Alkyne Sorbed (e.g., Acetylene, Etc.) Patents (Class 95/145)
  • Patent number: 8664419
    Abstract: This invention provides, but is not limited to, methods of using metal-organic frameworks (MOFs) having repeat units of the formula M2(DHTP) (M is a divalent metal ion; DHTP=2,5-dihydroxyterephthalate) for acetylene storage. Also provided are compositions of the same formula and acetylene, e.g., an acetylene storage material comprising [M2(DHTP)]n and acetylene.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 4, 2014
    Assignee: The Board of Regents of The University of Texas System
    Inventor: Banglin Chen
  • Patent number: 8586815
    Abstract: The present invention relates to a process for removing at least one component selected from the group consisting of oxygen, nitrogen oxides, acetylenes and dienes from a gas mixture comprising the at least one component and also hydrogen, one or more olefins which are not dienes and possibly further gas constituents, in which the gas mixture is brought into contact with a catalyst in a reaction zone, wherein the catalyst comprises copper(I) sulfide.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: November 19, 2013
    Assignee: BASF SE
    Inventors: Peter Rudolf, Michael Bender, Michael Koch
  • Patent number: 8535426
    Abstract: An apparatus, system, and method are disclosed for removing ethylene from a gaseous environment. Ethylene is a gaseous growth hormone produced by plants that triggers the ripening of some flowers, fruits, vegetables, and other plants. The apparatus includes an ethylene filter and a composition. The filter includes a frame and a trapping medium. The composition is attached to the trapping medium of the ethylene filter. The ethylene filter is positioned within a gaseous environment and is configured to encounter a gas flow within the gaseous environment. The composition contains at least some titanium dioxide which is configured to attach to the ethylene as the gas flow moves through and around the ethylene filter. In this manner, some ethylene may be removed from the gaseous environment.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 17, 2013
    Inventor: Lawrence R. Sadler
  • Publication number: 20130139686
    Abstract: A system and method for systematically generating potential metal-organic framework (MOFs) structures given an input library of building blocks is provided herein. One or more material properties of the potential MOFs are evaluated using computational simulations. A range of material properties (surface area, pore volume, pore size distribution, powder x-ray diffraction pattern, methane adsorption capability, and the like) can be estimated, and in doing so, illuminate unidentified structure-property relationships that may only have been recognized by taking a global view of MOF structures. In addition to identifying structure-property relationships, this systematic approach to identify the MOFs of interest is used to identify one or more MOFs that may be useful for high pressure methane storage.
    Type: Application
    Filed: July 6, 2012
    Publication date: June 6, 2013
    Applicant: Northwestern University
    Inventors: CHRISTOPHER E. WILMER, Michael Leaf, Randall Q. Snurr, Omar K. Farha, Joseph T. Hupp
  • Patent number: 8398747
    Abstract: This invention relates in part to a process for producing high purity acetylene by withdrawing a crude acetylene stream from a storage source, and passing said stream through an adsorbent bed that contains layered adsorption media to selectively remove moisture, solvent and carbon dioxide from the stream, thereby producing the high purity acetylene. The adsorption media is regenerated in-situ. The high purity acetylene product is useful as a source material for depositing carbon and carbon-containing films in semiconductor applications.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: March 19, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Xuemei Song, Lloyd Anthony Brown, Thomas Thompson
  • Patent number: 8366806
    Abstract: A hydrocarbon adsorbent that includes a zeolite with either a H-FER structure or a MOR structure in which the pore diameter has been adjusted by ion exchange. A propane adsorbent that includes a zeolite with a MFI structure having a Si/Al ratio of no more than 20. A hydrocarbon removal unit that includes a TSA pre-purification unit having a column packed with sequential layers of activated alumina, a NaX zeolite, and the hydrocarbon adsorbent. A method of reducing the hydrocarbon content within liquid oxygen inside a cryogenic air separation unit that includes purifying feed air with the above pre-purification unit.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: February 5, 2013
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Tatsuya Hidano, Morimitsu Nakamura, Masato Kawai
  • Patent number: 8192709
    Abstract: The present invention relates to the selective separation of methane (“CH4”) from higher carbon number hydrocarbons (“HHC”s) in streams containing both methane and higher carbon number hydrocarbons (e.g. ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate methane from higher carbon number hydrocarbons in natural gas streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 5, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8071063
    Abstract: The present invention relates to the selective separation of hydrogen (“H2”) hydrocarbons in streams containing both hydrogen and hydrocarbons (e.g. methane, ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in either a pressure swing adsorption process, a temperature swing adsorption process, or a membrane separations process to separate hydrogen from hydrocarbons present in hydrogen production streams or petrochemical/petroleum refining product streams and intermediate streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: December 6, 2011
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8002877
    Abstract: Ethylene is a gaseous growth hormone produced by plant which triggers the ripening of fruits and vegetables. Titanium dioxide, positioned on a filter, acts to trap ethylene to remove the ethylene from a vegetation storage container. Sodium silicate is utilized to absorb moisture to reduce the absorption of moisture by the titanium dioxide to prolong the ethylene trapping capacity of the titanium dioxide. The filter, after becoming saturated to a desired extent with ethylene, is removed from the vegetation storage container and heated to facilitate a release of the ethylene from the titanium dioxide. This process provides for a reconditioning of the filter for continued use within the vegetation storage container. Producing an air flow and providing for exhaust of ethylene enhance the reconditioning of the filter during the application of heat.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: August 23, 2011
    Inventor: Lawrence Sadler
  • Publication number: 20110126708
    Abstract: The invention relates to gas adsorbents based on metal-organic microporous coordination polymers of the metallic bispyrmidinolate-type with a sodalite-type topology, having an adsorbent performance that is typical of crystalline microporous materials. The aforementioned materials also have a large accessible pore volume of between 25 and 45% of the total volume of the material with a monodispersion of pores having diameters of less than 1.3 nm. In addition, the materials have a high capacity for adsorption of small gases, such as carbon monoxide, carbon dioxide, hydrogen, nitrogen, methane, acetylene, etc., which is reversible such that, once said gases have been stored, they can be desorbed.
