Resonance (epo) Patents (Class 850/47)
  • Patent number: 9009861
    Abstract: Provided is a fusion measurement apparatus which increases or maximizes the reliability of a measurement. The fusion measurement apparatus includes an atomic microscope for measuring a surface of a substrate at an atomic level, an electron microscope for measuring the atomic microscope and the substrate, and at least one electrode which distorts the path of a secondary electron on the substrate covered by a cantilever of the atomic microscope so that the secondary electron proceeds to an electron detector of the electron microscope.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 14, 2015
    Assignee: Korea Research Institute of Standards and Science
    Inventors: Byong Chon Park, Ju Youb Lee, Woon Song, Jin Ho Choi, Sang Jung Ahn, Joon Lyou, Won Young Song, Jae Wan Hong, Seung Hun Baek
  • Patent number: 8997258
    Abstract: A microscope probe includes a substrate; an optical resonator disposed on the substrate and including an optical resonance property; a displacement member disposed on the substrate and separated from the optical resonator, the displacement member including: a first end disposed distal to the optical resonator; and a second end disposed proximate to the optical resonator; and a coupling member disposed on the substrate and connecting the displacement member to the substrate, wherein the first end is configured to probe a sample and to be displaced in response to a condition of the sample, the displacement member is configured to communicate displacement of the first end to the second end, and the second end is configured to change the optical resonance property in response to displacement of the second end.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: March 31, 2015
    Assignees: National Institute of Standards and Technology, University of Maryland, College Park
    Inventors: Vladimir Aksyuk, Kartik Srinivasan, Houxun Miao, Ivo W. Rangelow, Thomas Michels
  • Patent number: 8975893
    Abstract: In a method for optimization of a flow coding with switching of an additional bipolar dephasing gradient pair, used in a magnetic resonance (MR) phase contrast angiography, the strength of the flow coding is selected depending on the flow velocity in the vessels that should be depicted. MR signals of an examination region are acquired with continuously running overview measurements, with an operator-selected flow coding strength. After the selected flow coding strength is adopted automatically for the next measurement of the continuously running overview measurements, and two partial measurements with different flow codings are implemented for each selected strength and a phase difference image from the two partial measurements is calculated and depicted in real time, and the selected flow coding strength is automatically adopted for the MR phase contrast angiography.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: March 10, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Greiser, Peter Speier
  • Patent number: 8884608
    Abstract: The present disclosure is discloses the development of a new device, system, and method that combines advantages of magnetic resonance and atomic force microscopy technologies, and the utility of the new device, system, and method for a wide range of biomedical and clinical researchers. According to one aspect of the present disclosure, a device for micro-scale spectroscopy is disclosed. The micro-scale spectroscopy device includes a beam having a distal end, a proximal end, a top surface and a bottom surface, where the beam is attached to an anchor at the proximal end and further includes a tip extending substantially perpendicular from the bottom surface at or near the distal end, and a coil having at least one turn mounted to the top surface of the beam at or near the distal end opposite the tip, where the coil is capable of both transmitting and sensing electromagnetic radiation.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: November 11, 2014
    Assignee: Purdue Research Foundation
    Inventors: Corey P. Neu, Babak Ziaie, Teimour Maleki-Jafarabadi, Charilaos Mousoulis
  • Patent number: 8621659
    Abstract: In a method of manufacturing this cantilever for the magnetic force microscope, a magnetic film is formed on a probe at a tip of the cantilever for the magnetic force microscope. When a non-magnetic rigid protective film is formed around the probe, the film is formed from the front of the probe of the cantilever for the magnetic force microscope at an angle (15° to 45°) and from the back of the probe of the cantilever for the magnetic force microscope in two directions each at an angle in a range of (15° to 30°).
