And Recycle Or Reuse Of Contact Liquid For Further Contact Patents (Class 95/187)
  • Publication number: 20120011999
    Abstract: A method and systems for collecting particulates suspended in a fluid flowing through a duct are provided. The system includes a duct including an inlet opening configured to admit a flow of gas into the duct, during operation the gas including particulate contaminants and moisture and a source of hydrophobizing agent coupled in flow communication with the duct. The system also includes a nozzle configured to channel a flow of the hydrophobizing agent into the flow of gas such that during operation a flow of gas including hydrophobized particulate contaminants and moisture is formed and a filter medium for separating the hydrophobized particles from the flow of gas.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Inventor: Simon Charles Larcombe
  • Publication number: 20120000357
    Abstract: The present invention is a biogas processing system having a compressor having a biogas input and output, a pump having a water input and output, a scrubber tower having a mixing chamber connected to a biogas input, a water pump input, a water output, and a processed biogas output, and a filtration member connected to the water output to remove contaminants from the water exiting the first scrubber tower. The system also includes devices for heating and cooling the recycled flow of water to enhance the ability of the water to absorb contaminants from the biogas and the ability of a stripper to remove absorbed contaminants from the water in a closed loop water system, and a controller for closely controlling the operating parameters of the system to achieve safe an optimal operation of the system.
    Type: Application
    Filed: August 22, 2011
    Publication date: January 5, 2012
    Inventors: Kevin L. Roe, David J. Mandli, Amanda M. Neuhalfen
  • Patent number: 8080090
    Abstract: An improved process for the separation of carbon dioxide from the flue gas of an oxy-combustion power plant is provided. An inlet stream containing carbon dioxide and oxygen is at least partially condensed in the reboiler of a stripping column. The condensed inlet stream is then separated in a separator, thereby producing a first liquid stream and a first gas stream. The first liquid stream is then separated into a top gas stream and a bottom liquid stream in the stripping column. The top gas stream is then warmed by indirect heat exchange in the heat exchanger. The warmed top gas stream is then recycled and combined with the inlet stream.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: December 20, 2011
    Assignee: Air Liquide Process & Construction, Inc.
    Inventor: Bao Ha
  • Patent number: 8043588
    Abstract: This invention relates to a method and plant for energy-efficient removal of CO2 from a gas phase by means of absorption. The invention is particularly suitable for use in connection with thermal power plants fired by fossil fuels, and is also well-suited for retrofitting in existing thermal power plants. A processing plant according to the invention comprises three sections: a primary CO2-generating process that serves as main product supplier; a CO2-capture and separation plant based on absorption and desorption of CO2 respectively by/from at least one absorbent; and a second CO2-generating process where combustion of carbonaceous fuel in pure oxygen atmosphere serves as energy supply to at least a part of the thermal energy necessary to drive the regeneration of the absorbent in the desorption column(s).
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 25, 2011
    Assignees: CO2-Norway AS, Nebb Engineering AS
    Inventors: Carl W. Hustad, Ingo Tronstad
  • Patent number: 7998249
    Abstract: An inlet air chilling and filtration system for a turbine. The inlet air chilling and filtration system may include a first stage spray array with a first number of spray nozzle pairs, a second stage spray array with a second number of spray nozzles pairs, and a drift eliminator.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: August 16, 2011
    Assignee: General Electric Company
    Inventor: Peter Feher
  • Patent number: 7964018
    Abstract: An apparatus for collecting airborne particles includes a cyclone into which external air and an absorbing liquid are sprayed to absorb the airborne particles in the external air with the absorbing liquid, a reservoir in fluid communication with the cyclone and which stores the absorbing liquid to be sprayed into the cyclone as an absorbing liquid film, a collector in fluid communication with the cyclone and which collects the absorbing liquid film from the cyclone, and a feedback pipe in fluid communication with the collector and the reservoir and which transports the absorbing liquid film collected in the collector to the reservoir.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: June 21, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: KyoungHo Kang, Yunwoo Nam, JungJoo Hwang, Alexsandr Danilovich Tolchinsky, Vladimir Ivanovich Sigaev, Alexsander Nikolaevich Varfolomeev, Alexey Antonovich Mazhinsky, Pavel Konstantinovich Soloviev, Vadim Viktorovich Bunin
  • Patent number: 7964026
    Abstract: A gasification system having a combustor vessel, an optional scrubber vessel, an optional fixer vessel, an optional cyclone vessel and an optional demister vessel. A wide variety of possibly moist solid or semi-solid carbonaceous fuels may be partially combusted in the combustor to generate a combustible gas and a mineral ash. An improved ash support and removal subsystem reduces clogging and other problems. The combustible gas is conveyed by optional heavy-duty blowers through the optional vessels to remove liquids and particulates and to undergo catalytic chemical reactions to provide a relatively clean, dry, highly-combustible hydrocarbon gas that captures a relatively high fraction of the potential heating value of the fuel. Internal gases, liquids and particulates from the vessels may be recycled inside the system to improve efficiency and prevent liquid waste. A portion of the internal liquids may also be extracted for other uses.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: June 21, 2011
    Assignee: Power Reclamation, Inc.
