Selective Diffusion Of Gases Through Substantially Solid Barrier (e.g., Semipermeable Membrane, Etc.) Patents (Class 95/45)
  • Patent number: 8540800
    Abstract: The present invention discloses microporous UZM-5 zeolite membranes, methods for making the same, and methods of separating gases, vapors, and liquids using the same. The small-pore microporous UZM-5 zeolite membrane is prepared by two different methods, including in-situ crystallization of one or more layers of UZM-5 zeolite crystals on a porous membrane support, and a seeding method by in-situ crystallization of a continuous second layer of UZM-5 zeolite crystals on a seed layer of UZM-5 zeolite crystals supported on a porous membrane support. The membranes in the form of disks, tubes, or hollow fibers have superior thermal and chemical stability, good erosion resistance, high CO2 plasticization resistance, and significantly improved selectivity over polymer membranes for gas, vapor, and liquid separations.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: September 24, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Jaime G. Moscoso, Stephen T. Wilson
  • Patent number: 8540806
    Abstract: There is provided herein a dryer polymer substance including a hetero-phase polymer composition including two or more polymers wherein at least one of the two or more polymers include sulfonic groups, wherein the substance is adapted to pervaporate a fluid. The fluid may include water, water vapor or both. There is also provided herein a process for the preparation of a dryer polymer substance adapted to pervaporate a fluid (such as water, water vapor or both) the process includes mixing two or more polymers, wherein at least one of the two or more polymers may include groups which are adapted to be sulfonated, to produce a hetero-phase polymer composition and processing the polymer blend into a desired form.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: September 24, 2013
    Assignee: Oridion Medical (1987) Ltd.
    Inventors: Amos Ophir, Eyal Cohen, David Dishon, Joshua Lewis Colman
  • Patent number: 8540809
    Abstract: An external cover of a replaceable cartridge forms at least a portion of an air drying apparatus of a compressed air brake for a vehicle. A first slope is formed at an intermediate position between an extremity of a rising piece and a bottom of an external cover, and a left vertical wall is formed. A right vertical wall is formed opposite the left vertical wall. A top face is formed between the left vertical wall and the right vertical wall. An indentation is defined by the left vertical wall, the right vertical wall, and the top face. A sealing member is fitted into the indentation. A circular-arc portion is formed at a lower end of the right vertical wall. A second slope is formed in an extending manner at a predetermined height from a lower end face that is an intermediate position on a height of the external cover.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: September 24, 2013
    Assignee: Nabtesco Automotive Corporation
    Inventors: Ichiro Minato, Takeo Shimomura, Hiroyuki Murakami, Hirohisa Todoki
  • Publication number: 20130239805
    Abstract: Disclosed herein is a method for preparing a crosslinked hollow fiber membrane. The method involves spinning a one phase solution comprising a monoesterified polyimide polymer, acetone as a volatile solvent, a spinning solvent, a spinning non-solvent, and optionally an organic and/or inorganic additive, wherein the volatile solvent is present in an amount of greater than 25 wt. % to about 50 wt. %, based on the total weight of the solution.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 19, 2013
    Applicant: CHEVRON U.S.A. INC.
    Inventor: Shabbir Husain
  • Publication number: 20130239804
    Abstract: Disclosed herein is a gas separation process that utilizes ejector recycle with a membrane separation step in combination with a second separation step. The second separation step may be a second membrane separation step, or may involve a different type of separation process.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventor: Livia Serbanescu-Martin
  • Patent number: 8535413
    Abstract: An apparatus and process is taught for the formation of ethanol from a fermentation medium in the absence of an ethanol concentration distillation step.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 17, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Paul Bryan, Oluwasijibomi Okeowo
  • Publication number: 20130228519
    Abstract: The present invention is directed to ultrafiltration membranes comprising a microporous material, said microporous material comprising: (a) a polyolefin matrix present in an amount of at least 2 percent by weight, (b) finely divided, particulate, substantially water-insoluble silica filler distributed throughout said matrix, said filler constituting from about 10 percent to about 90 percent by weight of said microporous material substrate; and (c) at least 35 percent by volume of a network of interconnecting pores communicating throughout the microporous material. The present invention is also directed to methods of separating suspended or dissolved materials from a fluid stream such as a liquid or gaseous stream, comprising passing the fluid stream through the ultrafiltration membrane described above.
