Rotating Housing Containing Fixed Sorbent Or Rotating Plurality Of Housings Patents (Class 95/113)
  • Patent number: 11739506
    Abstract: A water recovery system including a first fluid stream inlet providing for the flow of a first fluid stream, such as a humidified inlet gas, into the system and a second fluid stream inlet providing for the flow of a second fluid stream, such as a gas having a temperature greater than the humidified inlet gas, into the system. At least one contactor is in fluid communication with the first fluid stream inlet and the second fluid stream inlet.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: August 29, 2023
    Assignee: General Electric Company
    Inventors: David Roger Moore, Vitali Victor Lissianski, Albert Santo Stella, Daniel Jason Erno
  • Patent number: 11559762
    Abstract: Provided herein are water harvesting systems, as well as methods of making and using such systems, for capturing water from surrounding air using a design that reduces overall energy costs of the systems and improve water harvesting cycle efficiency. The systems and methods use sorbent materials, such as metal-organic frameworks, to adsorb water from the air. The systems and methods desorb this water in the form of water vapor, and the water vapor is condensed into liquid water and collected. The liquid water is suitable for use as drinking water.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: January 24, 2023
    Assignee: Water Harvesting, Inc.
    Inventors: David S. Kuo, Ievgen Kapustin
  • Patent number: 11278835
    Abstract: Regeneration of a fluid medium can be accomplished using a continuously regenerable scrubber, which, in its various embodiments, combines valve functions and sorbent material, such as amine beds, into one component, dramatically reducing size and mass of scrubber. Sorbent material beds rotate continuously past breathing gas vent loop ports for scrubbing CO2/H2O and then past vacuum ports for regenerating the sorbent material. Typically, a first fluid output is connected to a lower header fluid output and a second, sweeping fluid source connected to a lower header fluid input. A motor spins the substantially circular bed assembly at a predetermined speed which allows adsorption or absorption as well as desorption of materials flowing through the sorbent material.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: March 22, 2022
    Assignee: Oceaneering International, Inc.
    Inventors: John Fricker, Tatsuya Arai
  • Patent number: 11179669
    Abstract: A dehumidification air conditioner reduces carbon dioxide levels in a low humidity workroom. Cooling dehumidification is performed on outdoor air in a pre-air-cooler to produce pre-cooled air, which is branched such that a first part passes through a processing zone of an adsorption rotor which can remove carbon dioxide and humidity simultaneously, and a second part passes through a purge zone of the adsorption rotor. Air which passed through the processing zone is supplied to a low humidity workroom. Air which passed though the purge zone of the adsorption rotor is mixed with outdoor air and then heated with a reproduction heater to produce heated air. The heated air is sent to a reproduction zone of the adsorption rotor, to simultaneously remove carbon dioxide and humidity from the adsorption rotor and produce an exhaust stream which exhausted out of the device.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: November 23, 2021
    Assignee: SEIBU GIKEN CO., LTD.
    Inventors: Koji Inoue, Keimei Furuki, Ayako Kuroda
  • Patent number: 11173448
    Abstract: A dryer for a compressed gas provided with a vessel with a drying agent and a drying zone-and a regeneration zone; at least one intermediate zone that, viewed in the direction of rotation of the drum, is situated between the regeneration zone and the drying zone and which is provided with a separate inlet and an outlet that is shared with or connected to the outlet of the regeneration zone; a tap-off pipe that branches off from the outlet of the drying zone and connects to the aforementioned separate inlet of the intermediate zone; one or more blowers in the tap-off pipe for effectuating an intermediate flow from the drying zone, where the dryer is configured such that the entire flow of gas to be dried supplied to the dryer is first guided through the regeneration zone.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 16, 2021
    Assignee: ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP
    Inventors: Ewan Van Minnebruggen, Danny Vertriest, Tim Ceyssens, Geert Hellemans
  • Patent number: 11071941
    Abstract: An improved regenerative separating device for separating impurities from an airflow, in particular a process exhaust airflow, provides a better distribution of the airflow in an annular gap between a rotary separating unit comprising a plurality of filter blocks for adsorbing impurities from the airflow and a circumferential wall of a housing incorporating the rotary separating unit. The airflow inlet provided in the circumferential wall for introducing the airflow into the annular gap and a regeneration system for regenerating the filter blocks of the rotary separating unit by a regenerating stream passing through the filter blocks to desorb impurities adsorbed in the filter blocks are both positioned in the same circumferential sector of maximum 180 degrees.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: July 27, 2021
    Assignee: DÜRR SYSTEMS AG
    Inventors: Ankit Kukreja, Erhard Rieder, Jason T. Schroder, Sven Meyer, Lars Mast
  • Patent number: 10994286
    Abstract: An airborne dust cleaner includes a case having an inlet at one side thereof, an outlet at another side thereof, and a space therein, a vortex vacuum generator installed at the inlet and generating and extending a low-pressure zone of a donut-like vortex around the inlet to collect fine dust, and a filtering assembly installed at the outlet and filtering the fine dust collected through the vortex vacuum generator.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: May 4, 2021
    Assignee: TORNADO SYSTEMS CO., LTD.
