Magnetic Separating Means Patents (Class 96/1)
  • Patent number: 11919656
    Abstract: A broad good, comprising a plurality of fibers looped randomly throughout the broad good, a binder material binding the plurality of fibers together, the plurality of bound fibers forming a dimensionally stable nonwoven veil, a first metal coating covering a surface of the plurality of bound fibers of the veil, and a second metal coating covering the surface of the first metal coating, wherein the first and second metal coatings form a highly conductive metal screen that follows the shape of the dimensionally stable nonwoven veil.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: March 5, 2024
    Assignee: General Nano LLC
    Inventors: Larry Allen Christy, Joseph E. Sprengard, Jr., Jae Hak Kim, Chaminda Jayasinghe
  • Patent number: 11027288
    Abstract: The invention relates to an apparatus for removing magnetizable particles in a substance, the apparatus comprising a magnetic separation chamber for filtering magnetizable particles and flocs from the substance, wherein the magnetic separation chamber comprises a first housing that defines a first space through which the substance can flow, as well as at least one first magnet of which a first magnetic field reaches into the first space, and which first magnet is located within a first holder that has an interface with the first space; and a flocculation chamber for inducing flocculation of the particles in a substance, the flocculation chamber being in fluid connection with the magnetic separation chamber; wherein the magnetic separation chamber is located downstream of the flocculation chamber, and wherein the flocculation of the magnetizable particles results in magnetizable flocs, and the magnetic field of the first magnet causes the magnetizable flocs to be attracted towards the first magnet, thereby rem
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: June 8, 2021
    Assignee: MHD Technologies B.V.
    Inventors: Paulus Wolfs, Robbie Hagelstein
  • Patent number: 10960404
    Abstract: A drainage processing apparatus that processes drainage expelled from a scrubber apparatus is provided. The drainage processing apparatus includes: a magnetic powder adding unit that adds magnetic powders to the drainage; a transfer unit that transfers the drainage; and an adsorbing unit that: is provided in the transfer unit; adsorbs bound matter that is contained in the drainage and contains at least a process-target substance and the magnetic powders; and retains the bound matter in the transfer unit. In one example, the adsorbing unit is able to re-release adsorbed bound matter into the transfer unit. In one example, the adsorbing unit has a permanent magnet provided to be directly insertable into and removable from within the transfer unit, and the permanent magnet adsorbs the bound matter by being inserted into the transfer unit, and re-releases the bound matter into the transfer unit by being removed from within the transfer unit.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: March 30, 2021
    Assignees: FUJI ELECTRIC CO., LTD., UTSUNOMIYA UNIVERSITY
    Inventors: Yosuke Hanai, Yasuzo Sakai
  • Patent number: 9966897
    Abstract: A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: May 8, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Patel Bhageerath Reddy, Ayman Mohamed Fawzi El-Refaie, Kum-Kang Huh
  • Patent number: 9200506
    Abstract: A device for transporting and upgrading a hydrocarbon resource may include a pair of pipeline segments configured to transport the hydrocarbon resource therethrough and a radio frequency (RF) upgrading device. The RF upgrading device may include an RF applicator comprising an inner tubular dielectric coupler between the pair of pipeline segments, and an electrically conductive outer housing surrounding the inner tubular dielectric coupler. The RF upgrading device may also include an RF source coupled to the electrically conductive outer housing and having an operating frequency and power to upgrade the hydrocarbon resource.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 1, 2015
    Assignee: HARRIS CORPORATION
    Inventors: Mark Ernest Blue, Lisa Patton Zastrow, Ryan Matthew Whitney, Ronald Edward Jackson, Jr., John Anton Meyer
  • Publication number: 20150068396
    Abstract: The present invention is directed to apparatuses and methods for pollution abatement. One embodiment provide methods of eliminating pollutants from an incoming optionally high temperature gaseous effluent stream, each method comprising directing the gaseous effluent stream sequentially through: (a) a sufficient volume of an aqueous liquid in a thermal shock vessel, such that the temperature of the gaseous effluent stream exiting the volume of liquid is in a range of about 5° C. to about 30° C., said liquid acting as filter to remove water, particles, soluble organic species, or a combination thereof from the gaseous stream; and one or more of: (b) an electronic bombardment module wherein the gaseous stream is ionized, forms molecular agglomerates, or both; (c) a magnetic rearrangement module, operating with a magnetic field in a range of about 0.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 12, 2015
    Inventor: JUAN JOSE CALDERON
  • Publication number: 20150059571
    Abstract: Systems and a method for removing carbon nanotubes from a continuous reactor effluent are provided herein. The method includes flowing the continuous reactor effluent through a separation vessel, separating carbon nanotubes from the continuous reactor effluent in the separation vessel, and generating a stream including gaseous components from the continuous reactor effluent.
    Type: Application
    Filed: April 10, 2013
    Publication date: March 5, 2015
    Inventors: Robert D. Denton, Dallas B. Noyes, Russell J. Koveal, JR., Terry A. Ring
  • Patent number: 8961658
    Abstract: A mist/dust collector includes a tank body, a recovery tank having a demister member, a spraying unit spraying water or coolant fluid from a nozzle, an impeller mounted on a main shaft located in the tank body, so as to be rotatable by air flow, a disc rotary brush and a shaking-off member mounted on the shaft. A suction unit is actuated to draw air containing mist and dust into the tank body interior maintained in a negative pressure state. The impeller is rotated by collision of water or coolant fluid at a predetermined pressure, and the rotary brush and the shaking-off member are rotated simultaneously with the impeller, so that mist and dust are separated from air by a centrifugal action of the rotary brush and the shaking-off member. Mist and dust remaining in the air flowing into the recovery tank are collected by the demister member.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: February 24, 2015
    Assignee: Anlet Co., Ltd.
