Fault Location Patents (Class 702/59)
  • Patent number: 9215045
    Abstract: Signals are transmitted from at least one transmitter that is positioned in an electrical network. The signals that have been transmitted are received a single receiver positioned within the electrical network. At the single receiver, the received signals are analyzed and a determination from the analyzing the received signals is made as to whether a fault has occurred in the electrical network and the approximate location of the fault.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: December 15, 2015
    Assignee: Howard University
    Inventor: Charles J. Kim
  • Patent number: 9182441
    Abstract: A transmission line system, a device for fault protection and computer programs, and a method for locating a fault in a series-compensated two-terminal power transmission line including a compensating bank for providing series-compensation to the transmission line. Different subroutines are utilized for locating faults on line segments from the first terminal to the compensating bank and line segments from the second terminal to the compensating bank. A selection is then made in order to determine a valid result. The subroutines utilize three phase currents synchronized measurements from both terminals and a three phase voltage measurements from one terminal for determining the respective per unit distance to a fault.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: November 10, 2015
    Assignee: ABB Technology AG
    Inventor: Murari Saha
  • Patent number: 9048781
    Abstract: There is provided an abnormality diagnosis device including: a storage storing power generation output data representing a current and a voltage of electrical power generated by each of the subsystems according to sampling time; a correcting unit configured to correct, for each of the subsystems, at least the current out of the current and the voltage in the power generation output data to a current corresponding to a standard insolation condition to generate corrected data including a corrected current and either one of a corrected voltage or the voltage in the power generation output data; a gradient estimating unit configured to produce, for each of the subsystems, an approximation graph of the corrected data and calculate a gradient of the approximation graph; and an abnormality diagnosing unit determining a subsystem for which the gradient satisfies a first threshold to be a subsystem including an abnormal module.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 2, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Makoto Sato, Yoshiaki Hasegawa
  • Publication number: 20150142345
    Abstract: A power supply system for use in a communications system comprises a power supply, a cable interface module, and a processor. The power supply is connected to a local supply, a utility supply, and the communications system. The cable interface module detects an FBC signal associated with the communications system. The processor executes a monitoring process in which the processor monitors the FBC signal for characteristics associated with at least one anomaly and generates a trap signal when an anomaly is detected.
    Type: Application
    Filed: October 16, 2014
    Publication date: May 21, 2015
    Inventors: Robert P. Anderson, Pankaj H. Bhatt, John R. Hewitt, Ronald J. Roybal
  • Patent number: 9037425
    Abstract: Disclosed is a method for determining a position of a forced power oscillation disturbance source in a regional interconnected power grid. According to the method, when forced power oscillation occurs in a regional power grid, an algebraic sum of energy flow directional factors in the regions of the regional interconnected power grid is calculated so as to online determine the position of the disturbance source in real-time. Compared with the conventional disturbance source positioning method based on an energy function, the disturbance source positioning method based on calculation of the energy flow directional factors provided by the invention can reduce the impact of a periodic disturbance component and an initial constant on the determination of an aperiodic component of branch potential energy, thus achieving higher accuracy. Moreover, the integration links are reduced and the calculation process is simplified, thus better meeting the requirements for real-time power grid calculation.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 19, 2015
    Assignees: STATE GRID CORPORATION OF CHINA, WUHAN CENTRAL CHINA ELECTRIC POWER & GRID TECHNOLOGY COMPANY, LTD.
    Inventors: Dongjun Yang, Jisheng Li, Jianyong Ding, Hanping Xu, Chunjian Luo
  • Patent number: 9037424
    Abstract: A system for detecting a short-circuited ultracapacitor cell in a machine is disclosed. The system may have a memory that stores instructions and one or more processors capable of executing the instructions. The one or more processors may be configured to perform cell balancing among ultracapacitor cells arranged within two or more ultracapacitor modules, each ultracapacitor module including at least two ultracapacitor cells connected in series. The one or more processors may be further configured to measure a module voltage generated by each of the plurality of ultracapacitor modules after performing the cell balancing and before applying a load of the machine to the ultracapacitor modules, and determine whether an ultracapacitor cell among the plurality of ultracapacitor cells is short-circuited based on a comparison of the measured module voltages.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: May 19, 2015
    Assignee: Caterpillar Inc.
