Jointed Arm Patents (Class 901/15)
  • Patent number: 8460175
    Abstract: According to endoscope manipulator for MIS capable of overcoming disadvantages of multiaxial endoscope manipulator including conventional robot arm and providing compact and light-weight structure to obtain maximum activity space for medical staff, multi-joint arm is configured so that movement of all joints from base link to tip link is manually locked-unlocked by user and not controlled by motors. Endoscope mounted on end of multi-joint arm is manipulated using motors to enable movement of three-degrees of freedom, thereby accomplishing compact and light-weight endoscope manipulator. Tube of endoscope can be press-fitted onto tip of multi-joint arm, and three-axis movement function for vertical, lateral and forward/backward conveyance of endoscope is implemented in tip of multi-joint arm. Since external manual joints are not moved during operation, disturbance or restriction to activities of medical staff can be minimized.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: June 11, 2013
    Assignee: National Cancer Center
    Inventors: Yung-Ho Jo, Kwang-Gi Kim, Kyoung-Won Nam, Young-Woo Kim
  • Patent number: 8449242
    Abstract: An industrial robot may include an arm unit equipped with a hand structured to place a workpiece on the hand, a column structured to support the arm unit so as to enable the arm unit to move in a vertical direction, a hinge provided at an intermediate position in the vertical direction structured to section and fold the column into a base column and an upper column, supporting members placed on each of the base column and the upper column, screw support members placed on each of the supporting members, a screw shaft that is screwed into the screw support members, a base column side and an upper column side of the screw shaft being threaded reversely to each other, and a screw shaft turning means for turning the screw shaft. The industrial robot carries out transfer work of the workpiece at a predetermined working space.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: May 28, 2013
    Assignee: Nidec Sankyo Corporation
    Inventors: Takayuki Yazawa, Akiko Yamada
  • Patent number: 8452443
    Abstract: An industrial robot system including a workcell including a load area and a process area. A detector detects when a human enters the load area. A manipulator is located in the workcell. At least one positioner is adapted to hold a workpiece and to change the orientation of the workpiece about at least one axis while the manipulator processes the workpiece. A station exchanger is movable about an axis and adapted to move, upon command, the manipulator or the positioner between the load and process area. Each of the axes is provided with a motor and a drive unit. An axis controller is adapted to switch between executing a first task in which the axes of the positioner and the station exchanger are commanded to a standstill, and a second task in which the axes of the positioner and the station exchanger are allowed to move.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: May 28, 2013
    Assignee: ABB Research Ltd
    Inventors: Jan H. Karlsson, Antero Lassuri
  • Patent number: 8452447
    Abstract: Telerobotic, telesurgical, and surgical robotic devices, systems, and methods selectively calibrate end effector jaws by bringing the jaw elements into engagement with each other. Commanded torque signals may bring the end effector elements into engagement while monitoring the resulting position of a drive system, optionally using a second derivative of the torque/position relationship so as to identify an end effector engagement position. Calibration can allow the end effector engagement position to correspond to a nominal closed position of an input handle by compensating for wear on the end effector, the end effector drive system, then manipulator, the manipulator drive system, the manipulator/end effector interfacing, and manufacturing tolerances.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: May 28, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Tom Nixon
  • Publication number: 20130131694
    Abstract: Various robotic devices and related medical procedures are disclosed herein. Each of the various robotic devices have an arm. The arm can have two arm components coupled at a joint.
