Selective Diffusion Of Gases Through Substantially Solid Barrier (e.g., Semipermeable Membrane, Etc.) Patents (Class 95/45)
  • Patent number: 8221531
    Abstract: A method of making a crosslinked polyimide membrane is described. A monoesterified membrane is formed from a monoesterified polyimide polymer. The monoesterified membrane is subjected to transesterification conditions to form a crosslinked membrane. The monoesterified membrane is incorporated with an organic titanate catalyst before or after formation of the monoesterified membrane. A crosslinked polyimide membrane made using the aforementioned method and a method of using the membrane to separate fluids in a fluid mixture also are described.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: July 17, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: John D. Wind, Stephen J. Miller, Oluwasijibomi O. Okeowo
  • Patent number: 8221530
    Abstract: A water trap (1) improved with respect to handling and operational safety includes: two semipermeable membranes (2) and at least one tank (7), wherein the membranes have a water penetration pressure greater than 750 hPa and are made of the same or different PTFE laminates. The gas flow is divided in a ratio between 10:90 and 25:75 into the flush-/purge branch and analysis branch to the sensors (12) and a path parallel to the sensors (12), respectively, with the aid of the membranes and downstream filter elements and via the material and configuration.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 17, 2012
    Assignee: Draeger Medical GmbH
    Inventors: Gerd Peter, Thomas Maxeiner, Thomas Wuske
  • Patent number: 8221524
    Abstract: The invention relates to a method for achieving low oxygen levels in a natural gas stream without the use of a catalytic system. In one embodiment, the method comprises: membrane treatment for the removal of the bulk of CO2 and oxygen in the natural gas feed and the addition of a PSA system using a carbon molecular sieve adsorbent for the adsorption of residual oxygen.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 17, 2012
    Assignee: Guild Associates, Inc.
    Inventor: Michael J. Mitariten
  • Publication number: 20120174772
    Abstract: In a device and a method for mixing and exchanging fluids, a first chamber is a mixing chamber with static mixing elements. First and second fluids flow through the first chamber in a mixing fluid flow direction. A second chamber adjacent the first chamber is a fluid feeding or discharge chamber through which the second fluid flows. A semipermeable membrane separates the volume of the first chamber from the volume of the second chamber. The membrane is impermeable to molecules or molecule agglomerations of the first fluid and permeable to molecules or molecule agglomerations of the second fluid. The membrane is made of a material or is coated with a material to which the molecules or molecule agglomerations of one of the two fluids have a lower affinity. Alternatively, or in addition, the membrane is elastic and spans a support wall with holes.
    Type: Application
    Filed: August 2, 2010
    Publication date: July 12, 2012
    Applicant: FRANZ HAAS WAFFEL- UND KEKSANLAGEN-INDUSTRIE GMBH
    Inventor: Alex Knobel
  • Patent number: 8216342
    Abstract: A method for producing membranes which contain at least one solid layer on one side of a porous substrate by treating the side of the support, which is to be coated, with a synthetic solution that forms the solid layer. The inventive method is characterized in that the space located behind the side of the porous support, which is not to be coated, is filled with an inert fluid during the production of the solid layer on the porous support, “behind” being from the perspective of the support. The pressure and/or the temperature of the fluid is/are selected such that the synthetic solution is essentially prevented from entering in contact with the side of the porous support, which is not to be coated.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: July 10, 2012
    Assignee: BASF SE
    Inventors: Stefan Bitterlich, Hartwig Voβ, Gunter Schuch, Armin Diefenbacher, Manfred Noack, Ronald Schäfer, Ingolf Voigt, Hannes Richter, Jürgen Caro
  • Publication number: 20120160095
    Abstract: The invention includes a nanoporous LLC polymer membrane wherein ultra-thin films or clusters of inorganic material are deposited inside the porous structure of the LLC polymer membrane. The membranes of the invention have high levels of pore size uniformity, allowing for size discrimination separation, and may be used for separation processes such as gas-phase and liquid-phase separations.
