With Heating Or Cooling Patents (Class 95/106)
  • Patent number: 6521020
    Abstract: A process for adsorbing hydrocarbons from an acid gas stream includes passing the acid gas stream through an adsorbent which selectively removes hydrocarbons, desorbing the hydrocarbons from the adsorbent and contacting the desorbed hydrocarbons with an acid gas removal solution to remove acid gases which have been coadsorbed with the hydrocarbons. The process is particularly useful in removing hydrocarbons from a hydrogen sulfide-containing stream which is being directed to Claus processing for conversion into elemental sulfur. Useful adsorbents include crystalline titanium silicate molecular sieves containing titania octahedral sites such as ETS-10 and similar materials, as well as high silica aluminosilicate zeolite.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: February 18, 2003
    Assignee: Engelhard Corporation
    Inventors: Kenneth F. Butwell, William B. Dolan, Steven M. Kuznicki
  • Patent number: 6514317
    Abstract: Purification of a hydrogen-based gas mixture containing impurities such as carbon monoxide, nitrogen and methane is effected by contacting the gaseous mixture with a zeolite adsorbent which is a shaped product comprised of at least 95%, as determined on the basis of the moisture equilibrium adsorption value, of a low-silica type X zeolite having a SiO2/Al2O3 molar ratio of 1.9 to 2.1. The zeolite adsorbent is preferably ion-exchanged with lithium and/or calcium. The zeolite adsorbent is preferably prepared by a process including a step of contacting with a caustic solution a calcined product of a mixture of a low-silica type X zeolite and kaolin clay whereby the kaolin clay is converted to a low-silica type X zeolite.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: February 4, 2003
    Assignee: Tosoh Corporation
    Inventors: Shigeru Hirano, Atsushi Harada
  • Patent number: 6514318
    Abstract: A pressure swing adsorption system for separating components of a gas mixture includes a first adsorbent module, and a second a adsorbent module coupled to the a first adsorbent module. The first adsorbent module includes a first gas inlet for receiving the gas mixture, at least one bed of first adsorbent material in communication with the first gas inlet for adsorbing a gas mixture component from the gas mixture, and a first gas outlet in communication with the first adsorbent beds for receiving a first product gas therefrom. The second adsorbent module includes a second gas inlet coupled to the first gas outlet for receiving the first product gas, at least one second bed of adsorbent material in communication with the second gas inlet for adsorbing a first product gas component from the first product gas, and a second gas outlet in communication with the second adsorbent beds for receiving a second product gas therefrom.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: February 4, 2003
    Assignee: QuestAir Technologies Inc.
    Inventor: Bowie G. Keefer
  • Patent number: 6508862
    Abstract: The present invention provides apparatus and methods for separating fluid components. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of fluid components separated in short times using relatively compact hardware.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 21, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Bruce F. Monzyk, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr.
  • Patent number: 6503298
    Abstract: The present invention provides apparatus and methods for separating hydrogen. In preferred embodiments, the apparatus and methods utilize microchannel devices with small distances for heat and mass transfer to achieve rapid cycle times and surprisingly large volumes of hydrogen separated in short times using relatively compact hardware.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 7, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Bruce F. Monzyk, Anna Lee Y. Tonkovich, Yong Wang, David P. VanderWiel, Steven T. Perry, Sean P. Fitzgerald, Wayne W. Simmons, Jeffrey S. McDaniel, Albert E. Weller, Jr., Chad M. Cucksey
  • Patent number: 6503297
    Abstract: A process for separating a gas component from a gas mixture is disclosed. A gas mixture is passed through an adsorption zone which contains an adsorbent which will selectively adsorb a gaseous component from the gas mixture. The adsorption zone contains a layer of monolithic adsorbent and a layer of adsorption beads. Optionally, a third monolithic layer may be employed. The adsorption zone is typically contained in an adsorption vessel.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: January 7, 2003
    Assignee: The BOC Group, Inc.