    Type: Application
    Filed: August 30, 2012
    Publication date: September 5, 2013
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Qunhui Guo, Carol L, Knox, Raphael O. Kollah, Justin J. Martin, Timothy A. Okel, Daniel E. Rardon, Christine Gardner, Shantilal M. Mohnot
  • Publication number: 20130228529
    Abstract: The present invention is directed to microfiltration membranes comprising a microporous material, said microporous material comprising: (a) a polyolefin matrix present in an amount of at least 2 percent by weight, (b) finely divided, particulate, substantially water-insoluble silica filler distributed throughout said matrix, said filler constituting from about 10 percent to about 90 percent by weight of said microporous material substrate, wherein the weight ratio of filler to polyolefin is greater than 4:1; and (c) at least 35 percent by volume of a network of interconnecting pores communicating throughout the microporous material. The present invention is also directed to methods of separating suspended or dissolved materials from a fluid stream such as a liquid or gaseous stream, comprising passing the fluid stream through the microfiltration membrane described above.
    Type: Application
    Filed: August 30, 2012
    Publication date: September 5, 2013
    Applicant: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, Carol L. Knox, Raphael O. Kollah, Justin J. Martin, Timothy A. Okel, Daniel E. Rardon, Christine Gardner, Shantilal M. Mohnot
  • Patent number: 8523981
    Abstract: The invention relates to a hydrophobic, integrally asymmetrical hollow-fiber membrane made of a vinylidene fluoride homopolymer or copolymer, wherein the wall of the membrane has a microporous supporting layer having a sponge-like, open-pored, essentially isotropic pore structure without finger pores, the supporting layer extending across at least 90% of the wall thickness and having pores with an average diameter of less than 0.5 ?m. The hollow-fiber membrane is characterized in that it has a separating layer adjacent to the supporting layer on its outer surface and that it has an outer surface with a homogeneous, uniform structure without pores, a porosity in the range from 40 to 80 vol. %, a wall thickness from 25 to 100 ?m, a diameter of the lumen of the hollow-fiber membrane from 100 to 500 ?m, a permeability for nitrogen of at least 25 ml/(cm2·min·bar), and an elongation at break of at least 250%. The invention further relates to a method for producing hollow-fiber membranes of this type.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 3, 2013
    Assignee: Membrana GmbH
    Inventors: Quan Huang, Karl Bauer, Phung Duong, Oliver Schuster
  • Patent number: 8523982
    Abstract: A separation membrane module for separating a specific component from a mixture containing a plurality of components includes a plurality of separation stages each including a plurality of hollow fiber membranes arranged in parallel to each other. The separation stages are connected in series via connection portions allowing passage of the mixture. At lease one parameter relating to separation by the hollow fiber membrane or membranes in each separation stage is determined to provide effective separation throughout the separation stages.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: September 3, 2013
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Takashi Suefuji, Masataka Suzuki, Akio Muraishi, Shota Yamanaka, Yohsuke Koizumi, Hiroyoshi Ohya, Hirokazu Ohno
  • Publication number: 20130220118
    Abstract: A non-cryogenic system for gas separation includes an absorbent system for removing condensable hydrocarbons from a feed gas. The feed gas is then directed into a gas-separation membrane. The absorbent system includes a liquid absorbent having an affinity for hydrocarbons. The liquid absorbent can be, for example, compressor oil or mineral oil. A chiller and a carbon bed may optionally be positioned between the absorbent system and the membrane. The absorbent is periodically regenerated by reducing the pressure or increasing the temperature of the liquid.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 29, 2013
    Applicant: GENERON IGS, INC.
    Inventor: Generon IGS, Inc.