    Type: Application
    Filed: May 11, 2012
    Publication date: May 23, 2013
    Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA
    Inventors: Shane M. Farritor, Dmitry Oleynikov, Stephen Platt, Mark Rentschler, Jason Dumpert, Adnan Hadzialic, Nathan Wood
  • Patent number: 8442686
    Abstract: An articulated arm robot includes a support part capable of extending and contracting upward and downward, a first arm part with one end joined to the support part through a first joint to be rotatable about a yaw axis and having a second joint rotatable about a roll axis between both ends, a second arm part with one end joined to the other end of the first arm part through a third joint to be rotatable about the yaw axis or a pitch axis, an end effector part joined to the other end of the second arm part through a fourth joint to be rotatable about the yaw axis or the pitch axis, and drivers that respectively cause the first to fourth joints to rotate and the support part to extend and contract, and a controller that performs drive control of the drivers of the first to fourth joints by switching the arm between a SCARA mode where the first, second and third arm parts rotate only in a horizontal plane and a perpendicular mode where the second and third arm parts rotate only in a vertical plane.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 14, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Fuminori Saito, Toru Isobe
  • Patent number: 8434992
    Abstract: A first decelerator is placed in an arm base such that a lower end of a decelerator shaft is bared in the arm base. A first arm has a hermetic space which becomes equal in pressure to a hermetic space of the arm base when an upper end of the hollow decelerator shaft is inserted thereinto, and is secured to a first decelerator output shaft. A second decelerator is placed on a distal end of the first arm, and has an input shaft connected to the decelerator shaft. A second arm is secured to an output shaft of the second decelerator, and has no hermetic space formed therein. A link mechanism follows the first and second arms.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: May 7, 2013
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Fumihiro Tara, Nobuyuki Furukawa, Kensuke Ohni
  • Patent number: 8419338
    Abstract: Since both a driving means for lifting a work and a driving means for turning operation must have been arranged in a conventional work transfer apparatus, the apparatus has been large in size and heavy in weight. A work transfer apparatus is provided with a holding tool for holding a window, i.e., the work, and a supporting arm for movably supporting the holding tool. The window held by the holding tool is transferred by a supporting arm to window frames to which the window is to be assembled, and the posture of the window is changed to that corresponds to the window frames. Furthermore, the supporting arm is configured to be a closed loop link mechanism wherein a plurality of links are connected to form a closed loop. The posture of the holding tool one link of a pair of links connected to the holding tool of the supporting arm can be fixed.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 16, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hitoshi Konosu, Tadashi Odashima
  • Patent number: 8414246
    Abstract: An intelligent modular hybrid robot arm system is usable with mobile robots, and is applicable to stationary industrial arms. The intelligent modular hybrid robot arm system provides a large work envelope and a controlled and directed rotational movement for a flexible snake robot arm. The intelligent modular hybrid robot arm system has the ability to change end effector tools and sensors. The platform computers have the ability to interact with other subsystems for coordinated as well as independent tasks. The flexibly snake robot arm can be covered with a flexible sensor network, or “skin”. The intelligent modular hybrid robot arm system can manage its energy use, stores the arm in a compact shape and uses a central support tube offering unobstructed arm access to all sectors of its working envelope.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: April 9, 2013
    Assignee: Cycogs, LLC
    Inventor: Wayland E. Tobey
  • Publication number: 20130079930
    Abstract: An operational space control solution is provided for rigid-body dynamical systems such as humanoid or legged robots. The solution includes an operational space controller that decomposes rigid body dynamics into task space dynamics and null space dynamics. Then, for systems that are fully actuated and have constraints, the controller provides control signals defining task space torques and null space torques for each actuator (e.g., a motor for a rotary joint between two rigid links). In some embodiments, a minimum torque vector is determined such that the controller is a minimum-torque operational space controller. For systems that are underactuated, task and null space dynamics are again considered, and underactuation is addressed by using null space forces to indirectly apply torque at passive degrees of freedom such as at active joints to create task-irrelevant motion that moves passive joints to facilitate task performance by the robot or rigid-body dynamical system.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: DISNEY ENTERPRISES, INC.
    Inventor: MICHAEL N. Mistry
  • Publication number: 20130076902
    Abstract: A robotic charging station for charging a battery of an electric vehicle includes a base plate, a riser coupled with the base plate and extending substantially transverse to the base plate, and a robotic arm. The robotic arm extends from the riser and supports an end effector. The end effector includes a plurality of electrical contacts configured to couple with a receptacle disposed on the electric vehicle. The robotic arm is configured to move the end effector in three degrees of motion.