    Inventors: Yaping Lu, Divyanshu R. Acharya, Arthur I. Shirley, Norberto O. Lemcoff
  • Patent number: 6497750
    Abstract: A pressure swing adsorption process for the separation of nitrogen from a mixture of same with methane, utilizing two separate PSA stages, one containing a nitrogen selective adsorbent and the second containing a methane-selective adsorbent. In the process, the first PSA unit containing a nitrogen selective adsorbent forms a product methane stream and a waste stream rich in nitrogen which is passed to a second PSA unit containing a methane selective adsorbent which forms a product nitrogen stream and a waste stream rich in methane. The waste stream rich in methane can be treated to remove heavy hydrocarbons therefrom before the methane is recycled to feed.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: December 24, 2002
    Assignee: Engelhard Corporation
    Inventors: Kenneth F. Butwell, William B. Dolan, Steven M. Kuznicki
  • Patent number: 6478849
    Abstract: A vapor recovery system for a fuel storage tank. The system includes a pair of VOC adsorbent canisters that alternately recover VOC vapors from the fuel tank ullage or are regenerated. Regeneration of the VOC adsorbent canisters is provided by exhausting the VOC vapors from the VOC canisters using a vacuum pump and back into the fuel tank ullage. When the operating pressure of the fuel tank ullage is elevated, an auxiliary VOC adsorbent canister is operated in parallel with the pair of canisters in order to recover the increased amount of VOC vapors in the tank ullage.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: November 12, 2002
    Assignees: Dresser, Inc., Nitrotec Energy Corporation
    Inventors: Ken W. Taylor, Robert G. McKinney, Herbert E. Reinhold
  • Patent number: 6471749
    Abstract: The present invention relates to a gas purification method for adsorbing and removing impurities by PSA method combined with heating, capable of removing water vapor and carbon dioxide in an economical and effective way.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: October 29, 2002
    Assignee: Nippon Sanso Corporation
    Inventors: Masato Kawai, Morimitsu Nakamura, Shigeo Tooyama
  • Patent number: 6453924
    Abstract: A fluid distribution system for supplying a gas to a process facility such as a semiconductor manufacturing plant. The system includes a main fluid supply vessel coupled by flow circuitry to a local sorbent-containing supply vessel from which fluid, e.g., low pressure compressed gas, is dispensed to a fluid-consuming unit, e.g., a semiconductor manufacturing tool. A fluid pressure regulator is disposed in the flow circuitry or the main liquid supply vessel and ensures that the gas flowed to the fluid-consuming unit is at desired pressure. The system and associated method are particularly suited to the supply and utilization of liquefied compressed gases such as trimethylsilane, arsine, phosphine, and dichlorosilane.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: September 24, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Luping Wang, Terry A. Tabler, James A. Dietz
  • Patent number: 6402809
    Abstract: A process and a system for purifying gas, such as air, before cryogenic distillation, in which at least one energy parameter, chosen from the flow rate of the regeneration gas entering and/or leaving at least one adsorber, the duration of the regeneration step and the regeneration temperature of the regeneration gas entering at least one adsorber, is controlled, modified and/or regulated depending on at least one operating condition chosen from the pressure of the gas to be purified entering and/or leaving at least one adsorber, the flow rate of the gas to be purified entering and/or leaving at least one adsorber, the temperature (Ta) of the gas to be purified entering at least one adsorber and the content of impurities contained in the gas to be purified entering at least one adsorber and depending on the thermal profile of the heat front output by at least one adsorber at the end of regeneration.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 11, 2002
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christian Monereau, Didier Miniscloux, Alain Combier
  • Patent number: 6402814
    Abstract: The regeneration phase of the adsorption cycle includes a depressurization step, a heating/elution step, during which the bed is purged with a hot heating/elution gas, and a cooling/elution step, during which the bed is purged with a cold cooling/elution gas. The cooling/elution step is terminated while the cooling/elution gas leaving the bed is at a temperature markedly higher than the temperature of the gas to be treated and the adsorption phase comprises an initial adsorption step during which the bed is cooled down to the low adsorption temperature due to the effect of the gas to be treated.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: June 11, 2002
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Georges Kraus, Patrick Le Bot, Lian-Ming Sun
  • Patent number: 6387159