    Inventors: Igor Dos Santos Ramos, Andrew A. Knitt, Wellington Ying-Wei Kwok, Kaiyu Wang
  • Patent number: 9026400
    Abstract: A method of processing system diagnostic data is provided for identifying likely device fix(s) associated with a diagnostic data, and identifying a repair procedure(s) for correcting the likely fix(s). The process receiving diagnostic data from a system onboard computer at a remote diagnostic database, the database being arranged to map system diagnostic data to possible vehicle fix(s). The possible device fix(s) are prioritized in accordance with ranked matches of the received diagnostic data to combinations of diagnostic data stored in a prior experience database. The prior experience database having an identified fix associated with each stored combination of diagnostic data. The fix associated with the highest ranked combination of diagnostic data is identified as the most likely fix. The most likely fix is mapped to a system repair database, the most likely fix being directly mapped to an associated repair procedure for repairing the most likely fix.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: May 5, 2015
    Assignee: Innova Electonics, Inc.
    Inventors: Ieon C. Chen, Robert Madison, Keith Andreasen
  • Patent number: 9026388
    Abstract: It is determined that a drop in the capacity of a sodium-sulfur battery has proceeded to an abnormal level when both the following expression (1) and expression (2) hold. Qe?Qn?K1 . . . (1) where Qe: abnormal block depth of discharge; Qn: normal block depth of discharge; and K1: block abnormality determination set point (setting value) and Qe?K2 . . . (2) where K2: depth of discharge abnormality determination set point (setting value).
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 5, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Naoki Hirai, Motohiro Fukuhara
  • Patent number: 9021539
    Abstract: “Cradle-to-grave” treatment of leaks begins with technicians logging leakage signal strengths and GPS latitude and longitude coordinates in technicians' vehicles as the technicians go about their daily assignments. Leakage signal strengths and GPS latitude and longitude coordinates are then uploaded to a leakage server. The server calculates leak latitude and longitude coordinates and signal strengths. The system sends the leakage signal strengths and/or calculated leak latitude and longitude coordinates to technicians' vehicles, for example, as components of, or attachments to, work orders. The latitudes and longitudes are converted by GPS navigators in the technicians' vehicles to turn-by-turn directions to the calculated leak locations. The technicians drive to the leaks, identify and repair them, and close the work orders.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: April 28, 2015
    Assignee: Trilithic, Inc.
    Inventor: Raleigh Benton Stelle, IV
  • Patent number: 9006003
    Abstract: A method of detecting bitmap failure associated with physical coordinates is provided. In the method, data of wafer mapping inspection are obtained first, and the data include images of defects in each of layers within a wafer and a plurality of physical coordinates of the defects. Thereafter, a bitmap failure detection is performed to obtain digital coordinates of failure bits within the wafer. The digital coordinates are converted into a plurality of physical locations, and the physical locations are overlapped with the physical coordinates so as to rapidly obtain correlations between the failure bits and the defects.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: April 14, 2015
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Tuung Luoh, Chi-Min Chen, Ling-Wuu Yang, Ta-Hone Yang, Kuang-Chao Chen
  • Patent number: 9009516
    Abstract: In one example, a method includes determining, based on motion data generated by a motion sensor of a wearable computing device, a plurality of motion vectors, wherein one or more components operatively coupled to the wearable computing device are operating in a first power mode during a first time period; determining, based on the plurality of motion vectors, a plurality of values. In this example, the method also includes, responsive to determining that each of the plurality of values satisfies a corresponding threshold, transitioning, by at least one component of the one or more components, from operating in the first power mode to operating in a second power mode.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: April 14, 2015
    Assignee: Google Inc.