    Type: Application
    Filed: November 23, 2011
    Publication date: June 28, 2012
    Inventors: Douglas L. Gin, Alan W. Weimer, Xinhua Liang
  • Patent number: 8206493
    Abstract: Problem to be Solved: To provide a gas separation membrane having an excellent performance balance (balance between gas permeation performance and gas separation ability) as a gas separation membrane. Solution: A gas separation membrane comprising a porous support member and a gas separating resin layer formed on the porous support member, wherein the porous support member has a mode diameter as measured by a mercury porosimeter of from 0.005 ?m to 0.3 ?m, and a pore size distribution index as measured by the mercury porosimeter of from 1 to 15.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: June 26, 2012
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Atsushi Shimizu, Masao Kondo, Junichi Yamamoto
  • Patent number: 8197576
    Abstract: A CO2-facilitated transport membrane of excellent carbon dioxide permeability and CO2/H2 selectivity, which can be applied to a CO2 permeable membrane reactor, is stably provided. The CO2-facilitated transport membrane is formed such that a gel layer 1 obtained by adding cesium carbonate to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane is supported by a hydrophilic porous membrane 2. More preferably, a gel layer supported by a hydrophilic porous membrane 2 is coated with hydrophilic porous membranes 3 and 4.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: June 12, 2012
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Reza Yegani, Hideto Matsuyama, Keiko Shimada, Kaori Morimoto
  • Publication number: 20120137878
    Abstract: A gas separation process for treating off-gas streams from reaction processes, and reaction processes including such gas separation. The invention involves flowing the off-gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, and passing the permeate/sweep gas mixture to the reaction. The process recovers unreacted feedstock that would otherwise be lost in the waste gases in an energy-efficient manner.
    Type: Application
    Filed: January 5, 2012
    Publication date: June 7, 2012
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Johannes G. Wijmans, Richard W. Baker, Timothy C. Merkel
  • Patent number: 8192709
    Abstract: The present invention relates to the selective separation of methane (“CH4”) from higher carbon number hydrocarbons (“HHC”s) in streams containing both methane and higher carbon number hydrocarbons (e.g. ethylene, ethane, propylene, propane, etc.) utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate methane from higher carbon number hydrocarbons in natural gas streams.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 5, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8192527
    Abstract: The present invention relates to a method of producing hydrogen of very high purity from a feed predominantly containing said hydrogen and a minor part of impurities mainly consisting of carbon dioxide, carbon monoxide, methane and heavier hydrocarbons. The purification method by hydrogen adsorption using a desorption stage at a lower pressure than the pressure of the feed, such as a PSA method for example, allows to produce the desorption stream and notably to recover the carbon dioxide under pressure and high-purity hydrogen, with a high yield. These performances are obtained by combining the successive stages of the method according to the invention with the use of a new family of adsorbent whose dynamic capacity at a high desorption pressure is greater than that of conventional adsorbents.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: June 5, 2012
    Assignee: IFP Energies Nouvelles
    Inventors: Gerhard Pirngruber, Elsa Jolimaitre, Luc Wolff, Damien Leinekugel le Cocq
  • Patent number: 8192524
    Abstract: Disclosed herein are processes for producing a CO2-depleted product gas stream. The processes involve feeding a natural gas feed stream comprising greater than about 10 vol % CO2 to at least one membrane unit comprising a plurality of polymer membranes to provide a CO2-rich permeate comprising at least 95 vol % CO2 and a CO2-depleted product gas stream. The polymer membranes comprise a crosslinked polyimide polymer having covalent ester crosslinks and have a CO2 permeance of at least 20 GPU and a CO2/CH4 selectivity of greater than 20, at 35 degrees C. and a feed pressure of 100 psia. Also disclosed herein is an apparatus incorporating the crosslinked polyimide polymer for producing a CO2-depleted product gas stream from a natural gas feed stream.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: June 5, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Daniel Chinn, Siji Okeowo, Jeff D. Euhus, Shabbir Husain
  • Patent number: 8187361
    Abstract: Purified SiHCl3 and/or SiCl4 are used as a sweep gas across a permeate side of a gas separation membrane receiving effluent gas from a polysilicon reactor. The combined sweep gas and permeate is recycled to the reactor.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: May 29, 2012
    Assignee: America Air Liquide, Inc.
    Inventors: Sarang Gadre, Madhava R. Kosuri
  • Patent number: 8182591
    Abstract: A vertically directed dryer unit (10) for compressed air, comprising a dryer cartridge (22) which, together with a housing (16, 18, 20), defines an inlet head area (92) and an outlet head area (72). A plurality of hollow membrane fibers (30) extend inside the cartridge between the two head areas, the wall material thereof being more permeable with respect to water vapor than air. An outlet valve (90) is provided between the outlet head area (72) and an outlet (74) of the drier unit. Said valve only opens when the pressure in the outlet head area (72) produces sufficient pressure for the provision of purging air. The purging air is fed to the outer surface of the membrane fibers (30) via a throttle element (70).