    Inventor: Hee Bum Oh
  • Patent number: 10933371
    Abstract: An energy efficient and durable thermal swing type carbon dioxide recovery and concentration device can be made smaller and use low-temperature heat waste of 100° C. or less. A honeycomb rotor carries adsorption particles having a sorption capacity for carbon dioxide. The rotor is rotated in a sealed casing divided into at least an sorption zone and a desorption zone and is brought into contact with material gas that contains carbon dioxide in a state wherein the honeycombs in the sorption zone are moist so as to adsorb the carbon dioxide while carrying out evaporative cooling of water. Then, the honeycombs that have adsorbed the carbon dioxide are moved to the desorption zone and brought into contact with low pressure vapor so as to desorb high concentration carbon dioxide. Thus, it is possible to continuously recover carbon dioxide at a high recovery rate and high concentration.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: March 2, 2021
    Assignee: SEIBU GIKEN CO., LTD.
    Inventor: Hiroshi Okano
  • Patent number: 10744448
    Abstract: Gas separation unit for separation of a gas component from a process gas stream, said separation unit comprising a stator and a rotor comprising a plurality of sectors, each sector containing a separation device arranged to separate the gas component from the process gas stream which is led into the separation device and each sector being fluidically connected with at least one valve. The valve is a rotary active valve which comprises a rotor open area which is located at the rotor and a stator open area which is located at the stator. The rotor open area and the stator open area can overlap and can be laterally separated from each other by rotation of the rotor relative to the stator. In this way, the valve can at least partially be opened and closed. The extent of overlap of the rotor open area and the stator open area defines the extent of opening and closing of the valve, respectively. The extent of overlap corresponds to the extent of partial opening of the valve.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: August 18, 2020
    Assignee: SOLVAY SA
    Inventors: Eric Pierre Dubois, David Jean Lucien Savary, Jean-Paul Coquerel
  • Patent number: 10730006
    Abstract: Disclosed herein is a stator plate for a rotary bed PSA apparatus that has an exhaust slot that has first and second sections for receiving blowdown and purge exhaust gas streams, the sections being separated by a flow restriction that restricts but does not full prevent gas flow between the sections, or that has separate exhaust slots for separately receiving the blowdown and purge exhaust gas streams. Also disclosed is pressure swing adsorption (PSA) apparatus including such a stator plate, and a rotary bed PSA process using such an apparatus.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: August 4, 2020
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Glenn Paul Wagner, Xue Mei Liu, Jinzhong Liu, Roger Dean Whitley, Shubhra Jyoti Bhadra, Michael Jamie McKerrow
  • Patent number: 10556485
    Abstract: A system includes a blower, a blower sensor, and at least one processor. The blower sensor is operably coupled to the blower and configured to obtain blower operational information. The at least one processor is operably coupled to the blower and the blower sensor, and is configured to determine an operational-based power using the blower operational information; determine an operational-based density using the operational-based power; and control the blower using the operational-based density.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: February 11, 2020
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Edward Thomas Petrak, Nicole Lyann Himmelwright, Jeffrey John Wolff
  • Patent number: 10478771
    Abstract: A dryer for a compressed gas provided with a vessel with a drying agent and a drying zone and a regeneration zone; at least one intermediate zone that, viewed in the direction of rotation of the drum, is situated between the regeneration zone and the drying zone and which is provided with a separate inlet and an outlet that is shared with or connected to the outlet of the regeneration zone; a tap-off pipe that branches off from the outlet of the drying zone and connects to the aforementioned separate inlet of the intermediate zone; one or more blowers in the tap-off pipe for effectuating an intermediate flow from the drying zone, where the dryer is configured such that the entire flow of gas to be dried supplied to the dryer is first guided through the regeneration zone.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: November 19, 2019
    Assignee: ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP
    Inventors: Ewan Van Minnebruggen, Danny Vertriest, Tim Ceyssens, Geert Hellemans
  • Patent number: 10406474
    Abstract: A method for removing vapors generated by a processing device presenting reduced risk to human handlers includes placing a vapor removing device in a feed area of the processing device. The vapor removing device includes a connecting plate and at least one vapor removing element each connected to one surface of the connecting plate. The vapor removing device is lifted robotically from the feed area and placed into the processing device. Then, the vapor removing element directly removes vapors generated by the processing device when the processing device starts to work, the device being robotically taken out of the processing device and placed back in the feed area.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: September 10, 2019