    Abstract: A process for adsorbing hydrocarbons from an acid gas stream includes passing the acid gas stream through an adsorbent which selectively removes hydrocarbons, desorbing the hydrocarbons from the adsorbent and contacting the desorbed hydrocarbons with an acid gas removal solution to remove acid gases which have been coadsorbed with the hydrocarbons. The process is particularly useful in removing hydrocarbons from a hydrogen sulfide-containing stream which is being directed to Claus processing for conversion into elemental sulfur. Useful adsorbents include crystalline titanium silicate molecular sieves containing titania octahedral sites such as ETS-10 and similar materials, as well as high silica aluminosilicate zeolite.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: May 14, 2002
    Assignee: Engelhard Corporation
    Inventors: Kenneth F. Butwell, William B. Dolan, Steven M. Kuznicki
  • Patent number: 6372018
    Abstract: A VOC removal or destruction system incorporates a regenerator/reactivator having a cylindrical ceramic tube for receiving contaminated adsorbent activated carbon. Electrodes are provided in the ceramic tube in contact with the activated carbon and a programmable logic controller is connected to control the voltage applied to the electrodes and the current flowing through the activated carbon within the tube. The temperature of the material in the tube is controlled by the programmable controller to maintain a temperature within one of two temperature ranges for regenerating the activated carbon and for reactivating the activated carbon. An inert gas is supplied through the tube in contact with the contaminated adsorbent material; the effluent gas including the stripped VOC's is supplied to an oxidizer for destruction. The oxidizer includes a stoichiometric burner providing combustion products for oxidizing the gaseous adsorbate and for providing carrier gas to the regenerator/reactivator.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: April 16, 2002
    Inventor: Harold R. Cowles
  • Patent number: 6309445
    Abstract: Carbon dioxide is removed from gas streams comprised predominantly of gases that are less strongly adsorbed than is carbon dioxide by passing the gas stream through a bed of type X zeolite having a silicon to aluminum atomic ratio not greater than about 1.15 and at least 75% of the exchangeable cations of which are potassium ions, thereby adsorbing the carbon dioxide from the gas stream. The process is particularly advantageous when applied to the removal of low levels of carbon dioxide from gas streams at temperatures of about 0 to 80° C.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: October 30, 2001
    Assignee: The BOC Group, Inc.
    Inventors: Craig S. Gittleman, Adeola Florence Ojo, Frank R. Fitch, Martin Bulow, Vijay R. Balse, Philip Connolly
  • Patent number: 6309446
    Abstract: Activated carbon having a specific surface area of 700 to 1,500 m2/g, a pore volume of pores having a pore diameter of 10 nm or less of 0.20 to 0.8 cc/g, a proportion of a pore volume of pores having a pore diameter of 0.6 to 0.8 nm to a pore volume of pores having a pore diameter of 10 nm or less of 75% by volume or more, a grain bulk density of 0.4 to 1.1 g/cc, a packing density of 0.30 to 0.70 g/cc, an ash content of 1.0% or less, and a tensile strength of activated carbon grains of 30 kg/cm2 or more.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: October 30, 2001
    Assignees: Kanebo, Ltd., Takachibo Chemical Industry Co., Ltd.
    Inventors: Tsutomu Nakanoya, Yuji Shibsawa, Kazuhiro Hasumi, Koji Ishimori, Satoshi Ibaraki, Akira Takauchi
  • Patent number: 6293998
    Abstract: An apparatus for pressure and temperature swing adsorption processes is described. Such processes include pressure swing adsorption, temperature swing adsorption, and sorption cooling. The apparatus, a spirally wound module, provides high efficiency gas separations by reducing the differential pressure required between the adsorption pressure and the desorption pressure. The apparatus comprises an adsorption zone containing at least one adsorbent paper layer containing a selective adsorbent and an adsorbent spacer spirally wound about a hollow mandrel and in intimate thermal contact with a heat transfer zone. For pressure and temperature swing processes, the adsorption zone is disposed on the outside of the heat transfer zone, and for sorption cooling processes, the heat transfer zone is disposed on the outside of the adsorption zone and the adsorption zone is contained in an envelope-like leaf.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: September 25, 2001
    Assignee: UOP LLC
    Inventors: William B. Dolan, Mark M. Davis, Man-Wing Tang
  • Patent number: 6293999
    Abstract: A process is provided for the concentration and recovery of propylene from propane using an adsorbent comprising AlPO-14 at adsorption temperatures less than 120° C. and an adsorption pressure comprising a propylene partial pressure between about 0.5 bar and about 4 bar. The AlPO-14 adsorbent can be employed as a selective adsorbent for the separation of propylene from mixtures thereof with propane in vacuum swing adsorption processes, thermal swing adsorption processes, and combinations thereof. A simulated moving bed process using vacuum swing adsorption is used to remove propylene from a C3 hydrocarbon stream comprising propylene and propane and recover a high purity propylene product at a high recovery rate. The simulated moving bed vacuum swing adsorption process of the present invention can be employed in a variety of petroleum refining and petrochemical processes to purify and separate propylene from mixtures of propylene and propane alone or in combination with fractionation.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: September 25, 2001