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: May 22, 2012
    Assignee: Durr Dental GmbH & Co. KG
    Inventors: Alfred Deubler, Varleriu Fischer
  • Patent number: 8182592
    Abstract: A gas separation membrane module has a vessel housing a hollow fiber element including a hollow fiber bundle consisting of a number of hollow fiber membranes (1) and a tube sheet (2) holding one end of the hollow fiber bundle. The interior of the vessel is partitioned by the tube sheet (2) into two spaces consisting of a raw gas chamber and a permeate gas chamber. A high-pressure mixed gas is fed into the raw gas chamber where gas separation is carried out. The gas separation membrane module has a configuration where during operation, the tube sheet (2) is supported by means of a perforated plate (8) in the vessel by a pressure from the mixed gas fed to maintain airtightness between the two spaces and when the tube sheet (2) receives a pressure in the reverse direction to that applied during the operation of the gas separation membrane module, the tube sheet (2) is forced to move within the vessel by the pressure in the reverse direction, thereby losing airtightness between the two spaces.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: May 22, 2012
    Assignee: Ube Industries, Ltd.
    Inventors: Tomohide Nakamura, Nozomu Tanihara, Shunsuke Nakanishi
  • Patent number: 8177890
    Abstract: A Pd alloy membrane and method of making are described.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: May 15, 2012
    Assignee: The Ohio State University
    Inventors: Krenar Shqau, Hendrik Verweij
  • Patent number: 8177883
    Abstract: A container having a plurality of walls, and at least one inlet and/or outlet, said container including an apparatus for controlling the composition of gases within the container, the apparatus including at least one sensor, at least one controller and at least one gas permeable membrane, through which membrane different gases can pass at different rates, said membrane dividing the container into a first region being for holding cargo and a second region defining a gas buffer region, and said membrane being permeable permitting for nitrogen, oxygen and carbon dioxide at different flow rates, wherein the buffer region is in communication with the ambient atmosphere through one or more vacuum pump(s).
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: May 15, 2012
    Assignee: Maersk Container Industri A/S
    Inventors: Gert Jørgensen, Niels Nielsen Poulsen
  • Patent number: 8177891
    Abstract: The present invention relates to a membrane wherein said membrane comprises a polymerized composition that comprised prior to polymerization at least one type of compound comprising at least 70 oxyethylene groups and at least two polymerizable groups. The invention further relates to the use of this membrane for separating polar gases and vapors.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: May 15, 2012
    Assignee: Fujifilm Manufacturing Europe B.V.
    Inventors: Akira Kase, Yujiro Itami
  • Patent number: 8177892
    Abstract: The present invention relates to a membrane wherein said membrane comprises a continuous non-porous layer comprising a polymerized composition that comprised prior to polymerization at least one type of compound having a molecular weight of at least 1500 Da and comprising at least 75 weight % of oxyethylene groups and at least two polymerizable groups each comprising a non-substituted vinyl group. The invention further relates to the use of this membrane for separating polar gases and vapors.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: May 15, 2012
    Assignee: Fujifilm Manufacturing Europe B.V.
    Inventors: Akira Kase, Yujiro Itami
  • Publication number: 20120111052
    Abstract: The invention relates to a device for separating a gas mixture into product gas and offgas by way of gas permeating on, comprising at least two membrane units (1) and (2) and a condenser (3) connected upstream of the first membrane unit (1), which membrane units (1) and (2) have a gas inlet (1a, 2a), a retentate outlet (1b, 2b) and a permeate outlet (1c, 2c), wherein the retentate outlet (1b) of the first membrane unit (1) is connected to the gas inlet (2a) of the second membrane unit (2), the permeate outlet (2c) of the second membrane unit (2) is connected on the intake side to the condenser (3) or the gas supply leading into the condenser, and the condenser (3) is connected to the gas inlet (1a) of the first membrane unit (1), the connection in each case being by way of lines, product gas is obtained via the permeate outlet (2a) and offgas via the retentate outlet (1c), wherein the permeate outlet (4c) of an upstream membrane unit (1) is connected to the gas supply of the condenser (3) by way of lines, whe
    Type: Application
    Filed: April 16, 2010
    Publication date: May 10, 2012
    Applicant: Axiom Angewandte Prozesstechnik GES. M.B.H.