    Inventors: Kevin Gabayan, William Haldean Brown
  • Publication number: 20150100255
    Abstract: A method for locating faults in a power network includes reading power network information stored in a database in a data reading step. A power network matrix is created based on the power network information in a power network creating step. A fault current vector is created in a fault current vector creating step. In a fault locating step, a backward substitution is carried out on the fault current vector and the power network matrix to obtain a detection zone vector, and the fault can be located. The fault locating speed of the power network is, thus, increased.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicant: I-SHOU University
    Inventors: JEN-HAO TENG, SHANG-WEN LUAN, CHAO-SHUN CHEN, YI-CHENG LIN, WEI-HAO HUANG
  • Publication number: 20150100256
    Abstract: A non-transitory computer-readable recording medium has stored therein a program that causes a computer to execute an imbalance determining process. The imbalance determining process includes: analyzing fluctuation situations of voltage values of respective phases in a power distribution line using a three-phase three-wire system; determining whether a location at which degree of divergence in voltage values among the phases exceeds a predetermined criterion is present; and outputting a result of the determining.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 9, 2015
    Inventors: Tetsuya KASHIWAGI, Yuichi MATSUFUJI
  • Patent number: 9002673
    Abstract: Methods and apparatus are disclosed to simultaneously, wirelessly test semiconductor components formed on a semiconductor wafer. The semiconductor components transmit respective outcomes of a self-contained testing operation to wireless automatic test equipment via a common communication channel. Multiple receiving antennas observe the outcomes from multiple directions in three dimensional space. The wireless automatic test equipment determines whether one or more of the semiconductor components operate as expected and, optionally, may use properties of the three dimensional space to determine a location of one or more of the semiconductor components. The wireless testing equipment may additionally determine performance of the semiconductor components by detecting infrared energy emitted, transmitted, and/or reflected by the semiconductor wafer before, during, and/or after a self-contained testing operation.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: April 7, 2015
    Assignee: Broadcom Corporation
    Inventors: Arya Reza Behzad, Ahmadreza Rofougaran, Sam Ziqun Zhao, Jesus Alfonso Castaneda, Michael Boers
  • Patent number: 8993943
    Abstract: In some aspects of the invention, a system for operating a plurality of plasma and/or induction heating processing systems includes an operating unit that has a display device on which a graphic user interface can be displayed, at least two power generators that supply power to a plasma process or an induction heating process, and a network that connects the operating unit to the power generators to transmit signals between the operating unit and the power generators. The graphic user interface includes a static region and a dynamic region, and a selection device for selecting information to be displayed in the dynamic region.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: March 31, 2015
    Assignee: TRUMPF Huettinger GmbH + Co. KG
    Inventors: Thomas Pohl, Ulrich Heller
  • Patent number: 8990035
    Abstract: An instrument (1) and a method for detecting partial electric discharges involve acquiring a discharge signal (10), for example picked up by a direct-measuring impedance device (7) through a broadband HF acquisition channel (18), and acquiring the discharge signal (10) in a narrowband LF acquisition channel (180) complying with regulations, using on the LF acquisition channel (180) a trigger controlled in slave mode by a trigger of the broadband HF acquisition channel (18); they also involve acquiring another discharge signal (32) picked up by an indirect-measuring impedance device (8) through a second narrowband LF acquisition channel (180A) and comparing digital signals (34, 34A) generated in the first and second LF acquisition channels (180, 180A), in order to generate a balanced digital signal (36) without components representative of common mode electrical signals present in the measuring circuit.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: March 24, 2015
    Assignee: Techimp HQ S.R.L.
    Inventors: Stefano Serra, Gian Carlo Montanari, Fabiano Bettio
  • Publication number: 20150081235
    Abstract: A location of a fault in an electric power delivery system may be detected using traveling waves instigated by the fault. The time of arrival of the traveling wave may be calculated using the peak of the traveling wave. To determine the time of arrival of the peak of the traveling wave, estimates may be made of the time of arrival, and a parabola may be fit to filtered measurements before and after the estimated peak. The maximum of the parabola may be the time of arrival of the traveling wave. Dispersion of the traveling wave may also be corrected using an initial location of the fault and a known rate of dispersion of the electric power delivery system. Time stamps may be corrected using the calculated dispersion of the traveling wave.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Tony J. Lee, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Publication number: 20150081236