    Type: Application
    Filed: May 31, 2012
    Publication date: March 28, 2013
    Applicants: Universite Laval, GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dalong Gao, Neil David Mc Kay, Matthew J. Reiland, Simon Foucault, Marc-Antoine Lacasse, Thierry Laliberte, Boris Mayer-St-Onge, Alexandre Lecours, Clement Gosselin, David E. Milburn, Linda Y. Harkenrider
  • Patent number: 8401700
    Abstract: The lower arm assembly for a humanoid robot includes an arm support having a first side and a second side, a plurality of wrist actuators mounted to the first side of the arm support, a plurality of finger actuators mounted to the second side of the arm support and a plurality of electronics also located on the first side of the arm support.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: March 19, 2013
    Assignees: GM Global Technology Operations LLC, The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Chris A. Ihrke, Lyndon Bridgwater, Myron A. Diftler, David M. Reich, Scott R. Askew
  • Publication number: 20130061710
    Abstract: A ball joint mechanism includes a ball joint member, a ball socket member and a plurality of elastic assemblies. The ball joint member has a head portion. The ball socket member defines a spherical engaging socket and a plurality of mounting holes communicating with the spherical engaging socket. The head portion of the ball joint member is assembled into and pivotally engages with the corresponding spherical engaging socket of the ball socket member. The plurality of elastic assemblies are assembled within the mounting holes of the ball socket member, respectively, and elastically resist against a periphery of the ball joint member. One or more kinematic chains and a parallel robot using the ball joint mechanism are also provided.
    Type: Application
    Filed: May 9, 2012
    Publication date: March 14, 2013
    Applicants: Hon Hai Precision Industry Co., Ltd., Hong Fu Jin Precision Industry (ShenZhen) CO., LTD
    Inventor: Bo LONG
  • Patent number: 8393243
    Abstract: A link mechanism arranged between a fixed base and a movable base. The mechanism includes a drive gear reducer, a first arm, a second arm, a connection base, a first link, and a second link. The drive gear reducer includes a body, an input shaft, a first output shaft, and a second output shaft. The first arm is connected to the fixed base and the body of the reducer. The second arm is connected to the second output shaft and the movable base. The connection base is arranged such that the second arm is between the connection base and the reducer, the connection base is connected to the first output shaft. The first link is connected to the fixed base and the connection base. The second link is connected to the connection base and the movable base.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: March 12, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Masatoshi Ono
  • Patent number: 8396598
    Abstract: A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: March 12, 2013
    Assignee: Neuroarm Surgical Ltd.
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fielding, Dennis John Gregoris
  • Publication number: 20130055843
    Abstract: An output member is connected with an input member through three sets of link mechanisms for alteration in attitude. The link mechanism includes end portion link mechanisms on an input side and an output side, respectively, and an intermediate link member. The link mechanism is such that a geometric model of each of the link members expressed by lines represents such a shape as an input side portion and an output side portion relative to a center of the intermediate link member are symmetrical with each other. By actuating two or more sets of the link mechanisms by means of a link mechanism drive source, the attitude of the output member is controlled. Through the inside of an arrangement of the link mechanisms, a flexible wire is provided for transmitting a rotational force in a direction of arrangement of the input and output members.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Inventors: Hiroshi Isobe, Takayoshi Ozaki
  • Patent number: 8387481
    Abstract: A horizontal multijoint type robot is so constructed that it comprises a first arm connected through a first joint shaft to a base, a second arm connected through a second joint shaft to the first arm, and a working shaft provided rotatably and movably up and down on the distal end of the second arm, and that the arm length L1 of the first arm and the arm length L2 of the second arm are equal to each other so that the second arm is able to overlap the first arm.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 5, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Christoph Meyerhoff, Kazushige Akaha
  • Patent number: 8382421
    Abstract: A compact transport apparatus that does not cause pollution to its environment is provided. In a transport apparatus according to a first aspect of the present invention, an installation area of the apparatus is small because first and second rotary shafts are arranged concentrically, and a dead center escaping mechanism has a simple structure with a small thickness. Since a connecting portion of a hand portion can be made thin, an opening of a gate valve through which the hand portion is inserted can be reduced. As a result, it becomes difficult for dust inside a transport chamber to enter a processing chamber. A second aspect of the present invention is directed to a spaced dual shaft-type transport apparatus.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: February 26, 2013
    Assignee: Ulvac, Inc.