    Inventor: Michael W. Rogers
  • Patent number: 7955420
    Abstract: Produced natural gas containing carbon dioxide is dehydrated and chilled to liquefy the carbon dioxide and then fractionated to produce a waste stream of liquid carbon dioxide and hydrogen sulfide. Natural gas liquids may be first separated and removed before fractionation. After fractionation, the waste stream is pressurized and transmitted to a remote injection well for injection either for disposal of the waste stream and preferably to urge hydrocarbons toward the producing well. A hydrocarbon stream proceeds from fractionation to a methanol absorber system which removes carbon dioxide gas. The hydrocarbon stream is thereafter separated into at least hydrocarbon gas, nitrogen and helium. Some of the nitrogen is reintroduced into a fractionation tower to enhance the recovery of hydrocarbons. A methanol recovery system is provided to recover and reuse the methanol. The hydrocarbons are sold as natural gas and the helium is recovered and sold. Excess nitrogen is vented.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: June 7, 2011
    Inventor: Donald Leo Stinson
  • Publication number: 20110094381
    Abstract: Absorption medium for acid gases comprising an oligoamine (A) of the general formula (I) and a piperazine derivative (B) of the general formula (II) in which the weight ratio of oligoamine (A) to the piperazine derivative (B) is 0.2 to 25, and also process for removing acid gases from a gas stream by contacting the gas stream at a pressure of 0.05 to 10 MPa abs with an aqueous solution of said absorption medium which is brought to and maintained at a temperature of 20 to 80° C.
    Type: Application
    Filed: June 9, 2009
    Publication date: April 28, 2011
    Applicant: BASF SE
    Inventors: Ute Lichtfers, Robin Thiele, Susanna Voges, Georg Sieder, Oliver Spuhl, Hugo Rafael Garcia Andarcia
  • Publication number: 20110067567
    Abstract: A process and system (100) for removing contaminants from a solution to regenerate the solution within the system. The process includes providing a solution (165) from a wash vessel (160) to a stripping column (181), the solution (165) including contaminants removed from a flue gas stream (150) present in the wash vessel (160) and contacting the solution with steam (185) inside the stripping column (181) thereby removing the contaminants from the solution and regenerating the solution. The stripping column (181) is operated at a pressure less than about 700 kilopascal.
    Type: Application
    Filed: August 3, 2010
    Publication date: March 24, 2011
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventors: Frederic Z. Kozak, Arlyn V. Petig, Ritesh Agarwal, Rameshwar S. Hiwale
  • Publication number: 20110061532
    Abstract: A method and system for transporting and processing sour gas are provided. The method includes collecting a sour gas at a collection location, which has an associated sweetening device, and delivering a solvent to the sweetening device from a regeneration device remote therefrom. The sour gas is treated at the collection location with the solvent in the associated sweetening device to form a sweetened gas and a sour gas-rich solvent. The sweetened gas is transported from the sweetening device to a gas processing plant remote therefrom, and the sour gas-rich solvent from the sweetening device is delivered to the regeneration device for regeneration therein.
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Inventors: David W. Kalinowski, James E. Chitwood, James O. Y. Ong, Rui Song
  • Patent number: 7883561
    Abstract: The present invention relates to an apparatus for the tangential introduction of a gas-loaded liquid stream into the top of a column in which gas and liquid are separated. Entry into the column top proceeds through a conventional radially arranged port, to which, however, a special tube construction connects which ensures as smooth as possible non-turbulent flow and its tangential exit into the column top.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: February 8, 2011
    Assignee: BASF SE
    Inventors: Volker Schuda, Rupert Wagner
  • Patent number: 7862788
    Abstract: A chilled ammonia based CO2 capture system and method is provided. A promoter is used to help accelerate certain capture reactions that occur substantially coincident to and/or as a result of contacting a chilled ammonia based ionic solution with a gas stream that contains CO2.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: January 4, 2011
    Assignee: ALSTOM Technology Ltd
    Inventors: Eli Gal, Otto Morten Bade, Indira Jayaweera, Gopala Krishnan
  • Publication number: 20100282081
    Abstract: An absorbent liquid according to the present invention is an absorbent liquid for absorbing CO2 or H2S or both from gas, in which the absorbent liquid includes an alkanolamine as a first compound component, and a second component including a nitrogen-containing compound having in a molecule thereof two members or more selected from a primary nitrogen, a secondary nitrogen, and a tertiary nitrogen or a nitrogen-containing compound having in a molecule thereof all of primary, secondary, and tertiary nitrogens. The absorbent liquid has an excellent absorption capacity performance and an excellent absorption reaction heat performance, as compared to an aqueous solution containing solely an alkanolamine and a nitrogen-containing compound in the same concentration in terms of wt %, and can recover CO2 or H2S or both from gas with smaller energy.