    Inventors: Johannes Szivacz, Michael Harasek
  • Publication number: 20120111191
    Abstract: A composition of and a method of making high performance crosslinked membranes are described. The membranes have a high resistance to plasticization by use of crosslinking. The preferred polymer material for the membrane is a polyimide polymer comprising covalently bonded ester crosslinks. The resultant membrane exhibits a high permeability of CO2 in combination with a high CO2/CH4selectivity. Another embodiment provides a method of making the membrane from a monesterified polymer followed by final crosslinking after the membrane is formed.
    Type: Application
    Filed: December 17, 2010
    Publication date: May 10, 2012
    Inventors: William J. Koros, David Wallace, John D. Wind, Stephen J. Miller, Claudia Staudt-Bickel
  • Patent number: 8172923
    Abstract: An apparatus and method for maintaining low gas velocity variation across a diffuser membrane during the vent-up of a vacuum chamber is disclosed. The diffuser membrane permeability and the pressure conditions across the membrane are chosen to minimize variation in gas flow velocity through the membrane during the vent-up cycle. This reduces re-distribution of particles from a vacuum chamber onto sensitive substrates in the vacuum chamber during vent-up from sub-atmospheric pressure to atmospheric pressure.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: May 8, 2012
    Assignee: Entegris, Inc.
    Inventors: Christopher Vroman, Marshall Randolph
  • Patent number: 8172929
    Abstract: Various embodiments of the present invention are directed to limiting a presence of air bubbles in fluidic media in a reservoir. Air passages may allow air to escape from fluidic media in a reservoir. Membranes may allow for trapping air bubbles in fluidic media before fluidic media enters a reservoir. A membrane may allow air to flow from a first reservoir containing fluidic media to a second reservoir while plunger heads within each of the reservoirs are moved within the reservoirs. An inner reservoir with a membrane may be moveable within an outer reservoir to allow air to move from the outer reservoir to the inner reservoir. An inner reservoir containing pressurized gas may allow fluidic media to be transferred to an outer reservoir.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: May 8, 2012
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Julian D. Kavazov, Rafael Bikovsky, Arsen Ibranyan, David Hezzell, Christopher G. Griffin, Mike Lee, Truong Gia Luan, Benjamin X. Shen, Thomas Miller
  • Publication number: 20120107720
    Abstract: The present invention relates to self-supporting dynamic polymer membranes (called “dynamer” membranes) of the polyimine type, to their method of preparation and to their use in separation processes, especially for separating gaseous CP species.
    Type: Application
    Filed: March 11, 2010
    Publication date: May 3, 2012
    Inventors: Gihane Nasr, Mihai-Dumitru Barboiu, Christophe Charmette, José Gregorio Sanchez Marcano
  • Publication number: 20120103185
    Abstract: Methods for removing sulfur from a gas stream prior to sending the gas stream to a gas separation membrane system are provided. Two schemes are available. When the sulfur content is high or flow is relatively high, a scheme including two columns where one tower is regenerated if the sulfur concentration exceeds a preset value can be used. When the sulfur content is low or flow is relatively low, a scheme including one column and an absorption bed.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: Saudi Arabian Oil Company
    Inventors: Milind M. Vaidya, Jean-Pierre R. Ballaguet, Sebastien A. Duval, Anwar H. Khawajah
  • Patent number: 8167983
    Abstract: The present invention relates to compositions for producing membranes, the compositions comprising at least 0.1% by weight of highly branched polymer, at least 0.5% by weight of linear polymer and at least 30% by weight of solvent. The present invention additionally describes membranes obtainable from the compositions, and methods of producing these membranes.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 1, 2012
    Assignee: Evonik Degussa GmbH
    Inventors: Matthias Seiler, Stefan Bernhardt, Rolf Schneider, Roland Wursche, Franz-Erich Baumann
  • Patent number: 8167976
    Abstract: A gas separation membrane system and a method of preparing such gas separation membrane system by providing a porous support upon which is supported a membrane layer comprising a first gas-selective material and having a membrane thickness and removing therefrom a substantial portion of the first gas-selective material from the membrane layer by the use of an ultra-fine abrasive to thereby provide the membrane layer having a reduced membrane thickness. A second gas-selective material is deposited upon the membrane layer having the reduced membrane thickness to provide an overlayer of the second gas-selective material having an overlayer thickness so as to thereby provide the gas separation membrane system having the membrane layer of the reduced membrane thickness and the overlayer of the overlayer thickness.