    Assignees: Fu Tai Hua Industry (Shenzhen) Co., Ltd., HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li-Chin Lu, Jian-Hua Xiang
  • Patent number: 10323850
    Abstract: A dehumidifier for air is provided. The dehumidifier includes a housing with an inlet for process air, an outlet for process air, and an opening for regeneration air. The dehumidifier includes a dehumidification element, a fan for bringing process air to flow through at least a first portion of the dehumidification element, and a heating element to heat a part of process air flowing through the dehumidification element for regeneration of the dehumidification element by using the heated process air. A controller controls the amount of air that flows though the outlet for process air and the opening for regeneration air and the sensor/meter to calculate consumed power for the heating element, wherein the heating element is a PTC heater. The controller allows a user in a simple way to adjust the operating parameters to a desired operating mode.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: June 18, 2019
    Assignee: Corroventa Avfuktning AB
    Inventors: Knut Claesson, Anders Lindelöw, Johan Edström, Marcus Malmström, Per Ekdahl
  • Patent number: 10286357
    Abstract: A dryer is provided with a pressure vessel with a drying zone and regeneration zone. The regeneration zone comprises a first subzone and a second subzone. The dryer comprises a rotatable drum in the pressure vessel with a drying agent, and the outlet of the regeneration zone is connected to the drying zone via a connecting pipe with a cooler and condensate separator. A tap-off pipe is connected to the outlet of the drying zone and is also connected to the inlet of the second subzone. A blower is provided to realize a regeneration flow from the drying zone to the second subzone.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: May 14, 2019
    Assignee: ATLAS COPCO AIRPOWER, NAAMLOZE VENNOOTSCHAP
    Inventor: Ewan Van Minnebruggen
  • Patent number: 10286354
    Abstract: A method for separating organic solvents from solvent-containing process exhaust air, where the process exhaust air is directed through a separation zone of a separating device, and the separating device is regenerated by passing a regeneration stream through a regeneration zone of the separating device. The regeneration stream passing through the separating device is divided into a first partial stream having an impurity concentration less than a first predetermined limit, and a second partial stream having an impurity concentration equal or greater than a second predetermined limit, by a divider, where the second predetermined limit is equal to or greater than the first predetermined limit, to return the first partial stream generated during regeneration to the separating device and direct the second partial stream generated during regeneration to a cleaning device.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 14, 2019
    Assignee: DÜRR SYSTEMS AG
    Inventors: Enrico Herm, Erhard Rieder, Christian Eichhorn
  • Patent number: 10201775
    Abstract: A pressure swing adsorption (PSA) system for purifying a feed gas is provided. The PSA system may have a first adsorber bed and a second adsorber bed, each having a feed port, a product port, and adsorbent material designed to adsorb one or more impurities from the feed gas to produce a product gas. The PSA system may also have a first valve configured to direct flows of the feed gas and the product gas through a network of piping. The PSA system may further have a first orifice configured to regulate a flow rate of gas between the first adsorber bed and the second adsorber bed during the pressure equalization step and a second orifice configured to regulate a flow rate of gas between the first adsorber bed and the second adsorber bed during the purge step.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: February 12, 2019
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Zhijiang Li, Kyle Vanzandt
  • Patent number: 10195563
    Abstract: A dehumidifying device configured such that a dehumidifying material having absorbed moisture can efficiently release moisture. The dehumidifying device carries out dehumidification with a polymeric moisture-absorbing material that (i) exhibits hydrophilicity in a temperature range equal to or lower than a temperature sensitive point which is a given temperature and (ii) exhibits hydrophobicity in a temperature range higher than the temperature sensitive point.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: February 5, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Yoshihiro Uramoto, Nobuki Sakikawa, Yasumasa Suzuki
  • Patent number: 10168057
    Abstract: A method and system for controlling moisture content of a gaseous flow. A pair of desiccant contact structures each provided with a process adapted to pass through a process gaseous stream to altering the moisture content of the gaseous stream. Each desiccant contact structure also has a regeneration side adapted to pass through a regeneration gaseous stream for altering the moisture content of a desiccant in the contact structure. The process side of a first desiccant contact structure is fluidly connected to the regeneration side of a second desiccant contact structure via a first closed recirculation loop. In an alternative embodiment a second closed recirculation loop may also be provided on the regeneration side of the first desiccant contact structure. Gaseous flow is then provided to the process side of the second desiccant contact structure to thereby control its moisture.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: January 1, 2019