    Type: Application
    Filed: June 11, 2010
    Publication date: November 11, 2010
    Inventors: Ryuji YOSHIYAMA, Masazumi Tanoura, Noriko Watari, Shuuji Fujii, Yukihiko Inoue, Mitsuru Sakano, Tarou Ichihara, Masaki Iijima, Tomio Mimura, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 7806965
    Abstract: Produced natural gas containing carbon dioxide is dehydrated and chilled to liquefy the carbon dioxide and then fractionated to produce a waste stream of liquid carbon dioxide and hydrogen sulfide. Natural gas liquids may be first separated and removed before fractionation. After fractionation, the waste stream is pressurized and transmitted to a remote injection well for injection either for disposal of the waste stream and preferably to urge hydrocarbons toward the producing well. A hydrocarbon stream proceeds from fractionation to a methanol absorber system which removes carbon dioxide gas. The hydrocarbon stream is thereafter separated into at least hydrocarbon gas, nitrogen and helium. Some of the nitrogen is reintroduced into a fractionation tower to enhance the recovery of hydrocarbons. A methanol recovery system is provided to recover and reuse the methanol. The hydrocarbons are sold as natural gas and the helium is recovered and sold. Excess nitrogen is vented.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: October 5, 2010
    Inventor: Donald Leo Stinson
  • Patent number: 7789945
    Abstract: A process for maintaining a low carbon monoxide content in a carbon dioxide product that is made in a synthesis gas purification process is disclosed. More particularly, the invention involves an improved process in which a portion of a loaded solvent is sent through a carbon dioxide absorber instead of to a series of carbon dioxide flash drums.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 7, 2010
    Assignee: UOP LLC
    Inventors: William J. Lechnick, Leonid Bresler, Lamar A. Davis
  • Patent number: 7785399
    Abstract: Systems and processes utilize one or more methods of providing overhead waste process heat to increase the feed temperature of the hot solvent stripping regeneration loop in an acid gas removal process. A heated rich solvent stream can be the primary feed for the hot solvent stripping regeneration loop, and one or more slip streams can be heated and then combined with the heated rich solvent stream to form a combined rich solvent stream prior to further processing in downstream units to remove acid gas from the solvent. A first slip stream can be heated in a stripper gas heat exchanger by heat exchange with a stripped gas stream. A second slip stream can be heated in a regenerator exchanger by heat exchange with an acid gas stream. A third slip stream can be heated in a recycle gas exchanger by heat exchange with a compressed recycle gas stream.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: August 31, 2010
    Assignee: UOP LLC
    Inventors: Richard Huang, Lamar A. Davis, William J. Lechnick, Xin Zhu
  • Publication number: 20100212497
    Abstract: The present invention relates generally to the field of emission control equipment for boilers, heaters, kilns, or other flue gas-, or combustion gas-, generating devices (e.g., those located at power plants, processing plants) and, in particular to a new and useful method and apparatus designed to improve the water supplied to non-calcium-based, aqueous wet SOx scrubbers. In another embodiment, the present invention relates to a system and method for softening water for use in non-calcium-based, aqueous wet SOx scrubbers.
    Type: Application
    Filed: January 19, 2010
    Publication date: August 26, 2010
    Inventors: William Downs, Paul J. Williams
  • Publication number: 20100140144
    Abstract: A method for reducing one or more additives in a gaseous hydrocarbon stream (40) such as natural gas, comprising the steps of: (a) admixing an initial hydrocarbon feed stream (10) with one or more additives (20) to provide a multiphase hydrocarbon stream (30); (b) passing the multiphase hydrocarbon stream (30) from a first location (A) to a second location (B2); (c) at the second location (B2), passing the multiphase hydrocarbon stream (30) through a separator (22) to provide one or more liquid streams (50) comprising the majority of the one or more additives, and a gaseous hydrocarbon stream (40) comprising the remainder of the one or more additives; and (d) washing the gaseous hydrocarbon stream (40) in a decontamination unit (24) with a washing stream (60), wherein the washing stream (60) comprises distilled water, to provide an additive-enriched stream (70) and an additive-reduced hydrocarbon stream (80).