  • Patent number: 8512442
    Abstract: A composite membrane for separating a gas from a mixed gas stream includes a fibrous non-woven substrate including consolidated synthetic thermoplastic fibers, and coextensively disposed on a surface of the fibrous non-woven substrate a continuous polysulfide rubber film adhered thereto. A method of separating a gas component from a mixed gas stream includes 1) contacting a surface of the above-described composite membrane with the mixed gas stream under conditions such that a product gas enriched in the gas component diffuses through the composite membrane; and 2) collecting the product gas.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: August 20, 2013
    Inventor: Aaron Oken
  • Patent number: 8512441
    Abstract: A process for recovering a gaseous component comprising at least one fluorine-containing compound from a mixture of gaseous compounds. The process includes, in a separation zone (12), bringing a mixture of gaseous constituents, including at least one fluorine-containing constituent, into contact with a gas permeable separating medium (16) comprising a polymeric compound, so that a first gaseous component comprising at least one fluorine-containing constituent is separated from a second gaseous component comprising the balance of the gaseous constituents. The first gaseous component is withdrawn from the separation zone as a permeate (34) or a retentate, while the second gaseous component is withdrawn from the separation zone as the retentate (26), when the first gaseous component is withdrawn as the permeate, and as the permeate, when the first gaseous component is withdrawn as the retentate.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: August 20, 2013
    Assignees: The South African Nuclear Energy Corporation Limited, North-West University
    Inventors: Johannes Theodorus Nel, Izak Jacobus Van Der Walt, Alfred Teo Grunenberg, Odolphus Simon Leo Bruinsma, Marco Le Roux, Henning Manfred Krieg, Sanette Marx
  • Publication number: 20130210157
    Abstract: Disclosed herein are mixed metal-organic frameworks, Zn3(BDC)3[Cu(SalPycy)] and Zn3(CDC)3[Cu(SalPycy)], wherein BDC is 1,4-benzenedicarboxylate, CDC is 1,4-cyclohexanedicarboxylate, and SalPyCy is a ligand of the formula: These are useful for applications such as selective gas storage, selective molecular separations, and selective detection of molecules, including enantioselective applications thereof.
    Type: Application
    Filed: January 17, 2013
    Publication date: August 15, 2013
    Applicant: The Board of Regents of the University of Texas System
    Inventor: The Board of Regents of the University of Texas System
  • Patent number: 8506815
    Abstract: A method of removing water from fluid mixtures of the water with other compounds uses selective vapor permeation or pervaporation of the water, as the case may be, from the mixture through a membrane having an amorphous perfluoropolymer selectively permeable layer. The novel process can be applied in such exemplary embodiments as (a) removing water from mixtures of compounds that have relative volatility of about 1-1.1 or that form azeotropic mixtures with water, (b) the dehydration of hydrocarbon oil such as hydraulic fluid to concentrations of water less than about 50 ppm, (c) removing water byproduct of reversible chemical equilibrium reactions to favor high conversion of reactants to desirable products, (d) drying ethanol to less than 0.5 wt. % water as can be used in fuel for internal combustion engines, and (e) controlling the water content to optimum concentration in enzyme-catalyzed chemical reactions carried out in organic media.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: August 13, 2013
    Assignee: CMS Technologies Holdings Inc.
    Inventors: Stuart M. Nemser, Sudipto Majumdar, Kenneth J. Pennisi
  • Patent number: 8506814
    Abstract: The invention relates to a process for membrane separation that makes it possible to separate linear hydrocarbons from branched hydrocarbons. The membrane that is used comprises a dense selective layer that consists of a polymer whose chemical structure contains at least one bis-phenyl-9,9-fluorene group.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: August 13, 2013
    Assignee: IFP Energies nouvelles
    Inventors: Serge Gonzalez, Jacques Vallet, Arnaud Baudot, Helene Rodeschini
  • Patent number: 8506676
    Abstract: A waste heat recovery system is provided. The waste heat recovery system includes a gas separation apparatus that includes a chamber and at least one membrane positioned within the chamber. The gas separation apparatus is configured to produce a retentate that includes at least a combustible gas and a permeate that includes at least a waste gas, wherein the waste gas includes at least a noncombustible gas. Moreover, the waste heat recovery system includes a burner that is coupled to the gas separation apparatus, wherein the burner is configured to receive the permeate and to combust the permeate such that heat is generated from the permeate. Further, a heat recovery steam generator is coupled to the burner and configured to recover heat generated by the burner.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventor: Robert Warren Taylor
  • Patent number: 8506678
    Abstract: Provided is a power plant for generating electrical energy comprising a combustion chamber for producing steam, at least one downstream flue gas purification stage, a separation stage for CO2, a recycling circuit for the flue gas, and a high-temperature O2 membrane, which is connected upstream of the combustion chamber. The high-temperature O2 membrane has an inlet and an outlet on the feed side which are thermally coupled by way of a heat exchanger. On the permeate side, the high-temperature O2 membrane has only an outlet which is connected to the combustion chamber and/or the flue gas recycling circuit and a means for cooling and/or compression which is disposed in this outlet.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: August 13, 2013