    Assignee: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: Mark Goldsworthy, Stephen White, Ganapathisubbu Sethuvenkatraman
  • Patent number: 10105637
    Abstract: In a cyclic adsorptive gas purification process, an impurity laden adsorbent is regenerated by exposing it first to an unheated gas for a pre-determined time period to desorb at least some of the impurity, followed by heating the adsorbent using a flowing stream of a heated gas to desorb the remaining impurities over another pre-determined time period, further followed by cooling of the adsorbent using a flowing stream of gas for yet another pre-determined time period to make it ready for repeating the adsorptive cycle. Introducing an unheated purge stream reduces the energy requirements for the regeneration step compared to a traditional TSA process.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 23, 2018
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Mohamed Hashi, Cem E. Celik, James R. Dray
  • Patent number: 9952188
    Abstract: In a measuring method for measuring an atmospheric concentration of a compound, such as a volatile organic compound (VOC), an adsorptive element is provided within a target atmosphere for a period of time to allow adsorption of a compound of interest, and then removed from the target atmosphere, and placed within a closed measuring space. The adsorptive element is heated within the measuring space to cause de-adsorption of the compound into the closed measuring space, and a concentration of the de-adsorbed compound is measured. A concentration of the compound in the target atmosphere is determined based on the concentration of the compound within the closed measuring space. The adsorptive element may be formed of an adsorptive material such as carbon fibers, cellulose or other adsorptive materials, and a binder. The adsorptive element may be optimized for adsorption of a specific compound.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: April 24, 2018
    Assignee: RIPETIME LIMITED
    Inventor: Jonathan David Lowy
  • Patent number: 9886042
    Abstract: An air moisture control system for a computer system includes a housing with an air passage and an air moisture control element with an adsorption material, which is exposed in the air passage so as to enable fluid communication towards and from the air moisture control element. The element is designed such that the adsorption material is adapted, in operation, to adsorb moisture from a first air flow flowing into the air passage, having a first temperature and a first relative humidity, and desorb moisture to a second air flow, said air flow having a second temperature at least 5° C. higher than the first temperature and a second humidity at least 3% lower than the first relative humidity.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: February 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ingmar G. Meijer, Patrick Ruch
  • Patent number: 9777233
    Abstract: Mesoporous organosilica sorbents are effective to remove contaminants (such as glycerol or detergent) from biodiesel. Contacting biodiesel with various a mesoporous organosilica sorbents comprising phenyl and sulfonate moieties resulted in the contaminants being absorbed by the sorbent and thus removed from the biodiesel.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: October 3, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Brian Melde, Brandy J. White, Martin H. Moore
  • Patent number: 9777933
    Abstract: The present invention generally discloses desiccant dehumidifiers control systems. In particular, the present invention relates to solid desiccant dehumidifiers which use a rotor (commonly called a wheel) to dehumidify a process airstream. The invention provides a novel apparatus for control of desiccant dehumidifiers and to an improved method of control of such dehumidifiers, and also to dehumidifiers provided with such control systems.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: October 3, 2017
    Assignee: BRY AIR [ASIA] PVT. LTD.
    Inventors: Deepak Pahwa, William Charles Griffiths, Rajan Sachdev, Kuldeep Singh Malik
  • Patent number: 9527029
    Abstract: A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO2 by concentration swing adsorption and adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: December 27, 2016
    Assignee: TDA RESEARCH, INC.
    Inventors: Jeannine Elizabeth Elliott, Robert James Copeland
  • Patent number: 9446343
    Abstract: A system and method for separating and/or purification of CO2 gas from a CO2 feed stream is described. The system and method include a plurality of fixed sorbent beds, adsorption zones and desorption zones, where the sorbent beds are connected via valve and lines to create a simulated moving bed system, where the sorbent beds move from one adsorption position to another adsorption position, and then into one regeneration position to another regeneration position, and optionally back to an adsorption position. The system and method operate by concentration swing adsorption/desorption and by adsorptive/desorptive displacement.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: September 20, 2016
    Assignees: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY, TDA RESEARCH, INC.