    Type: Application
    Filed: February 15, 2008
    Publication date: June 10, 2010
    Inventors: Paul Clinton, Marcus Johannes Antonius Van Dongen, Nishant Gupta
  • Publication number: 20100139536
    Abstract: A method and a plant for capturing CO2 from an exhaust gas from combustion of carbonaceous material are described. At least a part of the combustion gas is introduced into a biol fuel boiler as an oxygen containing gas, to increase the concentration of CO2 and decrease the oxygen concentration in the gas before introduction into an absorption column for separation of CO2.
    Type: Application
    Filed: April 18, 2008
    Publication date: June 10, 2010
    Inventors: Simon Woodhouse, Oscar Fredrik Graff
  • Patent number: 7727311
    Abstract: Installation for gas treatment by a liquid phase comprising a) a column (C) that comprises means (1) for introducing gas at one end of said column, means (9) for drawing off gas from the other end of column (C) and, from upstream to downstream in the direction of circulation of the liquid phase: a first internal (2) that comprises means for distribution of a liquid phase, a first bed (6) that comprises a packing or catalytic particles, a second internal (3) that comprises means for separating liquid/gas mixture (19, 20) that is obtained from first bed (6), first means (32, 4) for collecting and evacuating the separated liquid phase, means (100) for passing through internal (3) of the treated gas, and distribution means (31, 101) of a liquid phase with said gas, a second bed (8), second means (10) for collecting and evacuating the liquid phase at the lower outlet of column (C), b) Means for recycling the collected liquid phase.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: June 1, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Ludovic Raynal, Eric Lemaire, Jean-Louis Ambrosino
  • Publication number: 20100089238
    Abstract: Method for the dissolution of a gas in an input gas flow, in which a soaked solid comprising a porous substrate comprising pores each having a size less than 100 nanometres (nm) and each containing a solvent of the gas, is swept with the input gas flow comprising at least the gas.
    Type: Application
    Filed: December 5, 2008
    Publication date: April 15, 2010
    Applicant: Centre National de la Recherche Scientifique
    Inventors: Sylvain Miachon, Sylvie Lemeulle, Mae Miachon-Lemeulle, Telio Miachon-Lemeulle, Marc Pera Titus, Volaniaina Rakotovao, Jean-Alain Dalmon
  • Patent number: 7683223
    Abstract: Method for purifying hydrogen chloride gas containing aromatic organic compounds, comprising at least one step of contacting the said hydrogen chloride with a scrubbing agent containing 1,2-dichlorethane.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: March 23, 2010
    Assignee: Solvay (Société Anonyme)
    Inventors: Michel Strebelle, Michel Lempereur
  • Patent number: 7655071
    Abstract: A process for cooling down a hot flue gas stream comprising water vapour and carbon dioxide, the process including: (a) heat exchange between the hot flue gas stream and a cooling water stream so that the hot flue gas stream is cooled to a cooled down gas stream at a temperature at which at least part of the water vapour therein has condensed and the cooling water stream increases in temperature; (b) combining the condensed water vapour and the cooling water stream to produce a combined water stream; (c) separation of the cooled down gas stream from the combined water stream; (d) cooling the combined water stream by contact with air from the atmosphere and by evaporation of a portion of the combined water stream; (e) using at least part of any non-evaporated and cooled water of the combined water stream as at least part of the cooling water stream for cooling the hot flue gas stream in step (a); and (f) storing any non-evaporated and cooled water of the combined water stream that is not used in step (e) and u
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: February 2, 2010
    Assignee: Shell Oil Company
    Inventor: Wilhelmus Jozef De Vreede
  • Publication number: 20100011958
    Abstract: The present invention relates to a method of deacidizing a gaseous effluent, wherein the following stages are carried out: a) contacting the gaseous effluent with an absorbent solution so as to obtain a gaseous effluent depleted in acid compounds and an absorbent solution laden with acid compounds, the absorbent solution being selected for its property to form two separable phases when it absorbs an amount of acid compounds, b) separating the absorbent solution laden with acid compounds into two fractions: a first absorbent solution fraction depleted in acid compounds and a second absorbent solution fraction enriched in acid compounds, c) regenerating the second fraction so as to release part of the acid compounds, d) mixing a predetermined amount of water with the first absorbent solution fraction obtained in stage b) or with the regenerated absorbent solution fraction obtained in stage c), then e) recycling the first absorbent solution fraction and the regenerated absorbent solution as the absorbent solu
    Type: Application
    Filed: December 19, 2006
    Publication date: January 21, 2010
    Inventors: Renaud Cadours, Pierre-Louis Carrette, Pierre Boucot
  • Publication number: 20100003177
    Abstract: Apparatus comprising an absorber device provided with a plurality of sequentially adjacent sections for flowing a gas stream therethrough. A conduit infrastructure comprising a section configured to ingress, communicate with and egress from each section of the absorber device, and a recovery and regeneration section, is configured with a plurality of heat exchange and cooling equipment. A process wherein a liquid solvent provided with at least one chemical compound selected for reacting with the selected gaseous component, is counter-flowed against and commingled with the gas stream. The liquid solvent temperature is controllably manipulated between each section of the column to provide: (a) thermodynamic-driven mass transfer at the front end of the absorber device, and (b) kinetic-driven mass transfer at the back end of the absorber device. The heat generated during the recovery of the gaseous component from the absorption liquid solvent system is recovered for use in regenerating solvent system.