    Abstract: Electric power delivery system fault location systems and methods as disclosed herein include validation of the received traveling wave fault measurements. Validation may include estimating a location of the fault using an impedance-based fault location calculation. Time windows of expected arrival times of traveling waves based on the estimated fault location and known parameters of the line may then be established. Arrival times of traveling waves may then be compared against the time windows. If the traveling waves arrive within a time window, then the traveling waves may be used to calculate the location of the fault.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Publication number: 20150073735
    Abstract: The adaptive fault location method for power system networks utilizes phasor measurement units (PMUs) disposed at disparate locations to obtain synchronized phasor measurements. Three different sets of pre-fault voltage and current phasor measurements are obtained at both terminals of the line under test. The three sets of local PMU measurements at each terminal are used for online calculation of a corresponding system's Thevenin equivalent (TE). This representation of the power system pre-fault network is a reduced two-terminal equivalent. Using the method of multiple measurements with linear regression (MMLR), the three sets of PMU measurements are also employed for online calculation of the transmission line parameters (series resistance, series reactance and shunt susceptance). Online determination of the TEs and line parameters can enhance fault location accuracy by avoiding possible mismatch with the actual parameters due to system loading and other environmental conditions.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: King Fahd University Of Petroleum And Minerals
    Inventors: MOHAMED ALI YOUSEF ABIDO, ALI HASSAN AL-MOHAMMED
  • Patent number: 8963556
    Abstract: A system and method for detecting excess voltage drop (EVD) in a three-phase electrical distribution circuit includes a diagnostic system comprising a processor that is programmed to receive three-phase voltages and currents provided to terminals of the electrical machine, determine fundamental components of the three-phase voltages and currents provided to the terminals, and compute positive, negative, and zero sequence currents from the fundamental components.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: February 24, 2015
    Assignee: Eaton Corporation
    Inventors: Santosh Kumar Sharma, Xin Zhou, Steven Andrew Dimino, Supriya Karnani, Snehal Kale, Rahul Choudhary, Debsubhra Chakraborty
  • Patent number: 8965591
    Abstract: A method for regenerating switching plans based on changing power distribution network conditions includes updating a power distribution network model in response to a power distribution network event, identifying areas of the power distribution network affected by the power distribution network event, identifying switching plans that are impacted by the power distribution network event and regenerating the switching plans that are impacted by the power distribution network event.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Ramon Juan San Andres, Atul Nigam
  • Patent number: 8949048
    Abstract: The invention relates to detection apparatus for detecting a partial discharge from live electrical apparatus, the detection apparatus comprising detection means (Pc) mounted on the live electrical apparatus (T) for the purpose of detecting the occurrence of at least one partial discharge, wherein said detection apparatus further comprises additional means (D1, D2, S) suitable for determining whether a detected partial discharge is internal or external relative to the live apparatus.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: February 3, 2015
    Assignee: Alstom Technology Ltd.
    Inventors: Gilbert Luna, Sébastien Louise
  • Patent number: 8949046
    Abstract: A system is provided to associate containers with handling equipment (HE) in a container storage facility. In the system an operation detector, such as a twistlock sensor that indicates when a container is picked up or dropped off, is installed on a first HE which is a piece of container handling equipment (CHE) that can lift the container. An event detector, such as a vibration sensor or distance measuring radar, is further installed on a second HE that is a tractor with an attached chassis for receiving and transporting a container. The event detector indicates when a container-operation-related event, such as a container pick up or drop off, occurred on the tractor chassis. The two detectors (operation and event) are used by a processor to associate the container with either the CHE or the tractor. The operation and event detectors can further be used in conjunction with position sensors such as a GPS sensor to accurately determine the position of the tractor and the CHE in a container yard.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: February 3, 2015
    Assignee: Mi-Jack Products, Inc.
    Inventors: Han-Shue Tan, Jihua Huang, Ke-Ren Chuang, Fanping Bu, Gregory Keith Warf
  • Patent number: 8941387