    Inventors: Jeannine Elizabeth Elliott, Robert James Copeland, Jeff Lind, Daniel P. Leta, Patrick P. McCall
  • Patent number: 9399187
    Abstract: Embodiments of the present disclosure include methods and systems of circulating air in an enclosed environment. In such embodiments, the system may comprise an air handling unit (AHU), the AHU including an indoor air inlet to receive an indoor airflow from the enclosed environment and an indoor air outlet to expel the indoor airflow, a conditioning element arranged between the inlet and the outlet configured to at least heat or cool the indoor airflow as it flows thereover, one or more fan units arranged between the inlet and the outlet configured to provide velocity to the indoor airflow, and an air treatment assembly (ATA) arranged within or proximate the AHU, the ATA including an air inlet configured to receive a portion of the indoor airflow received by the AHU indoor air inlet.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: July 26, 2016
    Assignee: Enverid Systems, Inc.
    Inventors: Udi Meirav, Israel Biran
  • Patent number: 9341408
    Abstract: A regenerative carbon dioxide removal system (38) is provided onboard the container (10) through which air from within the cargo box (12) may be circulated for removing at least a portion of the carbon dioxide present in the air. The regenerative carbon dioxide removal system (38) includes a scrubber module (40) containing a carbon dioxide absorbent material (42), and an actuator (50) for moving the scrubber module (40) to pass the carbon dioxide absorbent material (42) alternately between a first flow of air (32) to be cleaned drawn by the evaporator fan (30) from within the cargo box (12), and a second flow of air (44) drawn from an environment outside the cargo box for regenerating the carbon dioxide adsorbent material (42) by removing collected carbon dioxide from the carbon dioxide adsorbent material (42).
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: May 17, 2016
    Assignee: CARRIER CORPORATION
    Inventors: Malcolm N. Fleming, Jr., Catherine Thibaud-Erkey
  • Patent number: 9302215
    Abstract: Rotary fluid processing systems and associated methods are disclosed. A purification system in accordance with the particular embodiment includes a rotatable adsorbent-containing heat/mass transfer element that is generally symmetric about a rotation axis, and includes multiple radial flow paths oriented transverse to the rotation axis and multiple axial flow paths oriented transverse to the radial flow paths. The axial flow paths and radial flow paths are in thermal communication with each other, and are generally isolated from fluid communication with each other at the heat transfer element. Particular embodiments can further include a housing arrangement having multiple manifolds with individual manifolds having an entry port and an exit port, and with individual manifolds having different circumferential locations relative to the rotation axis.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: April 5, 2016
    Assignee: Prometheus Technologies, LLC
    Inventors: John A. Barclay, Tadeusz Szymanski, Lenard J. Stoltman, Kathryn Oseen-Senda, Hunter A. Chumbley
  • Publication number: 20150007725
    Abstract: A rotary moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The rotary moving bed can have a rotational assembly rotating on a vertical axis, and a plurality of sorbent cells positioned horizontally to the axis of rotation that fills a vertical space in the moving bed, where the sorbent cells adsorb the carbon dioxide by concentration swing adsorption and adsorptive displacement. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing adsorption and desorptive displacement with steam. The gas flows in the system flow in a direction horizontal to the axis of rotation and in a direction opposite the rotational movement of the sorbent cells.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 8, 2015
    Inventors: Jeannine Elizabeth Elliott, Robert James Copeland, Patrick P. McCall
  • Publication number: 20150005563
    Abstract: Rotary fluid processing systems and associated methods are disclosed. A purification system in accordance with the particular embodiment includes a rotatable adsorbent-containing heat/mass transfer element that is generally symmetric about a rotation axis, and includes multiple radial flow paths oriented transverse to the rotation axis and multiple axial flow paths oriented transverse to the radial flow paths. The axial flow paths and radial flow paths are in thermal communication with each other, and are generally isolated from fluid communication with each other at the heat transfer element. Particular embodiments can further include a housing arrangement having multiple manifolds with individual manifolds having an entry port and an exit port, and with individual manifolds having different circumferential locations relative to the rotation axis.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Applicant: Prometheus Technologies, LLC
    Inventors: John A. Barclay, Tadeusz Szymanski, Lenard J. Stoltman, Kathryn Oseen-Senda, Hunter A. Chumbley
  • Patent number: 8894742
    Abstract: A hybrid operating apparatus including an absolute humidity sensing unit configured to sense an absolute humidity of air supplied to a dehumidifying rotor; a dew point temperature sensing unit configured to sense a dew point temperature of air returned from a dry room; a regeneration exhaust temperature sensing unit configured to sense a temperature of exhaust air regenerated in the dehumidifying rotor; a control unit configured to operate the regenerative heater to a regeneration temperature corresponding to the sensed absolute humidity; and a memory unit configured to store the regeneration temperature of the regenerative heater.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: November 25, 2014
    Assignee: CK Solution Co., Ltd.