    Inventors: Kazuhiro Musha, Hirofumi Minami, Kenji Ago, Takashi Asaishi, Toshio Koike
  • Patent number: 8376685
    Abstract: A substrate transport apparatus having a drive section and a scara arm operably connected to the drive section to move the scara arm. The scara arm has an upper arm and at least one forearm. The forearm is movably mounted to the upper arm and capable of holding a substrate thereon. The upper arm is substantially rigid and is adjustable for changing a predetermined dimension of the upper arm.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: February 19, 2013
    Assignee: Brooks Automation, Inc.
    Inventors: Antonio F. Pietrantonio, Anthony Chesna, Hakan Elmoli, Ulysses Gilchrist
  • Publication number: 20130010081
    Abstract: Systems and methods are disclosed that determine a mapping between a first camera system's coordinate system and a second camera system's coordinate system; or determine a transformation between a robot's coordinate system and a camera system's coordinate system, and/or locate, in a robot's coordinate system, a tool extending from an arm of the robot based on the tool location in the camera's coordinate system. The disclosed systems and methods may use transformations derived from coordinates of features found in one or more images. The transformations may be used to interrelate various coordinate systems, facilitating calibration of camera systems, including in robotic systems, such as an image-guided robotic systems for hair harvesting and/or implantation.
    Type: Application
    Filed: July 8, 2011
    Publication date: January 10, 2013
    Inventors: John A. Tenney, Erik R. Burd, Hui Zhang, Robert F. Biro
  • Publication number: 20130013112
    Abstract: A system, method, and computer program product for controlling an articulated system are described. The system estimates kinematics of body segments of the articulated system and constructs a weighted pseudo-inverse matrix to enforce kinematic constraints as well as achieve dynamic consistency based on the estimated kinematics. The system converts task descriptors to joint commands using the weighted pseudo-inverse matrix and controls the articulated system at both the velocity level and the acceleration level and enforces kinematic constraints using the joint commands.
    Type: Application
    Filed: February 17, 2011
    Publication date: January 10, 2013
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: Behzad Darish
  • Patent number: 8352076
    Abstract: A robot with a camera includes a hand with a finger, a camera disposed on the hand, a robot arm including the hand, and a control portion which searches for a work based on an image obtained by the camera and controls the robot arm. In addition, a unit detects a velocity of the camera, and a unit detects a position of the camera relative to a predicted stopping position of the camera. The control portion permits the camera to take the image used for searching for the work, when the velocity of the camera takes a preset velocity threshold value or lower and the position of the camera relative to the predicted stopping position takes a preset position threshold value or lower.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: January 8, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yuichi Someya
  • Patent number: 8352073
    Abstract: A mobile equipment endowed with a neutrons source possibly in combination with other radiation sources including a robot system that, moving on a controlled trajectory, realize the conditions to observe from different positions the radiation emerging from a specimen either mobile or fixed, properly irradiated, is described.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: January 8, 2013
    Inventor: Giovanni Berti
  • Patent number: 8348590
    Abstract: A device for treating and/or handling articles (10), especially molds in the production of chocolate articles, comprises a gripper (6) that is arranged on arms (3.1-3.5) which can be displaced along a rail (1) on carriages (2.1-2.4). At least three arms (3.1 to 3.4) are connected to the gripper (6), every arm having its own joint (6, 7, 29) on the gripper (6) which joint is independent of the other arm.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: January 8, 2013
    Assignee: KMB Produktions AG
    Inventor: Guido Knobel
  • Patent number: 8352074
    Abstract: A path planning apparatus and method of a robot, in which a path, along which the robot accesses an object to grasp the object, is planned. The path planning method includes judging whether or not a robot hand of a robot collides with an obstacle when the robot hand moves along one access path candidate selected from plural access path candidates along which the robot hand accesses an object to grasp the object, calculating an access score of the selected access path candidate when the robot hand does not collide with the obstacle, and determining an access path plan using the access score of the selected access path candidate.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics
    Inventors: Guochunxu, Kyung Shik Roh, San Lim, Bok Man Lim, Myung Hee Kim
  • Patent number: 8340821
    Abstract: A robot program adjusting system (11) adjusting an operating program of a robot arm having a plurality of axes including an overload identifying means (12) for successively reading operational instructions from said operating program of said robot arm to run simulations and thereby identify an axis where overload is acting from said plurality of axes, an additional operation generating means (13) for generating an additional operation for an axis other than the axis identified by said overload identifying means (12) to lighten the load of said identified axis, and a program adjusting means (15) for adjusting the operating program of said robot arm based on the additional operation generated by said additional operation generating means (13), whereby the load acting on an axis with a large load can be lightened without trial and error.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: December 25, 2012
    Assignee: FANUC Ltd
    Inventors: Takayuki Ito, Yoshiharu Nagatsuka
  • Publication number: 20120321427