    Type: Application
    Filed: March 23, 2007
    Publication date: January 7, 2010
    Applicant: THE UNIVERSITY OF REGINA
    Inventors: Adisorn Aroonwilas, Amornvadee Veawab
  • Patent number: 7641717
    Abstract: Ultra cleaning of combustion gas to near zero concentration of residual contaminants followed by the capture of CO2 is provided. The high removal efficiency of residual contaminants is accomplished by direct contact cooling and scrubbing of the gas with cold water. The temperature of the combustion gas is reduced to 0-20 degrees Celsius to achieve maximum condensation and gas cleaning effect. The CO2 is captured from the cooled and clean flue gas in a CO2 absorber (134) utilizing an ammoniated solution or slurry in the NH3—CO2H2O system. The absorber operates at 0-20 degrees Celsius. Regeneration is accomplished by elevating the pressure and temperature of the CO2-rich solution from the absorber. The CO2 vapor pressure is high and a pressurized CO2 stream, with low concentration of NH3 and water vapor is generated. The high pressure CO2 stream is cooled and washed to recover the ammonia and moisture from the gas.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: January 5, 2010
    Assignee: EIG, Inc.
    Inventor: Eli Gal
  • Patent number: 7635408
    Abstract: Hydrogen sulfide is selectively enriched from an acid gas (1) that comprises relatively large quantities of carbon dioxide using a configuration in which a portion of an isolated hydrogen sulfide stream is introduced into an absorber (51) operating as a carbon dioxide rejecter. The resulting concentrated hydrogen sulfide enriched solvent (4) is then further used (directly or indirectly) to absorb hydrogen sulfide from an acid feed gas.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: December 22, 2009
    Assignee: Fluor Technologies Corporation
    Inventors: John Mak, Richard B. Nielsen, Thomas King Chow, Oliver Morgan, Vincent Wai Wong
  • Patent number: 7588627
    Abstract: The invention relates to a process for the removal of, H2S and mercaptans from a gas stream comprising these compounds, which process comprises the steps of: (a) removing H2S from the gas stream by contacting the gas stream in a H2S-removal zone with a first aqueous alkaline washing liquid to obtain a H2S-depleted gas stream and a sulphide-comprising aqueous stream; (b) removing mercaptans from the H2S-depleted gas stream obtained in step (a) by contacting the H2S-depleted gas stream in a mercaptan-removal zone with a second aqueous alkaline washing liquid to obtain a mercaptan-depleted gas stream and an thiolate—comprising aqueous stream; (c) contacting the combined aqueous streams comprising sulphide and thiolates obtained in step (a) and step (b) with sulphide-oxidizing bacteria in the presence of oxygen in an oxidation reactor to obtain a sulphur slurry and a regenerated aqueous alkaline washing liquid; (d) separating at least part of the sulphur slurry obtained in step (c) from the regenerated aqueous al
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: September 15, 2009
    Assignee: Shell Oil Company
    Inventors: Wiebe Sjoerd Kijlstra, Josephus Norbertus Johannes Jacobus Lammers, Clas Ingemar Wernersson
  • Publication number: 20090173226
    Abstract: A system, method and apparatus for treating a waste gas stream containing on or more hydrocarbon contaminants such polycyclic aromatic hydrocarbons (PAH). The system, method and apparatus may include a heat treatment chamber having a recycling apparatus that includes a supply of a food oil solvent; a mixing device to mix the solvent with the waste gas stream. The system, method and apparatus dissolve the hydrocarbon contaminants from the gas stream into a solvent containing the food oil.
    Type: Application
    Filed: January 7, 2009
    Publication date: July 9, 2009
    Applicant: H2GEN INNOVATIONS, INC.