    Abstract: An electrical waveform is received over an electrical power line. A plurality of nominal electrical parameters are determined for the electrical power network and the plurality of nominal electrical parameters are associated with a state of the electrical power network in the absence of at least one transitory electrical fault in the network. Subsequently, a plurality of electrical parameters of the electrical waveform are sampled when the at least one transitory electrical fault exists in the network. A plurality of inductances are determined based at least in part upon a comparison of the nominal electrical parameters and the plurality of sampled electrical parameters. The plurality of inductances are representative of inductances present in the network when the at least one transitory electrical fault exists in the network. The plurality of inductances are analyzed to determine a distance and/or direction to the at least one electrical fault.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: January 27, 2015
    Assignees: Howard University, San Diego Gas & Electric Company
    Inventor: Charles Kim
  • Patent number: 8930782
    Abstract: Aspects of the invention relate to yield analysis techniques for generating root cause distribution information. Suspect information for a plurality of failing dies is first generated using a layout-aware diagnosis method. Based on the suspect information, potential root causes for the plurality of failing dies, and suspect feature weights and total feature weights for each of the potential root causes may then be determined. Next, the probability information of observing a particular suspect that is related to a particular root cause may be extracted. Finally, an expectation-maximization analysis may be conducted for generating the root cause distribution information based on the probability information and the suspect information. Heuristic information may be used to prevent the analysis from over-fitting.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: January 6, 2015
    Assignee: Mentor Graphics Corporation
    Inventor: Robert Brady Benware
  • Patent number: 8928489
    Abstract: Techniques and systems are described that assist in predicting, diagnosing, and/or managing an incident in a utility service area. A communication system is provided in the service area to communicate with nodes of the service area. Nodes of the service area may communicate with the communication system using a variety of different communication technologies and/or communication protocols. In some instances, the communication system may detect a communication technology and/or a communication protocol used by a node.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: January 6, 2015
    Assignee: Avista Corporation
    Inventors: Joshua Dominic DiLuciano, Erik Jon Lee, Robert David Cloward, Allen Glenn Cousins
  • Patent number: 8924832
    Abstract: A data storage system configured to efficiently search and update system data is disclosed. In one embodiment, the data storage system can attempt to correct errors in retrieved data configured to index system data. Metadata stored along with user data in a memory location can be configured to indicate a logical address associated in a logical-to-physical location mapping with a physical address at which user data and metadata are stored. The data storage system can generate modified versions of logical address indicated by the metadata and determine whether such modified versions match the physical address in the logical-to-physical mapping. Modified versions of the logical address can be generated by flipping one or more bits in the logical address indicated by the metadata. Efficiency can be increased and improved performance can be attained.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: December 30, 2014
    Assignee: Western Digital Technologies, Inc.
    Inventor: Johnny A. Lam
  • Patent number: 8924171
    Abstract: A device for monitoring the structure of a vehicle, including an electric measurement sensor, a processing circuit connected to the sensor for converting the sensor measurements into monitoring data, and a transmitter for transmitting the monitoring data to a collecting member, wherein the processing circuit is miniaturized and has a small size so as to be contained within a cube measuring 40×40×40 mm or less, is connected to the sensor by a short wired electrical connection, the length of which measures less than 200 mm, includes an onboard battery, and includes a radio means for transmitting the monitoring data to a mobile collecting member temporarily located in the vicinity thereof.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: December 30, 2014
    Assignee: European Aeronautic Defence and Space Company EADS France
    Inventors: Katell Moreau, Vincent Rouet, Sébastien Rolet
  • Patent number: 8924033
    Abstract: The subject specification comprises a generalized grid security platform (GGSP) that can control power distribution and operations in a power transmission and distribution grid (PTDG) in real or near real time. The GGSP can receive data from one or more data sources, including a PMU(s) or an IED(s), which can obtain power system related data and provide at least a portion of such data to the GGSP at a subsecond rate. The GGSP can correlate data from the data sources based at least in part on a temporal, geographical, or topological axis. The GGSP can analyze the data, including performing predictive analysis, e.g., via simulation, root cause analysis, post mortem analysis, or complex event processing, when desired, to facilitate identifying a current or predicted future state of the PTDG, a cause or source of an abnormal condition, or a remedial action execution plan, new operation or maintenance guidance, etc.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: December 30, 2014
    Assignee: Alstom Grid Inc.