    Inventors: Yu Gon Kim, Jin Seok Oh
  • Patent number: 8858690
    Abstract: High volumetric-efficiency thermally integrated systems for capturing a target gas from a process gas stream include a monolithic body and a distribution system. The monolithic body includes a first plurality of channels and a second plurality of channels each having sorbent surfaces that reversibly adsorb the target gas. The channels are in thermal communication such that heat from an exothermic adsorption of target gas in one plurality of channels is used by an endothermic desorption of target gas from the other plurality of channels. Methods for separating a target gas from a process gas stream include switching the high volumetric-efficiency thermally integrated systems between a first state and a second state. In the first state, the first plurality of channels undergoes desorption while the second undergoes adsorption. In the second state, the second plurality of channels undergoes desorption while the first plurality undergoes adsorption.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: October 14, 2014
    Assignee: Corning Incorporated
    Inventors: Amit Halder, Steven Bolaji Ogunwumi
  • Patent number: 8808426
    Abstract: The invention relates to an increased efficiency high-capacity pressure and/or temperature swing adsorption process comprising: contacting a feedstream at a rate of more than 75 MSCFD with an adsorbent material under conditions sufficient for the adsorbent material to selectively adsorb at least one of the component gases in the feedstream, so as to form a first effluent; and selectively desorbing the adsorbed gas from the adsorption material, so as to form a second effluent The adsorption module can contain rotary valves both on the feed end and on the product end and a rotational member defining a central rotational axis, with the adsorption bed(s) oriented circumferentially thereto. The adsorption bed walls can be angled, the feed end cross-sectional area of the adsorption bed(s) can be larger than the product end, and/or the feed end rotary valve diameter of the module(s) can be larger than the product end.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 19, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Narasimhan Sundaram
  • Patent number: 8801839
    Abstract: Device for drying gas includes a dryer with a vessel which has at least three compartments at a first axial end of a rotor rotatably disposed in the vessel, the rotor arranged for conduction of at least three gas flows, including a main flow, a regeneration flow and a cooling flow, respectively. A first compartment of the vessel has an outlet for said main flow, a second compartment has an inlet for the cooling flow and a third compartment has an inlet for the regeneration flow. The vessel at the second axial end of the rotor has a first compartment which includes an inlet for the main flow and a second compartment with an outlet for the cooling flow and the regeneration flow.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: August 12, 2014
    Assignee: Atlas Copco Airpower, Naamloze Vennootschap
    Inventor: Bart Etienne Agnes Vanderstraeten
  • Patent number: 8764882
    Abstract: A fluid treatment method reduces a concentration of a first component included in a fluid-to-be-treated. A fluid treatment apparatus reduces a concentration of a first component included in a fluid-to-be-treated. A concentration of a second component differing from the first component is reduced in the fluid-to-be-treated in order to obtain a first fluid. The first fluid passes through at least part of an adsorption unit in order to obtain a second fluid. The adsorption unit is capable of adsorbing both the first component and the second component and has at least an ability to adsorb the first component that is temperature dependent. A third fluid pass through a portion of the adsorption unit through which the first fluid has passed. The third fluid has a concentration of the second component that is lower than in the fluid-to-be-treated and a temperature that is higher than the fluid-to-be-treated.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: July 1, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Keiichirou Kametani, Morimasa Watanabe, Osamu Tanaka
  • Patent number: 8747531
    Abstract: A method and apparatus for removing water vapor from the flue gas stream of an industrial process, including flue gas from a power station. The apparatus including a moisture transfer device, a cooling device, and an optional enthalpy exchange device. The method including running high volumes the flue gas through the moisture transfer device, the cooling device, and the enthalpy exchange device to remove substantially all of the water vapor from the flue gas stream. Also, a method and apparatus for capturing CO2 from flue gas with very low water vapor content. The apparatus including one or more towers packed with a solid sorbent, or including a liquid sorbent. The CO2 from the water vapor free CO2 stream is sorbed by the sorbent and captured for later use.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: June 10, 2014
    Assignee: Munters Corporation
    Inventor: Paul Dinnage
  • Patent number: 8721769
    Abstract: Device for compressing and drying gas includes a compressor and a dryer using a drying agent for drying gas connected thereto. The compressor includes two or more compressor elements with an inlet and an outlet which are connected together in series to form a first low-pressure stage. One or more subsequent high-pressure stages are each connected with their inlet to the outlet of a previous compressor element via a pressure pipe and an outlet pipe in which an after cooler is incorporated. The dryer has a drying section and a regeneration section. The drying section is filled with a drying agent for drying the gas and has an inlet connected to the outlet pipe of the compressor device, and an outlet that supplies compressed and dried gas. The regeneration section dries moist drying agent by a regeneration gas which is guided there via an inlet and an outlet with a regeneration pipe connected to the inlet.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: May 13, 2014
    Assignee: Atlas Copco Airpower, N.V.