    Inventors: Franklin D. Lomax, JR., Owens Owen, Paul Bizot, Milan Skarka
  • Publication number: 20090151565
    Abstract: A scrubbing system for removing particulate from an air stream generated during a glass-wool insulation forming process includes a first separator system for removing at least a first portion of the particulate from the air stream, a second separator system, in the form of a single cloud generating vessel, for removing another portion of the particulate, and a third separator system for removing both moisture and a further portion of the particulate. The first separator system is designed to effectively provide a high residence or pre-treatment time for the air stream that enables fine particles to grow into larger particles which are easier to trap and collect, while also allowing the air stream ample time to cool to saturation temperatures. The first and third separator systems combine with the single cloud generating vessel to synergistically enhance the overall efficacy and efficiency of the scrubbing system.
    Type: Application
    Filed: December 16, 2007
    Publication date: June 18, 2009
    Inventors: Michael A. Tressler, Donald R. Miller, Thomas I. Prosek, Frank Kristie, Richard A. Jenne, William R. Cooper
  • Publication number: 20090151566
    Abstract: A system (10) for regenerating a rich absorbent solution (26), the system including: an absorber (20) facilitating interaction between a process stream (22) and an absorbent solution, wherein the process stream comprises an acidic component, and interaction of the process stream with the absorbent solution produces a reduced acidic component stream (28) and a rich absorbent solution; at least one heat exchanger accepting at least one of said reduced acidic component stream and the process stream to transfer heat to a heat transfer fluid (60); and at least one mechanism (60a) to transfer the heat transfer fluid from said at least one heat exchanger to a regenerator (34) regenerating the rich absorbent solution, wherein each of the at least one mechanisms is fluidly coupled to each of the at least one heat exchangers.
    Type: Application
    Filed: November 12, 2008
    Publication date: June 18, 2009
    Applicant: ALSTOM Technology Ltd
    Inventors: Nareshkumar B. Handagama, Rasesh R. Kotdawala
  • Publication number: 20090068078
    Abstract: A method for bringing into contact two phases which are not completely miscible with one another, and whose contact is accompanied by heat development owing to mass transfer and/or chemical reaction, in which a first phase is introduced into the lower region of a contactor and a second phase is introduced into the upper region of the contactor and passed in countercurrent flow to the first phase in the contactor, a treated first phase and an exhausted second phase being obtained, which comprises recirculating a part of the exhausted second phase to the contactor at least one point situated between the upper region and the lower region. In the preferred embodiment, the first phase is a fluid stream comprising acid gases such as CO2, H2S, SO2, CS2, HCN, COS or mercaptans, and the second phase is an absorption medium which comprises an aqueous solution of at least one organic and/or inorganic base.
    Type: Application
    Filed: March 16, 2007
    Publication date: March 12, 2009
    Applicant: BASF SE
    Inventors: Mauricio Grobys, Norbert Asprion
  • Publication number: 20080307966
    Abstract: Produced natural gas containing carbon dioxide is dehydrated and chilled to liquefy the carbon dioxide and then fractionated to produce a waste stream of liquid carbon dioxide and hydrogen sulfide. Natural gas liquids may be first separated and removed before fractionation. After fractionation, the waste stream is pressurized and transmitted to a remote injection well for injection either for disposal of the waste stream and preferably to urge hydrocarbons toward the producing well. A hydrocarbon stream proceeds from fractionation to a methanol absorber system which removes carbon dioxide gas. The hydrocarbon stream is thereafter separated into at least hydrocarbon gas, nitrogen and helium. Some of the nitrogen is reintroduced into a fractionation tower to enhance the recovery of hydrocarbons. A methanol recovery system is provided to recover and reuse the methanol. The hydrocarbons are sold as natural gas and the helium is recovered and sold. Excess nitrogen is vented.
    Type: Application
    Filed: August 22, 2008
    Publication date: December 18, 2008
    Inventor: Donald Leo Stinson
  • Publication number: 20080250927
    Abstract: A gasification system is disclosed having a combustion or reaction vessel, a scrubber housing, and a filter housing. A carbonaceous fuel is partially combusted in the reaction vessel to generate a combustible gas. An improved ash support and removal system reduces clogging and other problems in the reaction vessel. The combustible gas passes through the scrubber housing to remove matter such as tar and oil, and the scrubbed gas passes through a hybrid blower to the filter housing. Wood chips are used in the filter housing to provide a relatively clean, dry gas. Wastewater and other waste products from the scrubber housing and filter housing are captured and returned to the reaction vessel.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 16, 2008
    Inventors: Jackie W. Rogers, Michael W. Rogers
  • Patent number: 7424808
    Abstract: A plant includes an absorber (105) that receives a feed gas (10) at a pressure of at least 400 psig and comprising at least 5 mol % carbon dioxide, wherein the absorber (105) is operated at an isothermal or decreasing top-to-bottom thermal gradient, and wherein the absorber (105) employs a physical solvent to at least partially remove an acid gas from the feed gas (10). Such configuration advantageously provide cooling (108) by expansion of the rich solvent (21) generated in the absorber (105), wherein both a semi-rich solvent (13) generated and recycled to the absorber (105) and the feed gas (10) are cooled by expansion of the rich solvent (21).