    Inventors: Eric Goutard, Spero Mensah
  • Patent number: 8918295
    Abstract: A distributed reflectometry device for diagnosing a network is disclosed. According to one aspect, the device includes at least one transmission line and several reflectometers connected to the network. A transmission portion of the device includes a first memory configured to store at least one test signal and a second memory configured to store weighting coefficients. The transmission portion may also include a first multiplier of a test signal (s) with a coefficient ?m, for producing a measurement m and a digital-to-analog converter connected to the line. A reception portion of the device includes an analog-to-digital converter configured to receive a signal from the line and provide a vector for the measurement m, a second multiplier of configured to multiply the vector with the coefficient ?m, an averaging module, and a post-processing and analysis module.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: December 23, 2014
    Assignee: Commissariat à l'énergie Atomique et aux Énergies alternatives
    Inventor: Adrien Lelong
  • Patent number: 8918297
    Abstract: A storage unit stores a first reference value of an input/output electric signal into/from control unit and a second reference value of an input/output electric signal into/from a monitoring unit. If the amount of deviation between the input/output electric signal into/from the control unit and the first reference value exceeds a threshold value, a first caution signal output unit detects degradation of the control unit and outputs a caution signal. If the amount of deviation between the input/output electric signal into/from the monitoring unit and the second reference value exceeds a threshold value, a second caution signal output unit detects degradation of the monitoring unit and outputs a caution signal. The first and second reference values are acquired and stored in the storage unit in a period between completion of production of the control unit and the monitoring unit and start of the operation thereof.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 23, 2014
    Assignee: NABTESCO Corporation
    Inventor: Shingo Nakagawa
  • Patent number: 8914247
    Abstract: A monitoring system is provided. The monitoring system includes at least one sensor that is configured to detect at least one fault within a power generation system. Moreover, the monitoring system includes a computing device that is coupled to the sensor. The computing device includes an interface that is configured to receive a signal representative of the fault. The computing device also includes a processor that is programmed to identify a location of the fault by considering a plurality of potential fault locations and the processor is programmed to determine at least one restoration solution to restore the fault by considering a plurality of potential restoration solutions.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: December 16, 2014
    Assignee: General Electric Company
    Inventors: Ramon Juan San Andres, Blaine Madison Mucklow, Venu Madhav Tadepalli, Atul Nigam, Prashant Kumar Sharma, Robert Michael Lewkovich, Shitanshu Srivastava, Deepti Bhutani
  • Patent number: 8907658
    Abstract: Some embodiments relate to a system for measuring power produced by a power source. The system includes a first voltage sensor for sensing a first voltage difference between a first voltage and a second voltage and a second voltage sensor for sensing a second voltage difference between a third voltage and the second voltage. The system further includes a first current sensor for sensing a current difference between a first current and a second current, and a second current sensor for sensing a current difference between a third current and the second current. The system further includes a power measuring device that determines the power produced by the power source using the first and second voltage differences and the first and second current differences.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: December 9, 2014
    Assignee: Kohler, Inc.
    Inventor: Isaac S. Frampton
  • Publication number: 20140358455
    Abstract: Embodiments relate to systems for improved relative location identification for overheat, short circuit, and open circuit events. The systems accomplish the improvements by utilizing any, or a combination, of implementing a novel calculation formula, determining and implementing an external offset value, and determining and implementing an internal offset value.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 4, 2014
    Inventor: Aaron Stanley Rogers
  • Publication number: 20140336958
    Abstract: A method for determining relevance values representing a relevance of a combination of an input node of a first number of input nodes with a measurement node of a second number of measurement nodes for a detection of a fault on a chip applies a third number of tests at the first number of input nodes, measures for each test of the third plurality of tests a signal at each of the second number of measurement nodes to obtain for each measurement node of the second number of measurement nodes a third number of measurement values, and determines the relevance values, wherein each relevance value is calculated based on a correlation between the third number of test input choices defined for the input node of the respective combination and the third number of measurement values associated to the measurement node of the respective combination.
    Type: Application
    Filed: June 3, 2014
    Publication date: November 13, 2014
    Applicant: ADVANTEST (SINGAPORE) PTE LTD
    Inventor: Jochen Rivoir
  • Publication number: 20140336959
    Abstract: A method of locating a fault on an electricity transmission line is disclosed. The transmission line has a known line impedance and is operable to transport electricity at one or more system frequencies. The method comprises using measurements of the current and voltage made on the line at one or more frequencies which are different to the system frequency and the known line impedance (Z) to determine a distance to the fault. The method may include monitoring the voltage and the current on the transmission line at the one or more non-system frequencies, and determining from the presence of signals at a non-system frequency on the transmission line that a fault has occurred.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 13, 2014
    Inventors: David Thomas, Mark Sumner, Jia Ke
  • Patent number: 8886485
    Abstract: Some embodiments of the present invention provide a system that determines whether a cooling device in a computer system is responsive to control signals. During operation of the computer system, a control signal is sent to the cooling device. Next, a response of the computer system to the control signal is measured, wherein the response includes a temperature profile. The frequency content of the control signal is then compared to the frequency content of the temperature profile to determine whether the cooling device is responsive to the control signal.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 11, 2014
    Assignee: Oracle America, Inc.