    Assignee: UOP LLC
    Inventors: Linda S. Cheng, Stephen T. Wilson
  • Patent number: 6273939
    Abstract: A process, particularly of the TSA type, for separating impurities of the nitrogen protoxide (N2O) and possibly carbon dioxide (CO2) or ethylene (C2H4) type which are contained in a gas stream, such as air. The impurities of nitrogen protoxide type are removed on a faujasite zeolite having a Si/Al ratio of 1 to 1.5 and containing from 0 to 35% of K+ cations, between 1 and 99% of Na+ cations and between 1 and 99% of Ca2+ cations, preferably at least 50% of Ca2+ cations. The separation is preferably carried out at a temperature of approximately −40° C. to +80° C., preferably at room temperature. Advantageously, the process is employed for prepurifying atmospheric air before cryogenic distillation of the air thus prepurified.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: August 14, 2001
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Cyrille Millet, Serge Moreau, Georges Kraus, Jean-Pierre Gabillard
  • Patent number: 6261345
    Abstract: There are disclosed a process for recovering ammonia which comprises installing a shell and multi-tube adsorber which is equipped with plural adsorption tubes each packed inside with an ammonia adsorbent (e.g. synthetic zeolite) and equipped with a flow mechanism for a heat transfer medium for performing heat exchange through the adsorption tubes, passing an ammonia-containing gas through the adsorption tubes, while cooling the adsorbent with a heat transfer medium (e.g. water) to adsorb the ammonia, and thereafter collecting the adsorbed ammonia through desorption, while heating the adsorbent with a heat transfer medium (e.g. hot water) under reduced pressure; and an apparatus for the above process.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: July 17, 2001
    Assignee: Japan Pionics Co., Ltd.
    Inventors: Yasusada Miyano, Kenji Otsuka, Satoshi Arakawa
  • Patent number: 6251164
    Abstract: Separation of one or more fluidic components from a feed fluid containing a plurality of components is accomplished by adsorbent powder entrained in a stream of fluid, such as gas, and preferably is operated as a temperature swing adsorption process using waste thermal energy from a plant.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: June 26, 2001
    Assignee: Praxair Technology, Inc.
    Inventors: Frank Notaro, Jeffert John Nowobilski, Dariush Habibollih Zadeh
  • Patent number: 6197092
    Abstract: A pressure swing adsorption process for the separation of hydrogen from a mixture of the same with methane, utilizing two separate PSA stages, one containing a nitrogen selective crystalline zeolite, and the second containing a methane selective adsorbent.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: March 6, 2001
    Assignee: Engelhard Corporation
    Inventors: Kenneth F. Butwell, William B. Dolan, Steven M. Kuznicki
  • Patent number: 6120581
    Abstract: A process is provided for the removal of trace amount of aromatic hydrocarbons from a waste feed gas stream comprising sulfur compounds and the aromatic hydrocarbons. An adsorption process employing an adsorbent such as a high silica zeolite adsorbent having a framework silica to alumina ratio greater than about 15 and having a pore size greater than about 6.2 Angstroms is used to remove from the feed gas mixture aromatic hydrocarbon contaminants and permit the recovery of a high purity sulfur product from the treated effluent stream. The adsorption zone comprises at least 2 adsorption beds wherein one of the first adsorption beds is operating in an adsorption mode and the other is being regenerated at a desorption pressure higher than the adsorption pressure. The regeneration is performed in a closed system or partially closed system, and prior to returning a regenerated adsorption zone to adsorption conditions the waste feed gas stream is used to cool and purge the regenerated zone.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: September 19, 2000
    Assignee: UOP LLC
    Inventors: John Markovs, Gordon Thomas Cartwright, Carmen M. Yon, Henry Rastelli
  • Patent number: 6110257
    Abstract: A low concentration gas delivery system utilizing a sorbent-based gas storage and delivery unit including a gas storage and dispensing vessel joined in flow communication with a permeation structure. The storage and dispensing vessel contains a solid-phase physical sorbent medium holding a fluid, which is selectively dispensed from the vessel by pressure differential, concentration differential and/or thermal desorption techniques. The dispensed gas flows to the permeation structure, wherein the desorbed fluid is diffusionally released either as a neat fluid, or into a carrier gas in which the desorbed fluid has a precisely maintained concentration, for applications such as calibration of instruments monitoring fluid concentrations, delivery of dopants for fabrication of microelectronic device structures, or other end use application requiring a precise low concentration of fluid.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: August 29, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Glenn M. Tom