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: December 31, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kaifeng Zhang, Takenori Hirose, Masahiro Watanabe, Tetsuya Matsui, Tsuneo Nakagomi, Teruaki Tokutomi
  • Patent number: 8606376
    Abstract: A method of actuating a system comprising a movable component and an actuator configured to move the movable component comprises providing a control signal representative of a desired motion of the movable component. The control signal is supplied to one or more resonators. Each of the one or more resonators has a mode of oscillation representative of at least one elastic mode of oscillation of the system. The control signal is modified by subtracting from the control signal a signal representative of a response of the one or more resonators to the control signal. The actuator is operated in accordance with the modified control signal. Thus, undesirable elastic oscillations of the system which might occur if the system were operated with the original control system can be reduced.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: December 10, 2013
    Assignees: Mitutoyo Corporation, Bundesrepublik Deutschland, Endvertreten Durch den Präsidenten der Physikalisch-Technischen Bundesanstalt
    Inventors: Hartmut Illers, Kazuhiko Hidaka, Akinori Saito, Hans-Ulrich Danzebrink
  • Publication number: 20130198914
    Abstract: An apparatus for performing magnetic resonance force microscopy on one or more large area samples comprising a base plate, one or more heat sink plates coupled to the base plate, one or more suspension mechanisms coupled to the base plate and the heat sink plates, a probe head suspended from the one or more suspension mechanisms for scanning the one or more samples and a sample cylinder comprising a sample stage coupled to the probe head for sample positioning and an outer drum for isolating the sample stage.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Inventor: Doran Smith
  • Patent number: 8359661
    Abstract: Applying an alternating current to a magnetic head as a sample generates an alternate-current magnetic field from the sample. A cantilever includes a probe that is made of a magnetic material or is coated with a magnetic material. The cantilever is displaced when it approaches the sample. Detecting the displacement of the cantilever detects distribution of the magnetic field from the sample. It is possible to fast measure distribution of the magnetic field generated from the sample when a frequency of the alternating current applied to the sample differs from a resonance frequency of the cantilever.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: January 22, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takehiro Tachizaki, Masahiro Watanabe, Hideaki Sasazawa, Minoru Yoshida, Tsuneo Nakagomi, Teruaki Tokutomi
  • Patent number: 8077938
    Abstract: A computer implemented method for diffusion tensor visualization includes receiving diffusion weighted image slice data, segmenting a diffusion tensor field from the diffusion weighted image slice data to determine a three-dimensional triangular mesh, and determining a fractional anisotropy field and a principle diffusion direction field of the diffusion tensor field. The method includes determining a streamline through each surface point on a segmented surface of the diffusion tensor field according to the principle diffusion direction field, determining an oriented texture intensity for the surface points from corresponding streamlines, determining a surface color for the surface points by combining the oriented texture intensity, a color determined from the principle diffusion direction field, and a value of fractional anisotropy field at the surface points, and visualizing the surface points by rendering the surface points having the corresponding surface colors.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: December 13, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Tim McGraw
  • Patent number: 7841016
    Abstract: The invention is directed to a spin-polarized electron injector using a semiconductor tip, in which tip the injected electrons are photocreated by a circularly polarized light excitation incident on the rear of the tip. This tip is supported by a transparent lever or cantilever and undergoes a surface treatment for the purpose of removing the surface oxide layer, to prevent said layer from reforming and to improve the proportion of injected electrons.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: November 23, 2010
    Assignee: Ecole Polytechnique
    Inventors: Daniel Paget, Jacques Peretti, Alistair Rowe, Georges Lampel, Bruno Gerard, Shailendra Bansropun
  • Publication number: 20100205699
    Abstract: Applying an alternating current to a magnetic head as a sample generates an alternate-current magnetic field from the sample. A cantilever includes a probe that is made of a magnetic material or is coated with a magnetic material. The cantilever is displaced when it approaches the sample. Detecting the displacement of the cantilever detects distribution of the magnetic field from the sample. It is possible to fast measure distribution of the magnetic field generated from the sample when a frequency of the alternating current applied to the sample differs from a resonance frequency of the cantilever.
    Type: Application
    Filed: December 30, 2009
    Publication date: August 12, 2010
    Inventors: Takehiro TACHIZAKI, Masahiro Watanabe, Hideaki Sasazawa, Minoru Yoshida, Tsuneo Nakagomi, Teruaki Tokutomi