    Inventor: Constantijn Friso Vermeer
  • Patent number: 8668765
    Abstract: A drying system includes a desiccant wheel that dries incoming air. The dried air is heated using a heating element to promote drying of an article within the drying system. A portion of the heated air is diverted to a secondary air path that leads away from the drum holding the article. The diverted portion is used to regenerate an area of the desiccant wheel. A secondary heating element is used to promote regeneration and located in the secondary air path.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 11, 2014
    Assignee: Protege Enterprises
    Inventors: Charles Robert Dewald, III, Thomas L. Cristello
  • Patent number: 8641809
    Abstract: A system and method for easing the installation and removal of a desiccant rotor from an air handling system. The system and method enabling the installation of a shaft through the center of a rotor, the shaft having a first end portion protruding from the first axial face and a second end portion protruding from the second axial face, supporting the shaft and the rotor with a first support rail and a second support rail, the first and second support rails being positioned on opposite axial sides of the rotor and extending radially outward from a radial center of the rotor in an installed position, placing at least one keeper mechanism on each of the first and second support rails to secure the rotor in the installed position, and removing the at least one keeper mechanism to allow translational movement of the rotor along the first and second support rails.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: February 4, 2014
    Assignee: Munters Corporation
    Inventors: Benjamin J. Kalinowski, Gregoire N. Gosselin
  • Patent number: 8641804
    Abstract: Systems and methods to condition air are disclosed. An example system includes a desiccant heat transfer device to supply conditioned air to a facility, an air intake to receive air to be conditioned via the desiccant heat transfer device, and a make-up exhaust to provide exhaust air from a heat dissipating device in the facility to provide heated air to reactivate the desiccant heat transfer device.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 4, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Ratnesh Kumar Sharma, Chih C. Shih, Thomas W. Christian, Cullen E. Bash
  • Patent number: 8632627
    Abstract: A gas dehydrator system, including, a desiccant transport wheel configured to rotate a solid desiccant from a first dehydration section to a first regeneration section, a first gas path extending through the first dehydration section, wherein the solid desiccant is configured to collect moisture from a first gas in the first gas path, and a second gas path extending through the first regeneration section, wherein the solid desiccant is configured to release the moisture into a second gas in the second gas path to regenerate the solid desiccant.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: January 21, 2014
    Assignee: General Electric Company
    Inventors: Arnaldo Frydman, Raul Eduardo Ayala, Shailesh Vijay Potnis
  • Patent number: 8628608
    Abstract: A method and apparatus for regenerating the media of a rotary sorption concentrator system includes passing a 600° F. to 1000° F. regeneration fluid stream through a rotating media in a first isolated zone to regenerate the media and remove contaminants from the media that are not removed during a typical desorption cycle of a rotary sorption concentrator system.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: January 14, 2014
    Assignee: Munters Corporation
    Inventors: Christopher P. Jensen, Kevin Orff, Frank Giles, Paul A. Dinnage
  • Patent number: 8608831
    Abstract: Compressed gas dryer, provided with a drying zone (3) and a regeneration zone (5), and a drum (9) rotatable in the housing (2) containing a drying agent (8) that is transferred successively through the drying zone (3) and the regeneration zone (5), whereby said regeneration zone (5) comprises a first subzone (6) having a first inlet to supply a first regeneration gas flow, and a second subzone (7) having a second inlet to supply a second regeneration gas flow of which the relative humidity is lower compared to that of the first regeneration gas flow; and that an outlet of said drying zone (3) is connected via a connection conduit (17) to the second inlet of the second subzone (7).