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Wilhelm Albert Meulenberg, Stefan Baumann, Ludger Blum, Ernst Riensche
  • Patent number: 8506677
    Abstract: The present disclosure relates to a system for carbon dioxide separation. The system includes a conducting membrane having two phases. The first phase is a solid oxide porous substrate. The second phase is molten carbonate. The second phase is positioned within the solid oxide porous substrate of the first phase. The system also includes a H2 and CO2 gas input stream separated from a CH4 gas input stream by the conducting membrane. The CO2 is removed from the H2 and CO2 gas input stream as it contacts the membrane resulting in a H2 gas output stream from the H2 and CO2 gas input stream and a CO and H2 gas output stream from the CH4 gas input stream.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: August 13, 2013
    Assignee: University of South Carolina
    Inventor: Kevin Huang
  • Patent number: 8500871
    Abstract: A water vapor permeable membrane is provided comprising a dense layer and a support layer that are adjacent to each other, wherein the dense layer contains voids with a void length of 0.1 ?m or less and the dense layer has a thickness of 0.1 ?m or more and 2 ?m or less while in the support layer, void (a), i.e. the void with the largest length in the 2 ?m thick region measured from the boundary between the dense layer and the support layer into the support layer, has a length of 0.3 ?m or more and void (b), i.e. the void with the largest length in the region ranging between 2 ?m and 4 ?m measured from the boundary into the support layer, has a length of 0.5 ?m or more, the length of the void (b) being larger than that of the void (a). A water vapor permeable membrane having both a high water vapor permeability and a low air leakage is provided.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: August 6, 2013
    Assignee: Toray Industries, Inc.
    Inventors: Masahiro Osabe, Kazumi Tanaka, Hiroyuki Sugaya
  • Patent number: 8500848
    Abstract: The present disclosed embodiments relate to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial membrane water vapor rejection into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently expelled through a membrane vapor rejection unit to ambient conditions.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 6, 2013
    Assignee: The Texas A&M University System
    Inventors: David E. Claridge, Charles H. Culp
  • Patent number: 8500872
    Abstract: The invention is a ceramic tube made of two parts. A first part of the tube is made of a sensitive material for facilitating oxygen separation in the membrane. The second part is made of a different material that does not react with CO2 and/or H2O. Accordingly, by means of this Invention, there is provided a ceramic tube that is stabilized and does not deteriorate upon exposure to CO2 and/or H2O at temperatures below the operating temperatures.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: August 6, 2013
    Assignee: Technion Research & Development Foundation Ltd.
    Inventor: Ilan Riess
  • Publication number: 20130192460
    Abstract: Technologies are generally described for perforated graphene monolayers and membranes containing perforated graphene monolayers. An example membrane may include a graphene monolayer having a plurality of discrete pores that may be chemically perforated into the graphene monolayer. The discrete pores may be of substantially uniform pore size. The pore size may be characterized by one or more carbon vacancy defects in the graphene monolayer. The graphene monolayer may have substantially uniform pore sizes throughout. In some examples, the membrane may include a permeable substrate that contacts the graphene monolayer and which may support the graphene monolayer. Such perforated graphene monolayers, and membranes comprising such perforated graphene monolayers may exhibit improved properties compared to conventional polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Applicant: Empire Technology Development, LLC
    Inventors: Seth A. Miller, Gary L. Duerksen
  • Publication number: 20130192461
    Abstract: Technologies are generally described for a membrane that may incorporate a graphene layer perforated by a plurality of nanoscale pores. The membrane may also include a gas sorbent that may be configured to contact a surface of the graphene layer. The gas sorbent may be configured to direct at least one gas adsorbed at the gas sorbent into the nanoscale pores. The nanoscale pores may have a diameter that selectively facilitates passage of a first gas compared to a second gas to separate the first gas from a fluid mixture of the two gases. The gas sorbent may increase the surface concentration of the first gas at the graphene layer. Such membranes may exhibit improved properties compared to conventional graphene and polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: Empire Technology Development, LLC
    Inventors: Seth A. Miller, Gary L. Duerksen
  • Publication number: 20130192459
    Abstract: The present invention relates to a process for manufacturing a hollow fibre membrane having a supporting layer and a separating layer, said process comprising: (a) extruding a spinning composition comprising a first polymer and a solvent for the first polymer through an inner annular orifice of a hollow-fibre die; (b) co-extruding a composition comprising an organic nucleophilic reagent and a mixtures of a solvent and a non-solvent for the first polymer, wherein the composition is either extruded through a central annular orifice of the hollow-fibre die or through an outer annular orifice of a hollow-fibre die; and (c) passing the hollow-fibre through a coagulation bath. The hollow fibre membrane according to the present invention can be used in gas separation processes, vapour separation processes and liquid filtration processes.