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: September 16, 2008
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 7377956
    Abstract: Method and system for processing natural gas containing contaminants through the use of one or more rotary screw compressors. A natural gas containing a contaminant (e.g., water or carbon dioxide and/or hydrogen sulfide) and a contaminant removing agent are combined and processed within a rotary screw compressor. The contaminant removing agent may be a dehydrating agent such as a glycol or a carbon dioxide and/or hydrogen sulfide removing agent such an amine. The method and system of the present invention also may employ a series of rotary screw compressors to process natural gas containing a plurality of contaminants.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: May 27, 2008
    Assignee: RDC Research LLC
    Inventors: Richard P. Cheney, Jr., Brad Salzman
  • Publication number: 20080098890
    Abstract: An inlet air chilling and filtration system for a turbine. The inlet air chilling and filtration system may include a first stage spray array with a first number of spray nozzle pairs, a second stage spray array with a second number of spray nozzles pairs, and a drift eliminator.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 1, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Peter Feher
  • Publication number: 20080078292
    Abstract: An absorbing solution according to the present invention is an absorbing solution that absorbs CO2 or H2S in gas or both of CO2 and H2S. The absorbing solution is formed by adding desirably 1 to 20 weight percent of tertiary monoamine to a secondary-amine composite absorbent such as a mixture of secondary monoamine and secondary diamine. Consequently, it is possible to control degradation in absorbing solution amine due to oxygen or the like in gas. As a result, it is possible to realize a reduction in an absorption loss, prevention of malfunction, and a reduction in cost. This absorbing solution is suitably used in an apparatus for removing CO2 or H2S or both of CO2 and H2S.
    Type: Application
    Filed: April 3, 2006
    Publication date: April 3, 2008
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Tomio Mimura, Yasuyuki Yagi, Kouki Ogura, Masaki Iijima, Toru Takashima, Hiroshi Tanaka, Takuya Hirata
  • Patent number: 7311759
    Abstract: A two-stage process is provided for purifying off-gases from a high-pressure melamine plant. In the first stage, the off-gases are contacted with a recirculated urea melt containing melamine precursors and NH3. In the second stage, the off-gases are contacted with a fresh urea melt.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: December 25, 2007
    Assignee: Ami - Agrolinz Melamine International GmbH
    Inventors: Frank Schröder, Hartmut Bucka, Christoph Neumüller, Gerhard Coufal
  • Patent number: 7241470
    Abstract: The method applies to a process such as cementation or chemical vapor infiltration or deposition, the process being carried out in an oven and the method comprising setting operating parameters of the oven, introducing a reagent gas into the oven, the reagent gas containing at least one gaseous hydrocarbon, and extracting from the oven an effluent gas containing reaction by-products of the reagent gas. The effluent gas is subjected to washing in oil that absorbs tars contained in the effluent gas, and information about the progress of the process is obtained by measuring the quantity of tar absorbed by the oil.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 10, 2007
    Assignee: Snecma Propulsion Solide
    Inventors: Bernard Delperier, Eric Thibaudeau
  • Patent number: 7189281
    Abstract: A second-generation rotating biofilter employing microorganisms in a microbiological film (biofilm) “mineralizes” contaminants, such as VOCs and odoriferous contaminants. Contaminated fluid, such as air from manufacturing processes, is directed radially outward from a perforated pipe through porous foam attached to the pipe. The pipe serves as the axis upon which layers of foam suitable for supporting formation of biofilms are placed. In one embodiment, an octagonal-shaped drum incorporates eight baskets. In each basket, foam is layered outwardly from the pipe in trapezoidal-shaped layers each of approximately 3.8 cm thickness, each layer separated by air gaps of approximately 1.3 cm to prevent clogging. Seven layers in each of eight baskets comprise the octagonal drum. When the drum is sprayed on one side, water soaks the media and it is heavier on that side, thus facilitating rotation of the drum. Further, the biofilms are supplied with moisture and supplemental nutrients as needed.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: March 13, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Byung J. Kim
  • Patent number: 7105039
    Abstract: A method and apparatus is provided of adding ozone and ozone and oxygen and ozone and another oxidizer such as chlorine dioxide or an acidifying agent to contaminated environments including high pressure work sites such as wells and sewage pipes and into high temperature solutions such as scrubber water. An apparatus is provided for on-site generation of oxygen and the generation of high pressure oxygen for use in contaminant remediation.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: September 12, 2006
    Inventor: Scott Decker
  • Patent number: 7101420
