the radiation on or in the material, a unit for generating a pattern in the optical path of the electromagnetic radiation, an at least partially reflective surface in the optical path before the focus of the focused radiation, said pattern being imaged onto said at least partially reflective surface through at least part of said directing means and said focusing means, at least one detector onto which an image of the pattern is reflected by said surface and which generates electrical signals corresponding to said image, said image containing information on the position of the focus, a computer receiving said electrical signals and programmed to process said image so as to generate an electrical signal depending on the focal position, and a divergence adjustment element arranged in said optical path and adapt
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 14, 2013
    Assignee: Wavelight GmbH
    Inventors: Berndt Warm, Peter Riedel, Claudia Gorschboth, Franziska Woittennek
  • Patent number: 8439903
    Abstract: An ophthalmic surgery system for delivering light to a surgical site includes an ophthalmic surgical console including a light source to generate light and a processor operably coupled to the light source and a surgical handpiece operably coupled to the ophthalmic surgical console via an optical fiber for delivering light from the from the light source to a surgical site. The processor is configured to adjust the light source to ensure an output light level at the surgical site is substantially consistent over a period of time.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: May 14, 2013
    Assignee: Bausch & Lomb Incorporated
    Inventor: Lutz Andersohn
  • Patent number: 8414504
    Abstract: A blood test device using a laser as a puncture member. More specifically, in a blood test device using a laser as a puncture member, the skin can be fixed at a definite position by raising the punctured skin under negative pressure, and thus the skin is brought into close contact with a blood sensor and the laser is focused on the vicinity of the blood sensor face. Thus, it is possible to provide a blood test device of the laser puncture type in which the skin can be surely punctured while giving little pain to a patient.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: April 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Masaki Fujiwara, Yoshinori Amano, Takeshi Nishida, Toshihiro Akiyama, Masataka Nadaoka, Toshiki Matsumoto, Kenichi Hamanaka, Kiyohiro Horikawa, Koji Miyoshi