    Type: Application
    Filed: June 14, 2006
    Publication date: June 2, 2011
    Inventors: Jorge Andrés Rodríguez Navarro, Juan Manuel Salas Peregrín, Elisa Barea Martínez, José Bernardo Parra Soto, Concepcíón Ovín Ania, Nomberto Masciocchi, Simona Galli, Angelo Sironi
  • Patent number: 7931736
    Abstract: A hydrocarbon adsorbent that includes a zeolite with either a H-FER structure or a MOR structure in which the pore diameter has been adjusted by ion exchange. A propane adsorbent that includes a zeolite with a MFI structure. A hydrocarbon removal unit that includes a TSA pre-purification unit having a column packed with sequential layers of activated alumina, a NaX zeolite, and the hydrocarbon adsorbent. A method of reducing the hydrocarbon content within liquid oxygen inside a cryogenic air separation unit that includes purifying feed air with the above pre-purification unit.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: April 26, 2011
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Tatsuya Hidano, Morimitsu Nakamura, Masato Kawai
  • Patent number: 7771513
    Abstract: Provided are methods of storing and separating acetylene or oxygen using microporous metal formates having a three-dimensional structure of metal and formate ion (HCOO?). Microporous metal formates used in the method selectively and stably adsorb a large amount of a specific gas within its structure. Therefore, those methods can be used in industrial appliances related to, for example, synthesis and transportation of high-purity gas.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: August 10, 2010
    Assignee: Postech Academy-Industry Foundation
    Inventors: Kimoon Kim, Hyunuk Kim, Kyeng Min Park, Denis G. Samsonenko, Yinyong Sun
  • Publication number: 20080264803
    Abstract: Methods and apparatus for storing and providing acetylene. A storage vessel contains both a porous filler material and an ionic liquid based solvent. Acetylene is dissolved into the solvent, and stored inside the storage vessel. The solvent contains no acetone or dimethylformamide.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 30, 2008
    Inventor: Rajat Agrawal
  • Publication number: 20080184885
    Abstract: Provided are methods of storing and separating acetylene or oxygen using microporous metal formates having a three-dimensional structure of metal and formate ion (HCOO?). Microporous metal formates used in the method selectively and stably adsorb a large amount of a specific gas within its structure. Therefore, those methods can be used in industrial appliances related to, for example, synthesis and transportation of high-purity gas.
    Type: Application
    Filed: February 5, 2008
    Publication date: August 7, 2008
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Kimoon Kim, Hyunuk Kim, Kyeng Min Park, Denis G. Samsonenko, Yinyong Sun
  • Patent number: 7011695
    Abstract: Zeolite adsorbent, and method of production, exchanged with calcium and barium cations, for purifying or separating a gas or gas mixture, in particular air, so as to remove therefrom the impurities found therein, such as hydrocarbons and nitrogen oxides (NxOy). The adsorbent is preferably an X or LSX zeolite and the gas purification process is of the TSA type.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: March 14, 2006
    Assignee: L'Air Liquide, Societe Anonyme A Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Serge Moreau, Elise Renou, Claire Szulman
  • Publication number: 20040035293
    Abstract: One aspect of the present invention relates to ionic liquids comprising a pendant Bronsted-acidic group, e.g., a sulfonic acid group. Another aspect of the present invention relates to the use of an ionic liquid comprising a pendant Bronsted-acidic group to catalyze a Bronsted-acid-catalyzed chemical reaction. A third aspect of the present invention relates to ionic liquids comprising a pendant nucleophilic group, e.g., an amine. Still another aspect of the present invention relates to the use of an ionic liquid comprising a pendant nucleophilic group to catalyze a nucleophile-assisted chemical reaction. A fifth aspect of the present invention relates to the use of an ionic liquid comprising a pendant nucleophilic group to remove a gaseous impurity, e.g., carbon dioxide, from a gas, e.g., sour natural gas.