    Type: Application
    Filed: March 4, 2011
    Publication date: August 1, 2013
    Inventors: Matthias Wessling, Dimitrios Stamatialis, Karina Katarzyna Kopec, Szymon Maria Dutczak
  • Patent number: 8496732
    Abstract: The present disclosure relates to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial condensation into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently condensed and removed from the system at ambient conditions.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 30, 2013
    Assignee: The Texas A&M University System
    Inventors: Charles H. Culp, David E. Claridge
  • Patent number: 8496736
    Abstract: The present invention relates to a hydrogen supply device which supplies hydrogen by selectively permitting permeation of hydrogen contained in a hydrogen containing gas (G1). This device includes: a first metal layer (2) which dissociates hydrogen molecules into hydrogen ions by a catalytic reaction and has hydrogen permeability; a second metal layer (3) which creates hydrogen molecules by bonding hydrogen ions to each other using electrons and has hydrogen permeability; a hydrogen permeation layer (1) which is interposed between the first metal layer (2) and the second metal layer (3) and permits permeation of the hydrogen ions from the first metal layer (2) to the second metal layer (3) by the application of a voltage; and a voltage application (7) for applying the voltage to the hydrogen permeation layer (1) by setting the first metal layer (2) as an anode and setting the second metal layer (3) as a cathode.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: July 30, 2013
    Assignees: IHI Corporation, Tamagawa K-12 & University
    Inventors: Junya Nishino, Katsumi Takahashi, Hiroyuki Obara
  • Publication number: 20130186269
    Abstract: A vapor particle separator including a temperature controlled chamber for desorbing vapors from the particulates of an exhaust gas and a separation chamber including a micro porous membrane. The micro porous membrane provides an interface between at least one particle passageway and at least one vapor passageway through the separation chamber. The particle passageway extends from an entrance to the separation chamber to a particle exit from the separation chamber. The vapor passageway extends from the micro-porous membrane to a vapor exit from the separation chamber that is separate from the particle exit from the separation chamber.
    Type: Application
    Filed: June 14, 2012
    Publication date: July 25, 2013
    Applicant: UT-BATTELLE, LLC
    Inventors: Meng-Dawn Cheng, Steve L. Allman
  • Publication number: 20130180399
    Abstract: A method for filtration of harmful gas effluents from a nuclear power plant including the steps of providing a gas effluent from a nuclear power plant, the effluent including a mixture of gases; filtering the harmful, notably radioactive elements from the gas effluent by membrane separation through at least one membrane, the membrane separation being achieved by sifting, sorption and/or diffusion; storing the filtered harmful elements in storage reservoirs, and discharging the processed gas effluent to the atmosphere.