    Abstract: A robot has a robot arm, a support structure, and a movable platform. The platform includes a cantilevered member coupled to a guide of the support structure such that motion of the platform is directed along a first direction. The robot further includes first and second timing belts having portions that extend along the first direction and that are disposed on opposite sides of the cantilevered member, and first and second shafts movable with the movable platform. The shafts are coupled to the respective timing belts, to the robot arm such that rotation of the first shaft imparts angular motion to the robot arm and rotation of the second shaft imparts radial motion. The robot also includes a third timing belt to which the platform is coupled and by which it is moved. Motors are provided that impart movement to the timing belts.
    Type: Application
    Filed: June 27, 2012
    Publication date: December 20, 2012
    Applicant: Genmark Automation, Inc.
    Inventor: Alexander Todorov
  • Patent number: 8326590
    Abstract: A method for simulating a movement zone of a robot having at least one data processing installation, simulating at least one movement path of the robot, comprises providing a number of selectable points on the at least one movement path of the robot, calculating a braking path for each of the selectable points, calculating a virtual movement zone based on the braking paths and a maximum position reachable by the robot for the respective at least one movement path, and carrying out the simulation of functions of the robot off-line using a software module.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 4, 2012
    Assignee: ABB Technology AG
    Inventors: Soenke Kock, Adam Loeschner, Christoph Winterhalter, Kevin Behnisch, Roland Krieger
  • Patent number: 8322963
    Abstract: Embodiments of the present invention generally provide an apparatus and method for transferring substrates in a processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint when compared to conventional techniques.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: December 4, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey C. Hudgens, Jagan Rangarajan, Michael R. Rice, Penchala N. Kankanala
  • Patent number: 8326468
    Abstract: Disclosed is a substrate transfer apparatus including a transfer arm of a joint type having an arm portion rotatably connected with a holding portion for holding a substrate, the apparatus including: a heating unit for heating the arm portion; a temperature detection unit for detecting a temperature of the arm portion; and a control unit for heating the arm portion by the heating unit prior to a start of a transfer of the substrate, allowing the transfer of the substrate after a temperature detection value obtained by the temperature detection unit reaches a preset temperature range, and then controlling the heating unit so as to maintain the temperature detection value within the preset temperature range.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: December 4, 2012
    Assignee: Tokyo Electron Limited
    Inventor: Keisuke Kondoh
  • Patent number: 8317453
    Abstract: In a first aspect, the invention is directed to a manipulator that is relatively compact and has a relatively large range of motion. The manipulator includes a linkage that folds back on itself, which reduces the footprint of the linkage. In a particular embodiment, the manipulator includes a linkage and a load balancing device. The linkage includes a first link, a second link, a third link and a fourth link. The first link and second links are rotatably connected to a base about first and second connection axes. The third and fourth links are connected to the first and second links respectively about third and fourth connection axes respectively. The third and fourth links are rotatably connected to a lift arm about fifth and sixth connection axes respectively, wherein the fifth and sixth connection axes are horizontally displaced from the third and fourth connection axes in the direction of the first and second connection axes.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 27, 2012
    Inventor: Ray Givens
  • Patent number: 8297907
    Abstract: An industrial robot for conveying a conveying object may include a hand having a mounting part, an articulated arm part having at least a hand holding arm which is extended and folded when the conveying object is conveyed, a main body part which turnably holds the articulated arm part, and a cam member which is provided in the hand holding arm and which is formed with a cam face with which the holding part is abutted and which is relatively turned with respect to the hand around a turning center of the hand with an extending and folding operation of the articulated arm part. The cam face is formed so that the holding part is retreated from the conveying object before the conveying object is conveyed and, when the conveying object is conveyed, the holding part is moved in a direction to hold the conveying object.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: October 30, 2012
    Assignee: Nidec Sankyo Corporation
    Inventors: Takayuki Yazawa, Junnosuke Koyama
  • Patent number: 8283813
    Abstract: A drive section for a substrate transport arm including a frame, at least one stator mounted within the frame, the stator including a first motor section and at least one stator bearing section and a coaxial spindle magnetically supported substantially without contact by the at least one stator bearing section, where each drive shaft of the coaxial spindle includes a rotor, the rotor including a second motor section and at least one rotor bearing section configured to interface with the at least one stator bearing section, wherein the first motor section is configured to interface with the second motor section to effect rotation of the spindle about a predetermined axis and the at least one stator bearing section is configured to effect at least leveling of a substrate transport arm end effector connected to the coaxial spindle through an interaction with the at least one rotor bearing section.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 9, 2012
    Assignee: Brooks Automation, Inc.