  • Patent number: 6099617
    Abstract: A method is described for providing clean air at desired temperature to an environment. Incoming air possibly contaminated with nuclear biological and chemical contaminants is compressed. The compressed air is cooled in a first heat exchanger. The cooled air from the first heat exchanger is compressed in a secondary compressor. Compressed air from the secondary compressor is cooled in a second heat exchanger. Cooled air from the secondary heat exchanger is directed through a regenerative pressure swing absorption system to provide clean output air with the contaminants removed therefrom. This cleaned air is expanded in a turbine coupled to the secondary compressor, whereby to recover energy from the cleaned air to drive the secondary compressor. The expanded cleaned air from the turbine is utilized to condition air in the environment. The regenerative pressure swing absorption system is purged with air derived from the expanded clean air.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: August 8, 2000
    Assignee: Howden Aircontrol Limited
    Inventor: Edward John Bennett
  • Patent number: 6083298
    Abstract: A process for fabricating a gas storage and dispensing system including a dispenser container for holding a physical sorbent material having sorptive affinity for (i) a sorbable dispensing gas to be held in and subsequently selectively discharged from the dispenser container, and (ii) extraneous sorbables, in which the physical sorbent material, having extraneous sorbables sorbed thereon, is treated to desorb from the sorbent material at least part of the extraneous sorbables, prior to loading the sorbent material into a gas storage and dispensing container.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: July 4, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Luping Wang, James V. McManus
  • Patent number: 6027547
    Abstract: A fluid storage and dispensing system, comprising: a fluid storage and dispensing vessel constructed and arranged for selective dispensing of fluid therefrom; a solid-phase support in the vessel; and an affinity medium on the solid-phase support, wherein the affinity medium reversibly takes up the fluid when contacted therewith, and from which the fluid is disengagable under dispensing conditions. The affinity medium may be a liquid, oil, gel, or solid (porous solid, thin film solid, or bulk solid). The system of the invention may be employed for the storage and dispensing of fluids such as hydride, halide and dopant gases for manufacturing of semiconductor products.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: February 22, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, Duncan W. Brown
  • Patent number: 6004378
    Abstract: In an adsorptive alternating pressure process for the enrichment of air with oxygen using a molecular sieve zeolite in an adsorber, wherein adsorbed components are desorbed under a pressure below the pressure at which air separation and N.sub.2 adsorption is effected and, after desorption, the molecular sieve adsorber is at least partly returned to the air separation pressure with oxygen gas produced in countercurrent to the air separation gas flow, the improvement which comprises cooling product gas and covering the molecular sieve adsorber with the cooled product gas.
    Type: Grant
    Filed: February 24, 1992
    Date of Patent: December 21, 1999
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerhard Reiss, Lothar Puppe
  • Patent number: 5985226
    Abstract: Disclosed is a process for separating chlorine gas from a mixture of gases. The mixture of gases is cooled to a temperature less than 0.degree. C. and is contacted with ice, which results in the formation of chlorine hydrate on the ice. The ice is separated from the mixture of gases and is heated or the operating pressure reduced to release chlorine.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: November 16, 1999
    Assignee: Occidental Chemcial Corporation
    Inventors: Robert L. Zeller, Sharon D. Fritts, David L. Johnson, Kenneth J. Carlson, Paul J. Orosz, Ronald B. Kaplin
  • Patent number: 5980612
    Abstract: In accordance with the teachings of the present invention, an adsorbent filter having a continuous activated carbon fiber sheet is disclosed. The filter providing a frame, at least one continuous sheet of adsorbent fabric, and a plurality of supports for supporting the sheet within the frame such that contaminated fluid flows over one or more surfaces of the sheet. The contaminants being adsorbed by contact with the surface of the sheet.
    Type: Grant
    Filed: January 21, 1998
    Date of Patent: November 9, 1999
    Assignee: Compliance Environmental Management, Inc.