    Type: Application
    Filed: January 9, 2013
    Publication date: July 18, 2013
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventor: ALSTOM TECHNOLOGY LTD
  • Patent number: 8486179
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: July 16, 2013
    Assignees: Georgia Tech Research Corporation, Shell Oil Company
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Patent number: 8486184
    Abstract: A composite membrane for selective gas separation, comprises a layer system having a continuously porous, mechanically stable carrier layer, which has an average pore size in the ?m range, further having at least one continuously porous intermediate layer, which is disposed on the carrier layer and has an average pore size in the range of 2 to 200 nm, and further having a gastight functional layer, which is disposed on the intermediate layer and is made of a mixed-conductive material having a maximum layer thickness of 1 ?m. The carrier layer comprises a structural ceramic, a metal, or a cermet and has a layer thickness of no more than 1 mm. The intermediate layer is present with a total layer thickness of no more than 100 ?m and has an average pore size in the range of 10 to 100 nm. The functional layer comprises a perovskite, a fluorite, or a material having a K2NiF4 structure, such as La1-xSrxCo1-yFeyO3-8 (LSCF).
    Type: Grant
    Filed: February 21, 2009
    Date of Patent: July 16, 2013
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Stefan Baumann, Jose Manuel Serra Alfaro, Wilhelm Albert Meulenberg, Hans-Peter Buchkremer, Detlev Stoever
  • Publication number: 20130174732
    Abstract: A method for filtration of harmful gas effluents from an industrial installation including the steps of providing a gas effluent from an industrial installation, the gas effluent including a mixture of gases; filtering the harmful, elements from the gas effluent by membrane separation through a plurality of membranes, the membrane separation being achieved by sifting, sorption and/or diffusion, each membrane being adapted for filtering a specific harmful element; sorting the filtered harmful elements and storing them in separate storage reservoirs, and discharging the processed gas effluent to the atmosphere.
    Type: Application
    Filed: January 9, 2013
    Publication date: July 11, 2013
    Applicant: ALSTOM Technology Ltd
    Inventor: ALSTOM Technology Ltd
  • Patent number: 8475567
    Abstract: Process for separating propane and propylene using a distillation column and at least one membrane separation unit constituted by one or more modules operating in series, said membrane separation unit being placed either upstream, or downstream, or upstream and downstream of the distillation column.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: July 2, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Nathalie Cougard, Arnaud Baudot, Vincent Coupard
  • Patent number: 8475575
    Abstract: An object is to provide a vent plug making liquid unlikely to accumulate therein, while preventing an air-permeable membrane from breaking by means of at least one convex part. The vent plug of the present invention includes a cylindrical member 1 having a through-hole 1a, and an air-permeable membrane 2 attached around the cylindrical member 1, wherein the air-permeable membrane 2 has a circumferential attachment region which is in contact with the cylindrical member 1, and an air-permeable region facing the through-hole 1a, the cylindrical member 1 is provided with at least one convex part 1b which projects beyond the plane including the air-permeable region, and the circumferential attachment region of the air-permeable membrane 2 has a shape following a part or the entire of the convex part 1b.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: July 2, 2013
    Assignee: Japan Gore-Tex Inc.
    Inventors: Masashi Ono, Takuya Ueki
  • Patent number: 8470075
    Abstract: Disclosed are tetratopic carboxylic acid phenyl for use in metal-organic framework compounds. These compounds are useful in catalysis, gas storage, sensing, biological imaging, drug delivery and gas adsorption separation.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: June 25, 2013
    Assignee: Northwestern University
    Inventors: Omar K. Farha, Joseph T. Hupp
  • Patent number: 8470071
    Abstract: Particular embodiments disclosed herein relate to methods, compositions, and systems relating generally to heating, ventilation, and air conditioning (HVAC) systems, and more specifically, to HVAC systems that transfer sensible and/or latent energy between air streams, humidify and/or dehumidify air streams. In certain embodiments, a polymeric membrane is utilized for fluid exchange, with or without an additional support. Certain embodiments allow for individual regulation of air temperature and humidity.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: June 25, 2013
    Assignee: Dais Analytic Corporation
    Inventors: Scott G. Ehrenberg, Hung Huynh, Brian Johnson
  • Patent number: 8465569
    Abstract: A gas separation unit 102, 200, 300 for permeating a gas out from a pressurized feed mixture includes an input manifold 104, 204, an exhaust manifold, 106, 206 and a permeate assembly 108, 208, 303. The permeate assembly supports one or more permselective foils 130, 132, 218, 232, 318 over a hollow cavity 134, 272, 306 supported by a microscreen element 142, 144, 228, 230, 326. The microscreen element includes non-porous perimeter walls 190, 192, 278 supported on a frame surface and a porous central area 194, 280 supported over the hollow cavity. A porous spacer 138, 140, 174, 234 disposed inside the hollow cavity structurally supports the entire microscreen surface spanning the hollow cavity while also providing a void volume for receiving fluid passing through the porous central area and for conveying the fluid through the hollow cavity.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: June 18, 2013
    Assignee: Protonex Technology Corporation
    Inventors: David Edlund, Paul Osenar, Nathan Palumbo, Ronald Rezac, Matt Steinbroner
  • Patent number: 8465565
    Abstract: The invention relates to a porous membrane having a particle filtration value of at least 10 under U.S. Military Standard MIL-STD-282 (1956), where the porous membrane is a polyethylene membrane. The membranes according to the invention are particularly useful for filters such as ASHRAE filters, HEPA filters and ULPA filters for example in heating, ventilating, respirators and air conditioning applications.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: June 18, 2013
    Assignee: Lydall Solutech B.V.