    Abstract: Self cleaning air filtration machine and a method for using same comprising; a filter with a motor driven belt or disk or counter rotating disks that are perforated, a spray bar, a recirculation pump and supply line, a wet tank, a ultrasonic transducer, ultraviolet submersible bulbs, a water fill port, a liquid level sensor, a liquid and sediment drain port, and a power source. A preferred embodiment includes a subsonic transducer on the wet tank. A preferred embodiment includes a air diffuser, a toxic and noxious gas detection and recognition and radiation detection with automatic safety shut down and audible and visual alarm, a ultraviolet saturation chamber. A preferred embodiment includes a secondary wet filter, a secondary air diffuser, a secondary ultraviolet saturation chamber. A preferred embodiment includes a inline dryer assembly.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: September 5, 2006
    Inventors: Adria Valley Anne Nelson Ellis, Rob Nelson
  • Patent number: 7025807
    Abstract: The invention relates to a process for absorbing vapors and gasses by controlling overpressure in storage tanks during filling, transport and storing of fluids in liquid form. The process includes leading of gas down to the bottom of the tank, where a major part of the gas is absorbed in the tank's own liquid in an absorption device or optionally the liquid is supplied from an external source.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: April 11, 2006
    Assignee: Advanced Production and Loading AS
    Inventor: Evert Grodal
  • Patent number: 7011696
    Abstract: An elimination process of fluorinated anionic sufactants from exhausted gaseous streams, wherein the gaseous stream is put into contact with aqueous solutions having in the range from 3.5 to 13.8, the aqueous solution density being lower than 1.05 g/cm3, wherein the concentration in the aqueous solution of the fluorinated anionic surfactant removed by the gaseous stream is lower than or equal to 70 ppm.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: March 14, 2006
    Assignee: Solvay Solexis SpA
    Inventors: Stefano Ferrero, Evasio Deregibus
  • Patent number: 6974542
    Abstract: A column of solvent containing foaming contaminants is provided. Gas is educted into the solvent in the column so as to generate foam in the column. The gas is educted into the column independently of the input flow of solvent into the solvent using a pumparound arrangement with the solvent. Foam generation continues so as to push the foam up in the column, wherein much of the solvent that is in the foam is allowed to drain back down into the column. The foam passes through concentrators which increase the residency time of the foam in the column to further dry the foam and to create larger bubbles. The drier foam is pushed out of the column and into a container. The foam is broken up into gas and the liquid foaming contaminants. The gas is recirculated for injection into the column even after foaming has stopped. The foaming contaminants are concentrated at the surface level of the solvent in the column. These contaminants are removed from the column.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: December 13, 2005
    Inventor: Stephen A. von Phul
  • Patent number: 6955705
    Abstract: Method and system for compressing and dehydrating wet natural gas produced from a low-pressure well using a rotary screw compressor. A dehydrating agent is combined with wet natural gas within a rotary screw compressor. Operation of the rotary screw compressor causes compression and dehydration of the wet natural gas to produce a compressed dry natural gas. Engine exhaust produced by the engine which powers the rotary screw compressor may be used to remove water absorbed by the dehydrating agent and thereby recover the dehydrating agent for re-circulation in the system.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: October 18, 2005
    Assignee: RDC Research LLC
    Inventors: Richard P. Cheney, Brad Salzman
  • Patent number: 6946018
    Abstract: A method and apparatus for cleaning a gas comprising a rotatable centrifugal cylinder having passageways for flowing a gas stream with a liquid stream through the cylinder to centrifugally remove the particulates from the gas stream with the liquid stream; turbine blades positioned inside the cylinder and connected to the cylinder to rotate the cylinder when the liquid stream flows through the turbine blades; fan blades positioned inside the cylinder and connected to the cylinder to rotate with the cylinder to pump the gas stream through the cylinder; and a pump connected to a reservoir of liquid, for pumping the liquid stream.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: September 20, 2005
    Inventor: J. S. Hogan
  • Patent number: 6926870
    Abstract: A scoop is used to collect a liquid slurry upstream of an internal collection tank. The scoop is in fluid communication with a downcomer, which receives at least part of the collected slurry, thereby maintaining a continuous flow of liquid slurry through the scoop to prevent plugging. Collected slurry can be removed for treatment from the scoop or the downcomer. In an application to a wet flue gas desulfurization (FGD) scrubber, the scoop collects an effluent slurry of partially reacted liquid scrubbing reagent and scrubbing byproducts before they drain into an internal reaction tank. Partially reacted liquid scrubbing reagent and scrubbing byproducts can therefore be withdrawn for treatment before the addition of fresh reagent alters the pH of the treatment stream.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: August 9, 2005
    Assignee: The Babcock & Wilcox Company
    Inventors: Dennis W. Johnson, David W. Murphy, Robert B. Myers