    Inventor: Timothy M. Kelly
  • Patent number: 5958109
    Abstract: Organic solvents are removed from air by adsorption on fixed beds of activated carbon. Each carbon bed is periodically regenerated by heating it in two distinct steps and then by cooling it in two steps with a circulated inert gas stream. During the first step of heating a portion of the water is removed from the inert gas by molecular sieves or preferably by chilling the inert gas to below 10.degree. C. In a second step of heating the essentially water-free liquid solvent is recovered by chilling the inert gas. The first step of cooling of a bed is overlapping with the first step of heating of another bed. The hot gas leaving the cooled bed is used to heat the other bed. Between the two stages of heating the bed is put on "hold" till the final cooling step of another bed is completed.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: September 28, 1999
    Inventor: Andrija Fuderer
  • Patent number: 5948142
    Abstract: A method is provided for separating one or more volatile contaminant components from a gas using a pressure and temperature swing adsorbent filtration filter bed system containing three or more layers of adsorbent materials characterized in that the layers comprise a first layer of adsorbent material, a second layer of dessicant material and a third layer of material capable of adsorbing contaminants that are not retained by the first layer. Preferably the third layer is capable of adsorbing contaminants of relatively low boiling point, e.g. of boiling point less than 50.degree. C., and preferably comprises a microporous adsorbent. The second layer of dessicant material preferably comprises a zeolite.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: September 7, 1999
    Assignee: The Secretary of State for Defense in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: Richard J Holmes, David C Francis
  • Patent number: 5938816
    Abstract: A process for the purification of gases loaded in particular with chemical residues, in particular of the exhaust air from printing equipment, in which process the gas to be purified is drawn off from the regions producing the impurities and led via piping to an arrangement of adsorber-filter cartridges that serve for the separation of the impurities from the gas and are periodically separated in a cyclical manner from the exhaust flow for the carrying out of a regeneration process.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: August 17, 1999
    Assignee: Firma Maul & Co. - Chr. Belser GMBH
    Inventors: Rainer Harle, Winfried Marquardt
  • Patent number: 5925169
    Abstract: Method for drying a gas which has been compressed by a compressor (1) wherein compressed gas (2) from the compressor is driven through an amount of drying agent (3) until a dried, compressed gas (4) is obtained. An amount of used drying agent (7) is regenerated by driving a part (5) of dried compressed gas (4), which is heated first by the compression heat of compressor (1), through used drying agent (7). Moisture is absorbed from used drying agent (7) by a part (5) of the dried compressed gas (4), which is then condensed and separated by cooling. Part (5) of dried compressed gas (4) is then mixed with compressed gas (2) from the compressor to be dried.
    Type: Grant
    Filed: April 1, 1997
    Date of Patent: July 20, 1999
    Assignee: Altas Copco Airpower, naamloze vennootschap
    Inventor: Danny Etienne Andree Vertriest
  • Patent number: 5914455
    Abstract: An air prepurification process which includes, as a first step, a pressure swing adsorption process in which the air is passed through a bed of adsorbent which contains activated alumina, thereby effecting removal of substantially all moisture and most carbon dioxide from the feed air and as a second step, a temperature swing adsorption process in which the dried feed air is passed through a bed of carbon dioxide-selective adsorbent, thereby removing substantially all of the carbon dioxide remaining in the feed air. The feed air may be passed through beds of hydrogen oxidation and carbon monoxide oxidation catalysts between the first and second steps to convert any hydrogen and carbon monoxide in the feed air to water vapor and carbon dioxide, respectively, these components being removed from the feed air during the second step.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: June 22, 1999
    Assignee: The BOC Group, Inc.
    Inventors: Ravi Jain, James K. Tseng
  • Patent number: 5906675
    Abstract: An air prepurification process carried out in a battery of three adsorption vessels arranged in parallel. The process includes three steps: a first step in which non-steady state PSA is carried out in the first and second vessels operated in alternating adsorption and bed regeneration mode while the adsorbent in the third vessel undergoes thermal regeneration; a second step in which non-steady state PSA is carried out in the second and third vessels operated in alternating adsorption and bed regeneration modes while the adsorbent in the first vessel undergoes thermal regeneration; and a third step in which non-steady state PSA is carried out in the first and third vessels operated in alternating adsorption and bed regeneration modes while the adsorbent in the second vessel undergoes thermal regeneration.
    Type: Grant
    Filed: September 30, 1997
    Date of Patent: May 25, 1999
    Assignee: The BOC Group, Inc.
    Inventors: Ravi Jain, James K. Tseng
  • Patent number: 5906674
    Abstract: A process for separating oxygen and nitrogen using an adsorption system comprising at least one main adsorption vessel containing an adsorbent selective for one component and at least one auxiliary adsorption vessel containing an adsorbent selective for the same component, the auxiliary vessel(s) being operated under conditions which result in the production of a product gas of lower purity than the product gas from the main adsorption vessel(s). The lower purity product gas from the auxiliary vessel is used to purge or pressurize the main adsorption vessel(s).
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: May 25, 1999
    Assignee: The BOC Group, Inc.