    Type: Grant
    Filed: February 18, 2008
    Date of Patent: May 1, 2012
    Assignee: Shell Oil Company
    Inventors: Alan Anthony Del Paggio, John Charles Saukaitis
  • Patent number: 8167982
    Abstract: A vertically directed dryer unit for compressed air, comprising a dryer cartridge which, together with a housing, defines an inlet head area and an outlet head area. A plurality of hollow membrane fibers extend inside the cartridge between the two head areas, the wall material thereof being more permeable with respect to water vapor than air. An outlet valve is provided between the outlet head area and an outlet of the drier unit. Said valve only opens when the pressure in the outlet head area produces sufficient pressure for the provision of purging air. The purging air is fed to the outer surface of the membrane fibers via a throttle element.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: May 1, 2012
    Assignee: Beko Technologies GmbH
    Inventors: Alfred Deubler, Valeriu Fischer
  • Patent number: 8163065
    Abstract: A carbon dioxide permeable membrane is described. In some embodiments, the membrane includes a body having a first side and an opposite second side; a plurality of first regions formed from a molten carbonate having a temperature of about 400 degrees Celsius to about 1200 degrees Celsius, the plurality of first regions forming a portion of the body and the plurality of first regions extending from the first side of the body to the second side of the body; a plurality of second regions formed from an oxygen conductive solid oxide, the plurality of second regions combining with the plurality of first regions to form the body and the plurality of second regions extending from the first side of the body to the second side of the body; and the body is configured to allow carbon dioxide to pass from the first side to the second side.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: April 24, 2012
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Klaus S. Lackner, Alan C. West, Jennifer L. Wade
  • Patent number: 8163064
    Abstract: A leak-proof membrane element (1) for the selective separation or cleaning of gas, wherein a metal foil (membrane) (3) is deposited onto a supporting stock (substrate) (2, 20) having connection means (4, 21, 34) on the ends/edges of the substrate allowing the membrane element to be installed in a housing. A metal foil (3), having a thickness of less that 10 micrometers and being selectively permeable for specific gases, is arranged in flakes or wound with overlapping joints (8) on the outside of the substrate (2, 20), any joints being welded together by diffusion bonding so that the foil forms a continuous, leak-proof metal membrane layer. The substrate being made of a material (metal, ceram, polymer, or combinations thereof) exhibiting a very high gas flux for the gas(es) that the membrane is to let through.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: April 24, 2012
    Assignee: Sinvent AS
    Inventors: Rune Bredesen, Dag Slotfeldt-Ellingsen, Hallgeir Klette
  • Patent number: 8157900
    Abstract: Hydrogen-processing assemblies, components of hydrogen-processing assemblies, and fuel-processing and fuel cell systems that include hydrogen-processing assemblies. The hydrogen-processing assemblies include a hydrogen-separation assembly positioned within the internal volume of an enclosure in a spaced relation to at least a portion of the internal perimeter of the body of the enclosure.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 17, 2012
    Assignee: Idatech, LLC
    Inventors: William A. Pledger, Vernon Wade Popham, R. Todd Studebaker, Kyle Taylor
  • Patent number: 8157891
    Abstract: A membrane cartridge is manufactured by repeatedly folding and joining two strips of membrane to form a cross-pleated cartridge with a stack of openings or fluid passageways configured in an alternating cross-flow arrangement. The cartridge can be modified for other flow configurations including co-flow and counter-flow arrangements. Methods for manufacturing such cross-pleated membrane cartridges, as well as apparatus used in the manufacturing process are described. Cross-pleated membrane cartridges comprising water-permeable membranes can be used in a variety of applications, including in heat and water vapor exchangers. In particular they can be incorporated into energy recovery ventilators (ERVs) for exchanging heat and water vapor between air streams being directed into and out of buildings.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: April 17, 2012
    Assignee: DPoint Technologies Inc.