    Inventors: Kalyanaraman Vaidyanathan, Kenny C. Gross, Aleksey M. Urmanov
  • Patent number: 8886474
    Abstract: An apparatus for testing one or more transmission lines is disclosed. The apparatus comprises a processor capable of configuring the apparatus in one of a master mode and a slave mode. The apparatus when configured in the master mode controls the testing of the one or more transmission lines of a cable. The apparatus also includes one or more test modules associated with one or more tests to be performed on the one or more transmission lines. Further, one or more transceivers of the apparatus are capable of one or more of sending and receiving a plurality of signals through the one or more transmission lines. One or more signals of the plurality of signals are associated with the one or more test modules.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: November 11, 2014
    Assignee: Psiber Data Pte Ltd
    Inventors: Patel Arvindbhai Chimanbhai, Xing Zhu, Pandya Harshang Nileshkumar, Ravi Kishore Doddavaram
  • Patent number: 8886476
    Abstract: At a network device of each of a plurality of generator substations that is connected to a multi-terminal transmission line, phasor measurement data produced by a phasor measurement unit at the generator substation is assigned to a multicast stream. A request is received from a network device at any of the plurality of the generator substations to join the multicast stream so that a destination device at any of the plurality of generator substations receives the phasor measurement data carried by the multicast stream. The multicast stream is sent for distribution to one or more destination devices at respective ones of the plurality of generator substations.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Jeffrey D. Taft, Navindra Yadav
  • Publication number: 20140324369
    Abstract: Disclosed is a method for determining a position of a forced power oscillation disturbance source in a regional interconnected power grid. According to the method, when forced power oscillation occurs in a regional power grid, an algebraic sum of energy flow directional factors in the regions of the regional interconnected power grid is calculated so as to online determine the position of the disturbance source in real-time. Compared with the conventional disturbance source positioning method based on an energy function, the disturbance source positioning method based on calculation of the energy flow directional factors provided by the invention can reduce the impact of a periodic disturbance component and an initial constant on the determination of an aperiodic component of branch potential energy, thus achieving higher accuracy. Moreover, the integration links are reduced and the calculation process is simplified, thus better meeting the requirements for real-time power grid calculation.
    Type: Application
    Filed: May 20, 2014
    Publication date: October 30, 2014
    Inventors: Dongjun YANG, Jisheng LI, Jianyong DING, Hanping XU, Chunjian LUO
  • Patent number: 8874391
    Abstract: Techniques are disclosed for computing distance-to-fault (DTF) in communication systems. The techniques can be embodied, for instance, in a DTF system that provides a multi-port probing device and DTF functionality, including computing distances to faults and the fault magnitudes. In addition, the DTF system is further configured with the ability to accurately measure complex reflection coefficient of the UUT, and/or return loss of the UUT. The complex reflection coefficient and/or return loss of the UUT can be computed as a function of known scattering parameters of a multi-port measurement circuit included in the probe of the DTF system.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 28, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Matthew A. Taylor
  • Publication number: 20140316726
    Abstract: A reflectometry method for detecting faults in a cable, comprising a step of comprises acquiring a signal injected into the cable and reflected off at least one singularity of the cable, and the following steps: decomposing the reflected signal into a plurality of time components, constructing, from the time components, a plurality of intermediate signals, calculating the Wigner-Ville transform, of each of the intermediate signals and of the reflected signal, calculating a time-frequency transform equal to the sum of the Wigner-Ville transforms of the time components, based on a linear combination of the Wigner-Ville transforms of each of the intermediate signals and of the reflected signal, detecting and locating the maxima of the time-frequency transform, and deriving the existence and the location of the sought faults therefrom.
    Type: Application
    Filed: October 17, 2012
    Publication date: October 23, 2014
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventor: Maud Franchet
  • Patent number: 8868360
    Abstract: A system and device for detecting insulation defects in a cable are provided. The system and device include using signals received from sensors to detect a partial discharge caused by insulation defects in a cable. The system is passive, without signals being injected into system cables, and may use one or more sensors, data acquisition systems, gateway devices, and monitoring stations and is based on detecting partial discharge from insulation defects and reporting the detection when it occurs.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 21, 2014
    Assignee: General Electric Company
    Inventor: Meena Ganesh
  • Publication number: 20140309953
    Abstract: The method determines shunt caused residual voltages and fault caused residual voltages on the upstream bus and the downstream bus of the line segment within a faulty feeder section of a faulty feeder. The line segment is designated as a faulty line segment when a reference angle of a faulty phase is between a first angle of a difference between an angle of the fault caused residual voltage and an angle of the shunt caused residual voltage on the upstream bus and a second angle of a difference between an angle of the fault caused residual voltage and an angle of the shunt caused residual voltage on the downstream bus. The location of the fault is determined at a point on the faulty line segment with a difference between the angles of the fault and the shunt caused residual voltages in phase with the reference angle.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: Mitsubishi Electric Research Laboratories, Inc.