    Inventors: Ziming Tan, Karl O. Toppel
  • Patent number: 5897686
    Abstract: A process and apparatus for drying and removing carbon dioxide from a hydrogen and carbon monoxide containing synthesis gas by using adsorption vessels containing a first layer of 13 X-zeolite and a second layer of 3 A-zeolite in which the 3 A-zeolite precludes the formation of water of reaction when dry and carbon dioxide-free synthesis gas is used to regenerate the adsorption vessel countercurrent to feed flow of the synthesis gas.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: April 27, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, David Richard Barnes, Jr.
  • Patent number: 5855650
    Abstract: In the purification of air to remove water and carbon dioxide and other contaminants prior to cryogenic separation of oxygen and nitrogen, water and carbon dioxide are adsorbed on a solid adsorbent and are periodically desorbed to regenerate the adsorbent by the passing of a heated regenerating gas such that the quantity of heat added to the regenerating gas to produce desorption is no more than 90 percent of the heat of adsorption liberated during the adsorption of the water and carbon dioxide. The process is applicable to removing other contaminants from other gas streams also.
    Type: Grant
    Filed: September 9, 1997
    Date of Patent: January 5, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mohammad Ali Kalbassi, Timothy Christopher Golden
  • Patent number: 5846295
    Abstract: Temperature swing adsorption to remove CO.sub.2 from a gas stream is conducted using alumina to adsorb all the water and at least most of the carbon dioxide from the gas stream. Optionally a downstream zone of zeolite may be provided to remove further carbon dioxide and hydrocarbons.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: December 8, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mohammed Ali Kalbassi, Rodney John Allam, Timothy Christopher Golden
  • Patent number: 5837027
    Abstract: A fill system and methodology for the manufacture of fluid storage and dispensing vessels containing sorbent material for holding a sorbable fluid, for on-demand dispensing of the fluid in the use of the vessel. The fill system and methodology are directed to minimizing the processing time required to dissipate the heat of sorption incident to the loading of the sorbable fluid onto the sorbent material, so that thermal equilibration time in the manufacture of the vessels is substantially reduced in relation to the use of only ambient convective air cooling for dissipation of the heat of sorption from the fluid-filled vessel.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: November 17, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: W. Karl Olander, James V. McManus
  • Patent number: 5797980
    Abstract: An air compressor (1) is cooled by a water circuit (5) which comprises a buffer tank (6) and an air cooled cooler (7) provided with a fan (8) of adjustable speed. The buffer tank is supplied by makeup water and includes a purge (16) which serves, when the ambient temperature is relatively high, to cool the preliminarily separated compressed air from cooling water. Application in processes for separation of air by adsorption or permeation.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: August 25, 1998
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Frederic Fillet
  • Patent number: 5784898
    Abstract: A process and apparatus for the preparation of a cryogenic fluid in the high purity liquid state, such as liquid argon, liquid helium or liquid nitrogen of high purity, substantially free from at least one of the impurities which it contains. The cryogenic fluid in the liquid state to be purified is placed in contact with an adsorbent permitting the adsorption of at least one of the impurities, and the cryogenic fluid is recovered in the high purity liquid state, characterized in that cooling of at least a proportion of the adsorbent is maintained with purified cryogenic fluid in the liquid state during at least a part of the duration of the stoppage stage separating a purification cycle N and a purification cycle N+1, which are successive.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: July 28, 1998
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude et L'Exploitation des Procedes Georges Claude
    Inventor: Daniel Gary
  • Patent number: 5785738
    Abstract: A process for treatment of a secondary gas including ozone, comprising the steps of:a) adding an adjacent gas including CO.sub.2 to the secondary gas to form a mixture of secondary gas and adjacent gas;b) passing the mixture of secondary gas and of adjacent gas obtained at the end of stage a) into at least one stock of adsorbent, where the ozone is completely or partly adsorbed;c) sweeping the stock of adsorbent with the aid of a desorbing gas including CO.sub.2, and discharging from an outlet of the stock an output gas including ozone, wherein the ozone has a concentration which is higher in the output gas than the ozone concentration of the secondary gas.