    Inventors: Greg Montie, James Franklin Dean, Curtis Mullen, Robert Hill
  • Patent number: 8157899
    Abstract: A particulate material processing apparatus has a vessel and a processing tank. The vessel has a charging port for charging a particulate material into the vessel. The processing tank receives the particulate material charged from the charging port. The processing tank is shaped so as to narrow towards the bottom. At least the lower part of the processing tank is made of a gas-permeable material that allows the process gas for processing the particulate material to pass through. The upper part of the processing tank has lower gas permeability than the lower part of the processing tank.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: April 17, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Tomohiro Isogai, Katsuya Nakai, Tatsuo Suzuki, Taku Hirakawa, Hiroyuki Shimada
  • Patent number: 8152898
    Abstract: Helium is recovered from gas streams containing high concentrations of hydrogen gas and low concentrations of helium gas, such as from the recycle stream from the production of ammonia. The inventive process provides for an integrated process for the recovery of both an enriched helium gas stream product and a high purity hydrogen gas stream product.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 10, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Ravi Prasad, Carl Joseph Heim, James Joseph Maloney
  • Patent number: 8153091
    Abstract: To provide a simple highly-pure Xe retrieval method and device with high retrieval efficiency by functionally removing such elements as water, CO2 and FCs from waste gases from semiconductor production processes, such as the plasma etching, that contain low-concentration Xe. For samples containing xenon and fluorocarbon, this invention is characterized by having at least first adsorption means (A1) filled with synthetic zeolite with pore size of 4A or smaller and aluminum oxide, arranged serially, gas separation means (A2) composed of silicone or polyethylene hollow fiber gas separation membrane modules 4, second adsorption means (A3) filled with either activated carbon, synthetic zeolite with pore size of 5A or larger, molecular sieving carbon with pore size of 5A or larger, or a combination of these, and reaction means (A4) filled with calcium compounds as reactant.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: April 10, 2012
    Assignee: L'Air Liquide Societe Anonyme Pour l'Etude Et l'Exploitation des Procedes Georges Claude
    Inventors: Masahiro Kimoto, Terumasa Koura, Yukio Fukuda, Masaki Narazaki, Taiji Hashimoto, Toru Sakai, Kazuo Yokogi
  • Patent number: 8147663
    Abstract: A scaffold holding one or more ion-conductive ceramic membranes for use in an electrochemical cell is described. Generally, the scaffold includes a thermoplastic plate defining one or more orifices. Each orifice is typically defined by a first, second, and third aperture, wherein the second aperture is disposed between the first and third apertures. The diameter of the second aperture can be larger than the diameters of the first and third apertures. While at an operating temperature the diameter of the ceramic membrane is larger than the diameters of the first and third apertures, heating the scaffold to a sufficient temperature and for a sufficient time causes the third aperture's diameter to become larger than the membrane's diameter. Thus, heating the scaffold may allow the membrane to be inserted into the orifice. Cooling the scaffold can then cause the third aperture's diameter to shrink and trap the membrane within the orifice.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 3, 2012
    Assignee: Cekamatec, Inc
    Inventors: Scott Suarez, Steven Matthew Quist
  • Patent number: 8147596
    Abstract: A hydrogen-permeable film has a ceramic material of a nitride or oxide of a metal element belonging to group IVB, VB or VIB and hydrogen-permeable metal particles of at least one kind selected from palladium (Pd), niobium (Nb), vanadium (V), tantalum (Ta) and alloys thereof dispersed in the ceramic material. A ratio of the hydrogen-permeable metal particles in the hydrogen-permeable film is 20 to 70 mass %, and a thickness of the hydrogen-permeable film is 5 to 1,000 nm.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 3, 2012
    Assignee: Mikuni Corporation
    Inventor: Katsuhiko Fukui
  • Patent number: 8147594
    Abstract: An air dryer includes a housing with an air inlet, an air outlet and a liquid drain outlet; and a membrane separator having surfaces extending between a first and second ends of the membrane. A first passage in the housing is connected to the air inlet and air outlet at it respective ends and extends between the first and second ends of the membrane separator along the surfaces of the membrane separator. A second passage in the housing is connected to the drain outlet and air outlet at it respective ends and extends between the first and second ends of the membrane along a surface of the membrane separator. A valve is connected between the second passage and the drain outlet for controlling the draining of the liquid and sweep air flow through the second passage. The dryer is to be inserted in a reservoir at its inlet or outlet. A coalescing filter may be provided in the housing in series with the membrane separator and the housing would include a second drain for the coalescing filter.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: April 3, 2012
    Assignee: New York Air Brake Corporation
    Inventors: Eric Wright, Richard Kohar
  • Publication number: 20120073791
    Abstract: A core unit for an energy recovery system for exchanging heat and vapor between two independent intake and exhaust airstreams without intermixing thereof, the core unit having a fibrous microporous support substrate and a sulfonated block copolymer having at least one end block A and at least one interior block B wherein each A block contains essentially no sulfonic acid or sulfonate ester functional groups and each B block is a polymer block containing from about 10 to about 100 mol percent sulfonic acid or sulfonate ester functional groups based on the number of monomer units, and wherein the sulfonated block copolymer is laminated on the microporous support substrate