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Atlas Copco Airpower Naamloze Vennootschap
    Inventor: Constantijn Friso Vermeer
  • Patent number: 8597409
    Abstract: Compressor installation including a compressor and a dryer which are mutually connected via a pressure pipe. The dryer includes a housing with a drying zone and a regeneration zone, and a rotating drum with a drying agent. The regeneration zone includes a first subzone and a second subzone. Two regeneration conducts connect to the pressure pipe, respectively a first regeneration conduit which connects to an inlet of the first subzone and through which compressed gas having a first temperature is guided, and a second regeneration conduit which connects to an inlet of the second subzone. The second regeneration conduit has a heating element for heating compressed gas flowing through the second regeneration conduit to a second temperature which is higher than the first temperature.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 3, 2013
    Assignee: Atlas Copco Airpower, Naamloze Vennootschap
    Inventor: Bart Etienne Agnes Vanderstraeten
  • Patent number: 8580010
    Abstract: A dew point temperature sensor detects and sends the dew point temperature of the supply air to a dry area, as a supply air dew point temperature, to a controller. The controller has a speed of rotation of the regenerating side fan (the regenerating air flow rate) to control, and determines a control value (the regenerating air flow rate) that causes the supply air dew point temperature to go to a target dew point temperature, and determines a supply air processing pre-cooling coil exit temperature setting value in accordance with this control value (where if the control value is in the direction of reducing the regenerating air flow rate, the supply air processing pre-cooling coil exit temperature setting value is increased). Note that what is controlled is the speed of rotation of the desiccant rotors, or the exit temperatures of the air heated by the hot water coils.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 12, 2013
    Assignee: Azbil Corporation
    Inventors: Tadahiko Matsuba, Naofumi Ushioda, Yoshitaka Takakura
  • Patent number: 8551230
    Abstract: The present invention “PH2OCP” relates to a portable water and climatic production system. In the preferred embodiment, the system uses a combination of heating coils assemblies, cooling coils and more specifically the desiccant rotor technology for the extraction, collection of water vapor molecules from the air stream and transformation in to condensate for the production of clean filtered potable water. The portable water and climatic production system or “PH2OCP” is designed to operate and produce water in a wide range of global climatic conditions, including the most arid of environments. This is made possible due to the highly effective performance capabilities of the desiccant rotor technology in the extraction of water vapor molecules from any existing ambient air. The desiccant technology is designed in the “PH2OCP” to operate in combination with the microwave reactivation system in the regeneration or reactivation section and cooling coils assembly located in the condensation section.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: October 8, 2013
    Assignee: 7142871 Canada Inc.
    Inventor: Mario Caggiano
  • Patent number: 8545609
    Abstract: The Microwave System and method of reactivation is designed to provide an indirect, safe and energy efficient source of heat and temperature rise required in the reactivation section of the desiccant unit for the release into atmosphere of the water vapors which are accumulated in the desiccant rotor. This microwave reactivation system and method is based on heat transfer produced from a heated fluid which is pumped through a closed loop coil assembly. This closed loop coil assembly is located and runs through both the isolated heating chamber of the microwave section and the reactivation / regeneration section in the dehumidification system. The airstream passing through the reactivation intake section comes in contact with the coil assembly and is heated to the desired temperature prior to reaching the desiccant rotor.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: October 1, 2013
    Assignee: 7142871 Canada Inc.
    Inventor: Mario Caggiano
  • Patent number: 8500886
    Abstract: Exhaust gas after coal or oil burning has moisture, which hinders carbon dioxide adsorption. It is necessary to completely remove this moisture with the minimum use of energy. The exhaust gas from the burning apparatus is first lowered of its temperature by passing through an total heat exchanger rotor, and the resultant gas which has low temperature and humidity is sent to a carbon dioxide adsorption rotor, thereby removing carbon dioxide from the gas, which is then sent through the total heat exchanger rotor with the resultant desorption of moisture adsorbed there and is exhausted to outside atmosphere, while the carbon dioxide adsorption rotor is desorbed of its carbon dioxide using water vapor, with the resultant very humid carbon dioxide to be sent to a processing system such as for underground burial.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Seibu Giken Co, Ltd
    Inventors: Hiroshi Okano, Tsutomu Hirose
  • Patent number: 8366803
    Abstract: The invention relates to an air cleaner, and more particularly to an air cleaner which includes a regenerative deodorizing filter to purify and treat gaseous substances contained in air, thus enabling efficient regeneration of the regenerative deodorizing filter, and a method of regenerating the filter of the air cleaner.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 5, 2013
    Assignee: Enbion Inc.
    Inventor: Hyun Jae Lee