    Inventor: Hongbo Sun
  • Publication number: 20140303906
    Abstract: A system and a method for detecting deterioration of or cuts in a cable for transmitting signals, includes at least at a first end of the cable a transceiver, at least at a second end of the cable a transceiver, and means for synchronization of the signals transmitted by the transceivers, and the system further includes at least processing means adapted to determine the times of non-reception of the signal at each end of said cable.
    Type: Application
    Filed: March 22, 2012
    Publication date: October 9, 2014
    Applicant: THALES
    Inventor: Bernard Charlot
  • Patent number: 8855951
    Abstract: A diagnostic system for a power distribution circuit including a line, neutral and ground may include a switch configured to electrically connect the line and neutral, a first sensor configured to sense a line to neutral electrical parameter, and a second sensor configured to sense a neutral to ground electrical parameter. The system may also include a processor configured to close the switch, to observe at least some of the sensed electrical parameters before and after the switch is closed, and to identify a fault condition in the line or neutral based on the observed electrical parameters.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: October 7, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Allan Roy Gale, Michael W. Degner, Larry Dean Elie
  • Publication number: 20140278161
    Abstract: A method for determining a signal transmission mode of a plurality of fault indicators includes a data retrieval step, a mode setting step, a number setting step, an analysis step, a first determination step, a calculation step, a second determination step and a mode number increasing step. Based on the above step, the method is able to determine a preferred number of times the fault signals are required to be transmitted between the plurality of fault indicators when a predetermined transmission success rate is met, reducing the energy consumption and prolonging the service life of the indicators.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: I-SHOU UNIVERSITY
    Inventors: Chao-Shun CHEN, Shang-Wen LUAN, Jen-Hao TENG, Kuo-Chun TING, Wei-Hao HUANG
  • Publication number: 20140266238
    Abstract: Systems and methods which utilize spread spectrum sensing on live circuits to obtain information regarding a circuit under test are provided. In some embodiments S/SSTDR testing may be utilized to obtain R, L, C and Z measurements from circuit components. In yet further embodiments, these measurements may be utilized to monitor the output of sensors on a circuit.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicants: The University of Utah Research Foundation
    Inventors: Cynthia Furse, Faisal Khan
  • Publication number: 20140278162
    Abstract: In a power grid capable of electrical power delivery and power line communications, a distribution transformer and at least one smart meter is connected to the power grid. In one embodiment, the distribution transformer is configured to map the smart meters on the power grid to a virtual grid based upon measurements of signal metrics received from the various smart meters on the power grid, and the virtual grid is used to determine if a failure has occurred on the physical grid. A communications failure between nodes on the grid suggests a possible power failure, and the failure can be located using mapping information obtained from the virtual grid. A drop in power consumption on the power grid corroborates outages detected via the communications failure. In one embodiment, a cross phase delta value is computed to adjust the signal strength metrics measured between nodes having differing phases of electrical distribution.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Echelon Corporation
    Inventors: Glen M. Riley, JR., Philip H. Sutterlin, David W. DeMoney, Robert A. Dolin, JR., Roberto Vergani
  • Publication number: 20140236504
    Abstract: In one embodiment, a method for determining electrostatic discharge (ESD) includes building a slider delta comparison map using slider electrical and/or row bar quasi testing results, wherein row bar quasi testing is performed on row bars of multiple sliders, and wherein slider electrical testing is performed on individual sliders, determining whether a test device in a parent job passes primary ESD delta criteria, when the test device fails the primary ESD delta criteria: flagging the parent job of the test device as a reroute job and performing automatic actual parts rerouting for any jobs related to the parent job to pull parts from a test bin as opposed to a supply bin, wherein all parts pulled from the test bin are tested prior to assembly as opposed to parts pulled from the supply bin which are not 100% tested.
    Type: Application
    Filed: June 11, 2013
    Publication date: August 21, 2014
    Inventors: Ciaran A. Fox, Ma. V. C. Maceren, Ray N. M. Tag-at