    Type: Application
    Filed: September 29, 2010
    Publication date: March 29, 2012
    Inventor: Donn Dubois
  • Patent number: 8142546
    Abstract: An artificial lung includes a housing, a tubular hollow fiber membrane bundle contained in the housing and providing a multiplicity of hollow fiber membranes having a gas exchange function, a gas inflow port and a gas outflow port communicating with each other through hollow portions of the hollow fiber membranes, and a blood inflow port and a blood outflow port through which blood is distributed. The tubular hollow fiber membrane bundle has a cylindrical overall shape, and a filter member having a bubble-trapping function is provided on an outer peripheral portion of the tubular hollow fiber membrane bundle.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 27, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Mitsuaki Ogihara, Hidetaka Nakayama
  • Patent number: 8142662
    Abstract: A dehydrating system is designed to maintain the availability of a plant having the dehydrating system using a water separation membrane by allowing a water separation membrane unit to be replaced while the plant is in operation. The dehydrating system comprises at least two water separation membrane units in use arranged parallel to the direction of flow of a fluid to be processed, is configured so that at least one spare water separation membrane unit can be installed parallel to the direction of flow of the fluid to be processed with respect to the at least two water separation membrane units, having monitoring devices for the product fluid to be taken out, and maintains the properties of the product fluid by operating the spare water separation membrane unit depending on the properties of the product fluid monitored by the monitoring devices.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: March 27, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hiroyuki Osora, Yoshio Seiki, Atsuhiro Yukumoto, Yukio Tanaka, Shinji Ogino, Haruaki Hirayama
  • Publication number: 20120067207
    Abstract: A method of preparing a supported gas separation membrane, comprising: preparing crystalline seeds from a synthesis mixture comprising an aluminum source, a phosphorous source, a silicon source, at least one organic templating agent and water; applying the seeds to a porous support to produce a seeded porous support; contacting the seeded porous support with a synthesis gel under hydrothermal synthesis conditions to produce a coated porous support; and calcining the coated porous support is described. A supported gas separation membrane made by this method is also described.
    Type: Application
    Filed: May 27, 2010
    Publication date: March 22, 2012
    Inventors: Paul Jason Williams, Brendan Dermot Murray
  • Publication number: 20120067209
    Abstract: A membrane suitable for separating a gas from a gas mixture comprising a non cross-linked PVAm having a molecular weight of at least Mw 100,000 carried on a support wherein after casting onto the support, said PVAm has been heated to a temperature in the range 50 to 150° C., e.g. 80 to 120° C.
    Type: Application
    Filed: February 2, 2010
    Publication date: March 22, 2012
    Applicant: NTNU TECHNOLOGY TRANSFER AS
    Inventors: Marius Sandru, Taek-Joong Kim, May-Britt Hägg
  • Patent number: 8137442
    Abstract: Process for producing at least one nanoporous layer of nanoparticles chosen from nanoparticles of a metal oxide, nanoparticles of metal oxides, and mixtures of said nanoparticles, on a surface of a substrate, in which at least one colloidal sol, in which said nanoparticles are dispersed and stabilized, is injected into a thermal plasma jet which sprays said nanoparticles onto said surface. Nanoporous layer and device, especially a separation device, comprizing said layer.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: March 20, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Bruno Pintault, David Guenadou, Luc Bianchi, Philippe Belleville, Karine Valle, Christophe Boscher, Joël Toulc'Hoat
  • Patent number: 8137642
    Abstract: A bubble point of a combination of a filter and a liquid is calibrated by applying an initial back pressure through the filter toward the liquid; taking a first plurality of measurements of the level of the liquid in the container; calculating a first variance of the first plurality of measurements; and comparing the first calculated variance with a known threshold variance. Then a second plurality of measurements of the level of the liquid in the container is taken; a second variance of the second plurality of measurements is calculated; and the second calculated variance is compared with a known threshold variance. The above described steps are repeated at incrementally increased back pressures until the first and second calculated variances are each greater than or equal to the known threshold variance, which is about 0.01. The bubble point is determined to be the back pressure at that point. If the determined bubble point is less than or equal to the known threshold bubble point, which is about 0.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: March 20, 2012
    Assignee: Cytyc Corporation
    Inventors: Timothy Hutchins, Steven Scampini, Eric Baur
  • Patent number: 8137436
    Abstract: A passive humidifier membrane includes polyolefin with a plurality of pores, wherein the average pore size of the plurality of pores is 0.05 ?m to 0.4 ?m as established by a PMI Capillary Flow Porometer. The humidifier membrane is virtually airtight while providing a high transfer rate of water. Transfer of heat is also high. The humidifier membrane is particularly suitable for heat exchange and water transfer between fluids and, it is particularly useful for applications inside or outside fuel cells such as PEMFC. The membrane is also particularly useful in the application as humidifier for air or oxygen.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: March 20, 2012
    Assignee: Lydall Solutech B.V.