    Inventors: Gijsbertus Hendrikus Maria Calis, Hendrik Derk Hoving
  • Publication number: 20130145931
    Abstract: The present invention discloses a new type of high selectivity UV-cross-linked tetrazole group functionalized polymer nanosieve (TZPIM) membranes, their preparation, as well as their use for gas and liquid separations. The UV-cross-linked TZPIM membrane showed more than 50% improvement in CO2/CH4 selectivity and more than 30% improvement in CO2/N2 selectivity compared to the uncross-linked TZPIM membrane for CO2/CH4 and CO2/N2 separations, respectively.
    Type: Application
    Filed: October 18, 2012
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Publication number: 20130146538
    Abstract: The present invention is for high permeance and high selectivity blend polymeric membranes comprising poly(ethylene glycol) (PEG) and a highly permeable polymer selected from the group consisting of polymers of intrinsic microporosity (PIMs), tetrazole-functionalized polymers of intrinsic microporosity (TZPIMs), or mixtures thereof. The present invention also involves the use of such membranes for separations of liquids and gases.
    Type: Application
    Filed: October 18, 2012
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Publication number: 20130139685
    Abstract: The present invention relates to a radiation-resistant microporous membrane having a hydrophobicity gradient, to a method for the preparation thereof, and to the use of the membrane in the sterilizing filtration of gaseous fluids or as a liquid barrier in liquid-containing systems to be vented.
    Type: Application
    Filed: August 9, 2011
    Publication date: June 6, 2013
    Applicant: SARTORIUS STEDIM BIOTECH GMBH
    Inventors: Eberhard Wuenn, Tobias Schleuss
  • Patent number: 8454728
    Abstract: A method is described for recycling hydrogen (H2) supplied to a chamber (10) in a gas stream comprising hydrogen and at least one other gas, such as silane. A gas comprising at least hydrogen is drawn from the chamber (10) using a first vacuum pump (32) that exhausts gas therefrom at a sub-atmospheric pressure. A portion of the gas exhausted from the first vacuum pump (32), for example between 70 and 95% of this gas, is diverted away from a second vacuum pump (34) backing the first vacuum pump (32). In one embodiment, the diverted portion of the sub-atmospheric pressure gas is treated to produce a purified gas comprising hydrogen, which is stored in a storage vessel (14). The composition of the purified gas is analysed, and, depending on the results of the analysis, at least one of hydrogen and silane is added to the stored gas so that the composition of the stored gas is similar to that of the gas initially supplied to the chamber (10). Gas is then supplied to the chamber (10) from the storage vessel (14).