    Inventors: Ulysses Gilchrist, Martin Hosek, Jairo Terra Moura, Jay Krishnasamy, Christopher Hofmeister
  • Publication number: 20120240847
    Abstract: A flexible shaft assembly that transfers torque from a driver to a driven member includes a stub shaft that includes an elongated shaft axis, where the stub shaft couples to the driver, and a flexible coupling that includes a first hub that is adjustably connected to a second hub, where the second hub is coupled to the driven member and includes an external cylindrical interface. The flexible shaft assembly further includes a spacer that includes a spacer body, a shaft clearance hole that passes through the spacer body having a central axis extending therethrough, and a cylindrical guide surface concentric with the shaft clearance hole, where the external cylindrical interface of the flexible coupling is located inside the cylindrical guide surface, and the first hub adjusts relative to the second hub when the elongated shaft axis is out of alignment with the central axis of the shaft clearance hole.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Mark E. Neufelder, Tracy R. Nelson, William L. Huddleston
  • Patent number: 8267636
    Abstract: A substrate transport apparatus including a first shaftless rotary motor including a first stator and a first rotor, the first stator being linearly distributed and the first rotor being coupled to a first arm, a second shaftless rotary motor including a second stator and second rotor, the second stator being linearly distributed and the second rotor being coupled to a second arm, the second arm being connected to the first arm and a first substrate support being coupled to at least one of the first and second arms, wherein the first stator and second stator are configured so that the first and second arms and the first substrate support are inside the stators and a motor output at a connection between the first and second shaftless rotary motors and a respective one of the first and second arms is a resultant force disposed peripheral to the first and second arms.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: September 18, 2012
    Assignee: Brooks Automation, Inc.
    Inventors: Christopher Hofmeister, Robert T. Caveney
  • Publication number: 20120227532
    Abstract: A parallel mechanism with three-dimensional translation and one-dimensional rotation include a fixing rack, a mobile platform and four chains of the same structure which are symmetrically set between the fixing rack and the mobile platform. Each chain has a near rack rod and two parallel far rack rods. The mobile platform includes a main platform and an assistant platform connected by a revolute joint and perpendicular to each other. Each end of the main platform and the assistant platform is connected with a corresponding lower connecting shaft separately.
    Type: Application
    Filed: January 15, 2010
    Publication date: September 13, 2012
    Inventors: Tian Huang, Haitao Liu, Yimin Song, Xueman Zhao, Jiangping Mei, Limin Zhang, Panfeng Wang
  • Publication number: 20120233062
    Abstract: An automated vehicle charging system, that may be done within a service type station, to provide for charging, recharging, or even discharging, of the batteries of an electric vehicle, and generally will include a dispenser, having a cabinet containing all of the instrumentation desired for furnishing the provision of current information relative to the charging of a vehicle, of otherwise, and will include boom means that are highly maneuverable, in order to bring the charging instrument into close proximity of the electrical receptacle of the vehicle being serviced, whether it be at a service type station, or at a curbside type of charging system. Robotics may be used within the structure of these electrical charging systems, to facilitate the charging of any vehicle, by the customer itself, even at a self service type of station.