    Inventors: Gijsbertus Hendrikus Maria Calis, Edwin Henricus Adriaan Steenbakkers, Paul Osenar, Richard M. Formato, Paul Sabin, Seth Avis
  • Publication number: 20120060687
    Abstract: A method of preparing a supported gas separation membrane, comprising: preparing crystalline seeds from a synthesis mixture comprising an aluminum source, a phosphorous source, a silicon source, at least one organic templating agent and water; applying the seeds to a porous support to produce a seeded porous support; contacting the seeded porous support with a synthesis gel under hydrothermal synthesis conditions to produce a coated porous support; and calcining the coated porous support is described. A supported gas separation membrane made by this method is also described.
    Type: Application
    Filed: May 27, 2010
    Publication date: March 15, 2012
    Inventors: Brendan Dermot Murray, Paul Jason Williams
  • Patent number: 8133307
    Abstract: A dehumidification type air system is configured such that a switching valve and an air-used device are connected through a dehumidifying member made of a polymer permeation membrane with moisture permeability, and by bringing a moisture emitting face of the dehumidifying member into contact with the atmosphere, supply air supplied from the switching valve through the dehumidifying member to the air-used device is dehumidified by the dehumidifying member, while the moisture permeating through the dehumidifying member is diffused from the moisture emitting face to the atmosphere through natural evaporation.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 13, 2012
    Assignee: SMC Corporation
    Inventor: Toshihiro Suzuki
  • Patent number: 8133306
    Abstract: A gas diffusion substrate includes a non-woven network of carbon fibres, the carbon fibres are graphitised but the non-woven network has not been subjected to a graphitisation process. A mixture of graphitic particles and hydrophobic polymer is disposed within the network. The longest dimension of at least 90% of the graphitic particles is less than 100 ?m. A process for manufacturing gas diffusion substrates includes depositing a slurry of graphitised carbon fibres onto a porous bed forming a wet fibre network, preparing a suspension of graphitic particles and hydrophobic polymer, applying onto, and pulling the suspension into, the network, and drying and firing the network. Another process includes mixing a first slurry of graphitic particles and hydrophobic polymer with a second slurry of graphitised carbon fibres and liquid forming a third slurry, depositing the third slurry onto a porous bed forming a fibre-containing layer, and drying and firing the layer.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: March 13, 2012
    Assignees: Johnson Matthey Public Limited Company, Technical Fibre Products Limited
    Inventors: George Thomas Quayle, Julia Margaret Rowe, Jonathan David Brereton Sharman, Julian Andrew Siodlak, Nigel Julian Walker, Andrew James Fletcher
  • Patent number: 8128826
    Abstract: A process for separating vapors, for example for separating water from ethanol, uses a gas separation membrane unit. Permeate from the membrane unit is compressed and may be used for example as heating steam for distillation. The membrane unit may have two or more stages. Permeate from a stage may be condensed and used for example as fermentation make up water, compressed and fed to the permeate from an upstream stage or heating steam, or fed to another membrane stage for further dewatering. The gas separation membrane unit may be used to remove water from a fermentation broth that has been partially dewatered, for example by one or more of a distillation column or molecular sieve.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: March 6, 2012
    Assignee: Parker Filtration BV
    Inventors: Pierre Plante, Bruno de Caumia, Christian Roy, Gaétan Noël