    Type: Grant
    Filed: December 27, 1995
    Date of Patent: July 28, 1998
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude et L'Exploitation des Procedes Georges Claude
    Inventors: Michel Gastiger, Philippe Renault
  • Patent number: 5779767
    Abstract: A process for the adsorption of at least carbon dioxide, water and oxides of nitrogen and preferably acetylene from a feed gas, comprises contacting the feed gas with an adsorbent mixture of a zeolite and an alumina. The process may be operated as a swing adsorption process comprising contacting the gas with the adsorbent at a first temperature and pressure to adsorb at least carbon dioxide, water and oxides of nitrogen therefrom and periodically regenerating the adsorbent by reducing the pressure and or increasing the temperature to which the adsorbent is exposed.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: July 14, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Mohammed Ali Kalbassi, Fred William Taylor, Rodney John Allam
  • Patent number: 5779768
    Abstract: A condensable component present at low concentration in a feed gas mixture containing the condensable component and a noncondensable component is recovered by selective adsorption from the feed gas mixture in an adsorption step, the resulting adsorbed condensable component is desorbed by a heated purge gas in a regeneration step to yield a purge gas effluent enriched in desorbed condensable component, and the purge gas effluent is cooled to condense and recover the condensable component as a liquid.
    Type: Grant
    Filed: March 19, 1996
    Date of Patent: July 14, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Madhu Anand, Shivaji Sircar, Augustine Ivanhoe Dalton
  • Patent number: 5759238
    Abstract: In a vent arrangement comprising a heating cylinder 1 containing therein a screw and provided with a vent hole 3 and a reduced pressure exhaust path 4 provided with a vacuum pump and connected to the vent hole 3 for draining volatile fractions of a material to be molded from the heating cylinder by reducing the pressure in the vent hole by means of the vacuum pump, said volatile fractions are removed by arranging in the exhaust path a filter unit 7 filled with a granular filtering material 8. The material to be molded is used for the filtering material 8. According to the above construction, it can be achieved to efficiently remove volatile matters by using the molded material as the filtering material of the filter unit arranged in the reduced pressure exhaust path of a vent arrangement.
    Type: Grant
    Filed: June 13, 1996
    Date of Patent: June 2, 1998
    Assignee: A.K. Technical Laboratory, Inc.
    Inventors: Yukio Yanagimachi, Hideaki Koda
  • Patent number: 5744687
    Abstract: A hydrocarbon stream is cracked to produce a hot gaseous stream which is compressed and cooled to condense almost all of the hydrocarbons contained in the stream. A noncondensed stream remaining after the condensation step, comprised predominantly of hydrogen and C.sub.1 to C.sub.3 hydrocarbons, is subjected to pressure swing adsorption or temperature swing adsorption at an adsorption temperature of about 0.degree. to about 250.degree. C. in a bed of adsorbent which selectively adsorbs ethylene and propylene, thereby adsorbing substantially all of the ethylene and propylene from the gas stream. The ethylene and/or propylene is recovered upon bed regeneration.
    Type: Grant
    Filed: April 22, 1994
    Date of Patent: April 28, 1998
    Assignee: The BOC Group, Inc.
    Inventors: Ramakrishnan Ramachandran, Loc H. Dao
  • Patent number: 5737941
    Abstract: Method and apparatus for removing trace levels of impurities from gases stored cryogenically in a storage vessel in liquid form by passing a vaporized portion of liquified gas from the storage vessel through a bed of adsorbent while using the liquified gas to cool the adsorbent. Vaporized gas resulting from cooling of the adsorbent with the stored liquified gas can be combined with the vapor withdrawn from the storage vessel prior to being passed through the bed of adsorbent. Liquified gas can be withdrawn from the storage vessel, vaporized and the vaporized gas combined with the vaporized gas from the storage vessel prior to being passed through the bed of adsorbent.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: April 14, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Thomas Hsiao-Ling Hsiung, Jose Rui Souto Machado, Alexander Schwarz
  • Patent number: 5711787
    Abstract: A pressure swing process for air separation to produce concentrated gaseous oxygen at an elevated pressure without the requirement of further compression of the gaseous oxygen product. The process comprises the steps of compressing the feed air to a pressure in the range of approximately 45 psig to 105 psig, preheating the feed air to each of the adsorption beds to a temperature in the range of approximately 100.degree. F. to 200.degree. F., then directing flow of the feed air cyclically into and through at least two crystalline zeolite molecular sieve adsorption beds for selectively adsorbing at least nitrogen therein. In this manner, oxygen having a purity of approximately 88% to 93% at a recovery of approximately 30% to 45% and a bed size factor in the range of 2,500 pounds to 4,000 pounds of adsorbent per ton per day of oxygen can be delivered to a receptor tank at an elevated pressure of approximately 40 psig to 100 psig.
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: January 27, 1998
    Assignee: Praxair Technology, Inc.
    Inventors: Allastair Neill, Frederick Wells Leavitt, Antonio Felippe Zaccur Figueiredo