    Type: Application
    Filed: April 4, 2003
    Publication date: February 26, 2004
    Inventor: James Hillard Davis
  • Patent number: 6517611
    Abstract: Separation of ethylene from ethane is achieved by feeding a mixture of the C2 hydrocarbons in contact with a CTS-1 crystalline titanium silicate molecular sieve which has a controlled pore size to selectively adsorb ethylene and size exclude ethane. The feed stream can also contain acetylene which can be selectively adsorbed from both ethane and ethylene by further controlling the pore size of the CTS-1 molecular sieve. Propane/propylene separation is also disclosed.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: February 11, 2003
    Assignee: Engelhard Corporation
    Inventors: Steven M. Kuznicki, Valerie A. Bell
  • Patent number: 6027548
    Abstract: The invention comprises a PSA apparatus for the separation of a heavy component from a light component in a feed stream. The apparatus includes an adsorbent bed comprising either a mixture of adsorbents or composite adsorbent particles wherein each particle comprises two or more adsorbents. At least one of the adsorbents is comparatively weak and the other is comparatively strong. Another embodiment of the invention is a PSA prepurifier having a bed of adsorbent material which comprises a mixture of, or composite adsorbent particles wherein each particle comprises at least two adsorbents, at least one of the adsorbents being comparatively strong and at least another of the adsorbents being comparatively weak.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: February 22, 2000
    Assignee: Praxair Technology, Inc.
    Inventors: Mark William Ackley, Alan Barnard Stewart, Gregory William Henzler, Frederick Wells Leavitt, Frank Notaro, Michael Scott Kane
  • Patent number: 5846295
    Abstract: Temperature swing adsorption to remove CO.sub.2 from a gas stream is conducted using alumina to adsorb all the water and at least most of the carbon dioxide from the gas stream. Optionally a downstream zone of zeolite may be provided to remove further carbon dioxide and hydrocarbons.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: December 8, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mohammed Ali Kalbassi, Rodney John Allam, Timothy Christopher Golden
  • Patent number: 5779767
    Abstract: A process for the adsorption of at least carbon dioxide, water and oxides of nitrogen and preferably acetylene from a feed gas, comprises contacting the feed gas with an adsorbent mixture of a zeolite and an alumina. The process may be operated as a swing adsorption process comprising contacting the gas with the adsorbent at a first temperature and pressure to adsorb at least carbon dioxide, water and oxides of nitrogen therefrom and periodically regenerating the adsorbent by reducing the pressure and or increasing the temperature to which the adsorbent is exposed.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: July 14, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Mohammed Ali Kalbassi, Fred William Taylor, Rodney John Allam
  • Patent number: 5769928
    Abstract: The invention comprises a PSA gas prepurifier for the removal of contaminants present in a feed gas stream. The prepurifier of the invention has a bed of adsorbent material which comprises at least two discrete layers of adsorbents, at least one of the adsorbents being comparatively strong and at least another of the adsorbents being comparatively weak.
    Type: Grant
    Filed: December 12, 1996
    Date of Patent: June 23, 1998
    Assignee: Praxair Technology, Inc.
    Inventor: Frederick Wells Leavitt
  • Patent number: 5676737
    Abstract: A process for the separation of solutes dissolved in a gaseous solvent. The process may be used to extract and recover solutes from solvents in either the supercritical or subcritical region. The process can be used to purify solvents containing solutes by removing solutes whose chemical potential decreases as the density of the solvent increases. The process utilizes a sorbent to remove the solute followed by an in situ regeneration of the sorbent and recovery of the solute. Typically, a gaseous solvent containing at least one solute is passed through a bed of sorbent to sorb at least one of the solutes to the bed of sorbent, producing a purified gaseous solvent. At least a portion of the gaseous solvent is then acted upon to increase its solvent capacity for the at least one sorbed solute.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 14, 1997
    Inventor: David R. Whitlock
  • Patent number: 5658372
    Abstract: A system for adsorbing a plurality of contaminants from a workstream composed of a first stage open-ended activated carbon monolith adsorber, a second stage open ended activated carbon monolith adsorber downstream of the first stage. The first stage activated carbon has an average pore size that is larger than the average pore size of the second stage activated carbon.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: August 19, 1997
    Assignee: Corning Incorporated
    Inventor: Kishor P. Gadkaree
  • Patent number: 5599381
    Abstract: A process is described for the separation of solutes dissolved in a gaseous solvent. The process is useful in the extraction and recovery of solutes using supercritical fluid extraction, and in the purification of impure steam. The process utilizes a sorbent to remove solute followed by an in situ regeneration of the sorbent and the recovery of the solute.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 4, 1997
    Inventor: David R. Whitlock
  • Patent number: 5470377
    Abstract: A process is described for the separation of solutes dissolved in a gaseous solvent. The process is useful in the extraction and recovery of solutes using supercritical fluid extraction, and in the purification of impure steam. The process utilizes a sorbent to remove solute followed by an in situ regeneration of the sorbent and the recovery of the solute.
    Type: Grant
    Filed: March 8, 1993
    Date of Patent: November 28, 1995
    Inventor: David R. Whitlock