    Type: Application
    Filed: February 27, 2012
    Publication date: September 13, 2012
    Inventor: Kevin Terrill Cornish
  • Publication number: 20120232690
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 13, 2012
    Applicant: Brooks Automation, Inc.
    Inventors: Ulysses Gilchrist, Robert T. Caveney, Jayaraman Krishnasamy, Mitchell Drew, Jairo T. Moura
  • Patent number: 8265791
    Abstract: A system and method for motion control of a humanoid robot are provided. The system includes a remote controller for recognizing three-dimensional image information including two-dimensional information and distance information of a user, determining first and second reference points on the basis of the three-dimensional image information, calculating variation in angle of a joint on the basis of three-dimensional coordinates of the first and second reference points, and transmitting a joint control signal through a wired/wireless network. The system also includes a robot for checking joint control data from the joint control signal received from the remote controller and varying an angle of the joint to move according to the user's motion.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: September 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Jun Song, Je-Han Yoon, Hyun-Sik Shim
  • Patent number: 8246633
    Abstract: A manipulator includes a yaw axis and a pitch axis disposed as joints on a distal end of a joint shaft and which are actuatable by motors, a needle variable in orientation by the joints, a coaxial connector disposed at a position closer to a proximal end of the manipulator than the joint shaft, and a coaxial cable providing within the joint shaft at least a portion of an electrical connection between the coaxial connector and the needle. A small board providing an impedance matching circuit, and which includes a coil and a capacitor, is interposed between the coaxial connector and the coaxial cable.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 21, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Shigeru Omori
  • Patent number: 8240972
    Abstract: In a robot, a support member is supported to an arm to be reciprocable with respect to one of first and second sides of the arm in a predetermined direction. A rotary member of a converter is coupled to a motor, and a linear movable member of the converter is contacted to the rotary member and linked to the support member. The converter works to transfer rotary motion received by the rotary member from the motor as linear motion to the linear movable member through a transfer contact portion between the rotary member and the linear movable member to thereby move the linear movable member together with the support member in the predetermined direction. The transfer contact portion between the rotary member and the linear movable member is located offset to the one of the first and second sides of the arm relative to the other thereof.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 14, 2012
    Assignee: Denso Wave Corporation
    Inventor: Takamasa Tokumitsu
  • Patent number: 8221050
    Abstract: A robotic is provided which comprises a hub (203); (b) a first lower arm (209) comprising first (213) and second (215) lower arm segments and having a first set of upper arms (229, 231) attached thereto; and (c) a first adjusting means (241) for adjusting the height of the first lower arm segment with respect to the second lower arm segment.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: July 17, 2012
    Assignee: Fabworx Solutions, Inc.
    Inventor: Richard J. Kent
  • Patent number: 8220354
    Abstract: A robot has a robot arm, a support structure, and a movable platform. The platform includes a cantilevered member coupled to a guide of the support structure such that motion of the platform is directed along a first direction. The robot further includes first and second timing belts having portions that extend along the first direction and that are disposed on opposite sides of the cantilevered member, and first and second shafts movable with the movable platform. The shafts are coupled to the respective timing belts, to the robot arm such that rotation of the first shaft imparts angular motion to the robot arm and rotation of the second shaft imparts radial motion. The robot also includes a third timing belt to which the platform is coupled and by which it is moved. Motors are provided that impart movement to the timing belts.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: July 17, 2012
    Assignee: Genmark Automation, Inc.