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: June 4, 2013
    Assignee: Edwards Limited
    Inventor: Robert Bruce Grant
  • Patent number: 8454732
    Abstract: A membrane composition and process for its formation are disclosed from the removal of carbon dioxide (CO2) from mixed gases, such as flue gases of energy production facilities. The membrane includes a substrate layer comprising inorganic oxides, a barrier layer of in-situ formed Li2ZrO3, a Li2ZrO3 sorbent layer and an inorganic oxide cap layer. The membrane has a feed side for introduction of mixed gases containing nitrogen (N2) and a sweep side for recovery of CO2 wherein the membrane has a relatively high selectivity for CO2 transport at temperatures in the range of 400° to 700° C.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: June 4, 2013
    Assignee: Southwest Research Institute
    Inventors: Francis Yu Chang Huang, Vladimir I. Gorokhovsky, Kent E. Coulter
  • Patent number: 8454727
    Abstract: The present invention provides a process for treating a natural gas stream comprising sending a natural gas stream to at least one membrane unit to produce a permeate stream containing a higher concentration of carbon dioxide and a retentate stream containing a lower concentration of carbon dioxide. Then the retentate stream is sent to an adsorbent bed to remove carbon dioxide and other impurities to produce a natural gas product stream. The regeneration gas stream is sent through the molecular sieve adsorbent bed to desorb the carbon dioxide. In one process flow scheme, the regeneration stream is combined with the permeate stream from the membrane unit. Then the combined stream is sent to an absorbent column to remove carbon dioxide from the permeate stream to produce a second natural gas product stream. In the alternative flow scheme, a second membrane unit is used to improve efficiency.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: June 4, 2013
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Peter K. Coughlin, Pamela J. Dunne
  • Publication number: 20130133515
    Abstract: A method of removing an acidic gas from a gas stream by contacting said gas stream with a polymer, wherein the polymer is a macromolecularly self assembling polymeric material, the method including the steps of contacting the gas mixture with the membrane; and extracting the acidic gas from the gas stream.
    Type: Application
    Filed: February 11, 2011
    Publication date: May 30, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Scott T. Matteucci, Leonardo C. Lopez, Shawn D. Feist, Peter N. Nickias, William J. Harris
  • Patent number: 8449651
    Abstract: Disclosed herein is a method for preparing a crosslinked hollow fiber membrane. The method involves spinning a one phase solution comprising a monoesterified polyimide polymer, acetone as a volatile solvent, a spinning solvent, a spinning non-solvent, and optionally an organic and/or inorganic additive, wherein the volatile solvent is present in an amount of greater than 25 wt. % to about 50 wt. %, based on the total weight of the solution.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: May 28, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventor: Shabbir Husain
  • Patent number: 8449660
    Abstract: A first unsintered sheet made of PTFE having a standard specific gravity of 2.16 or more and a second unsintered sheet made of PTFE having a standard specific gravity of less than 2.16 are laminated, and a pressure is applied to a resulting laminated body so as to obtain a pressure-bonded article. The pressure-bonded article is stretched in a specified direction at a temperature lower than a melting point of PTFE, and then the pressure-bonded article is stretched further in the specified direction at a temperature equal to or higher than the melting point of PTFE or heated to a temperature equal to or higher than the melting point of PTFE. Thereafter, the pressure-bonded article stretched in the specified direction is stretched in a width direction perpendicular to the specified direction at a temperature lower than the melting point of PTFE.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 28, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Shunichi Shimatani, Akira Sanami
  • Patent number: 8449650
    Abstract: Gases are stored, separated, and/or concentrated. An electric field is applied across a porous dielectric adsorbent material. A gas component from a gas mixture may be selectively separated inside the energized dielectric. Gas is stored in the energized dielectric for as long as the dielectric is energized. The energized dielectric selectively separates, or concentrates, a gas component of the gas mixture. When the potential is removed, gas from inside the dielectric is released.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: May 28, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Robert P. Currier, Stephen J. Obrey, David J. Devlin, Jose Maria Sansinena
  • Patent number: 8444749
    Abstract: A fast gas is recovered from a feed gas containing a fast gas and at least one slow gas using a gas separation membrane. A controller may control a control valve associated with a partial recycle of a permeate gas from the membrane for combining with the feed gas. A controller may control a control valve associated with the backpressure of a residue gas from the membrane.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: May 21, 2013
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Edgar S. Sanders, Sarang Gadre, Michael D. Bennett, Ian C. Roman, David J. Hasse, Indrasis Mondal
  • Patent number: 8440000
    Abstract: A nitrogen-permeable structure includes a porous support and a nitrogen-permeable membrane adjacent to the porous support. The nitrogen-permeable membrane includes a first metal and a second metal, wherein the first metal is selected from niobium, tantalum, and vanadium, and the second metal is different from the first metal.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 14, 2013
    Assignee: Board of Trustees of Leland Stanford Junior University
    Inventor: Jennifer Wilcox