    Inventor: Alexander Todorov
  • Patent number: 8205522
    Abstract: In a “tip following” robotic arm, the apertures through which control cables pass are arranged to ensure that the cables are maintained in contact with at least a part of the aperture, leading to a more stable and controllable arrangement.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: June 26, 2012
    Assignee: Oliver Crispin Robotics Limited
    Inventors: Robert Oliver Buckingham, Andrew Crispin Graham
  • Publication number: 20120158174
    Abstract: A method and apparatus to generate a humanlike motion of a humanoid robot which is capable of performing a humanlike breathing motion. For example, the method includes calculating target rotational angles of respective rotary joints to perform a basic motion according to a user command, calculating rotational angles of respective rotary joints to perform a breathing motion, and generating the breathing motion by adding up the target rotational angles of the respective rotary joints to perform the basic motion and the rotational angles to perform the breathing motion and providing the angles obtained thereby to respective rotary joints constituting joint units related to the breathing motion, thus providing intimacy and aesthetic stability to users.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kyung Won MOON, Jong Do Choi
  • Patent number: 8196492
    Abstract: A robotic module comprising a housing having opposed first and second sides, and comprising a base, a first end comprising a first drive feature on one of the first and second sides, and a second end comprising a second drive feature on one of the first and second sides. A first rotatable hub is mounted on the first end of the housing and comprises a third drive feature on the side of the housing opposite the side of the first drive feature. A second rotatable hub is mounted on the second end of the housing and comprises a fourth drive feature on the side of the housing opposite the side of the second drive feature. The robotic module is further comprised of a coupling for synchronously rotating the first and second rotatable hubs. A first robotic module may be engaged with a second robotic module to form a robot.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: June 12, 2012
    Inventor: David Sutton Denu
  • Patent number: 8197469
    Abstract: A controlled relative motion system comprising a base support, a manipulable support, and a plurality of hinged doubled pivoting links rotatably coupled to the base support and rotatably coupled to the manipulable support. A plurality of force imparting members has at least one coupled to one of the plurality of doubled pivoting links so as to be able to cause it to rotate. Also, at least one is coupled to the base support so as to be able to cause that base support to move toward or away. This joint can be used with a similar control joint, coupled thereto by coupling shafts held apart by a slidable separator, to form an extended length inserter for inserting an object positionable by the insertion joint in an obstructed location reached along a constricted passageway. These structures, positioned within a barrel, can rotate together but an activator slider, positioned at least partially about that barrel though not rotatable therewith, is coupled to the separator to cause sliding thereof.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: June 12, 2012
    Assignee: Ross-Hime Designs, Inc.
    Inventor: Mark E. Rosheim
  • Publication number: 20120143374
    Abstract: Embodiments of the invention provide an approach for reproducing a human action with a robot. The approach includes receiving data representing motions and contact forces of the human as the human performs the action. The approach further includes approximating, based on the motions and contact forces data, the center of mass (CoM) trajectory of the human in performing the action. Finally, the approach includes generating a planned robot action for emulating the designated action by solving an inverse kinematics problem having the approximated human CoM trajectory as a hard constraint and the motion capture data as a soft constraint.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 7, 2012
    Applicant: DISNEY ENTERPRISES, INC.
    Inventors: Michael MISTRY, Akihiko MURAI, Katsu YAMANE, Jessica Kate HODGINS
  • Publication number: 20120130541
    Abstract: A method and apparatus are disclosed for the direct and safe teaching of a robot. The apparatus consists of a plurality of tactile sensors and electronic circuitry encapsulated in a compact enclosure, and a handle protruding from the enclosure. The handle provides an easy means for an operator to apply an external force and to act on the sensors that generate electronic signals to the robot controller. The signals, proportional to the applied force, carry information that sets boundaries for safe operations, thus protecting the operator from any harm and the robot from damage. While in the teaching mode the operator guides the robot with the apparatus to the predetermined work positions that are recorded in the controller memory. The work position recording can be handled by either activating a pushbutton or by a voice command. The recorded positions are played back when the robot operates in the work mode.
    Type: Application
    Filed: September 7, 2011
    Publication date: May 24, 2012
    Inventor: Leszek A. Szalek
  • Patent number: 8185243
    Abstract: A robot arm, which is driven by an elastic body actuator and has a plurality of joints, is provided with an arm-end supporting member that supports the robot arm when made in contact with a supporting surface that is placed on an arm-end portion of the robot arm and a control unit that controls a force by which the arm-end supporting member and the supporting surface are made in contact with each other, and further controls a position and orientation of the arm-end portion of the robot arm.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: May 22, 2012
    Assignee: Panasonic Corporation
    Inventor: Yasunao Okazaki