    Inventors: Yasuna Yokoi, Yoshinobu Ito, Toshiaki Kato, Kouiti Kume, Hideyuki Okano
  • Patent number: 8926738
    Abstract: A disk brake pad (11) comprising a supporting base (13) with which a layer (15) of friction material is associated, characterized in that a wall (19) of said supporting base having associated therewith the layer of friction material is passed through by at least one channel (21, 23, 41) communicating with a chamber (17a, b), defined in correspondence of the supporting base, for collecting the powders produced due to the wear of the friction material.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: January 6, 2015
    Assignee: Idlos B.V.
    Inventors: Fabrizio Lupica, Domenico Gucciardi
  • Publication number: 20140360362
    Abstract: Various methods and systems are provided for separating particles within a gas flow traveling through a gas flow passage of an engine. In one embodiment, a particle separator includes a plurality of vanes positioned across a gas flow passage through which gas flow passes, the plurality of vanes angled with respect to a flow direction of the gas flow, and a particle trap for collecting separated particles, the particle trap disposed in the gas flow passage.
    Type: Application
    Filed: June 6, 2013
    Publication date: December 11, 2014
    Inventors: Eric David Peters, Paul Lloyd Flynn
  • Publication number: 20140305304
    Abstract: A mist/dust collector includes a tank body, a recovery tank having a demister member, a spraying unit spraying water or coolant fluid from a nozzle, an impeller mounted on a main shaft located in the tank body, so as to be rotatable by air flow, a disc rotary brush and a shaking-off member mounted on the shaft. A suction unit is actuated to draw air containing mist and dust into the tank body interior maintained in a negative pressure state. The impeller is rotated by collision of water or coolant fluid at a predetermined pressure, and the rotary brush and the shaking-off member are rotated simultaneously with the impeller, so that mist and dust are separated from air by a centrifugal action of the rotary brush and the shaking-off member. Mist and dust remaining in the air flowing into the recovery tank are collected by the demister member.
    Type: Application
    Filed: December 17, 2013
    Publication date: October 16, 2014
    Applicant: ANLET CO., LTD.
    Inventors: Yasuna Yokoi, Yoshinobu Ito, Toshiaki Kato, Kouiti Kume, Hideyuki Okano
  • Publication number: 20140301941
    Abstract: A process for extracting hydrocarbons from a molecular combination is provided. The process includes heating a molecular combination to dissociate it into a particle stream of carbon cations, hydrogen cations, and oxygen anions; guiding the stream through a non-conductive conduit; moving the dissociated particle stream through a magnetic field to separate the cations from the anions; and isolating the separated cations from the anions. In one embodiment, methane is formed from carbonic acid.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventor: Timothy O. Nichols
  • Publication number: 20140099245
    Abstract: A method and system are described for the on-board treatment of a hydrocarbon-fueled internal combustion engine (ICE) exhaust gas stream to reduce CO2 emissions from the vehicle which include: a. contacting the exhaust gas stream with a CO2 sorbent capture agent on board the vehicle to produce a mixture containing modified CO2-containing sorbent and a treated exhaust gas stream with reduced CO2 content; b. separating the modified CO2-containing sorbent from the treated exhaust gas stream; c. passing the modified sorbent in heat exchange with heat from the ICE to release CO2 and regenerate the CO2 sorbent capture agent; d. recycling the regenerated CO2 sorbent for use in step (a); e. discharging the treated exhaust gas stream having a reduced CO2 content into the atmosphere; f. recovering and compressing the CO2 for temporary storage on board the vehicle.
    Type: Application
    Filed: August 2, 2013
    Publication date: April 10, 2014
    Applicant: Saudi Arabian Oil Company
    Inventor: Esam Zaki HAMAD
  • Publication number: 20140048495
    Abstract: A removal device for removing gas bubbles and/or dirt particles from a liquid in a liquid conduit system or for removing an undesired liquid from the liquid in the liquid conduit system includes: a housing having: an entry, at least one exit, an inner space defined by the housing, at least one tube placed within the housing, where the at least one tube extends substantially between the entry and the exit and defines a main flow channel, at least one branch flow passage located near the entry for allowing fluid communication between the main flow channel and an area outside the tube and within the inner space defined by the housing, at least one return flow passage located near the exit for allowing fluid communication between the area outside the tube and the main flow channel, at least one quiet zone formed within the inner space.
    Type: Application
    Filed: April 13, 2012
    Publication date: February 20, 2014
    Applicant: FLAMCO B.V.
    Inventors: Jan Henk Cnossen, Terence Arthur Devlin
  • Publication number: 20140044600
    Abstract: Devices for treating chemical compositions of a sample and methods for use thereof are disclosed here. In one embodiment, for example, a device may include a container; an opening; a magnetic component that induces a magnetic field across a portion of the device; and a sorptive media loaded within the container. The device may further comprise a magnetizable fluid loaded within the container. The sorptive media may be configured to filter a composition from a magnetizable fluid. The magnetic field may be configured to drive filtration of the magnetizable fluid containing composition after reacting the composition in order to remove or separate constituents of the composition.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 13, 2014
    Applicant: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8641793
    Abstract: Separation systems can utilize a combination of forces to separate constituent components of a working fluid from each other. Some separation systems utilize one or more of centrifugal and gravitational forces in the purification of hydrogen gas. Some separation systems can utilize one or more of electromotive and magnetic forces in the purification of hydrogen gas.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 4, 2014
    Assignee: Paradigm Waterworks, LLC
    Inventor: Lyle Bates
  • Publication number: 20140013950
    Abstract: The invention is characterized in: forming a magnetic field inside a flow channel tube, the tube wall of which is formed from a material that is nonmagnetic and which, when the pressure outside the flow channel tube is lower than the pressure inside the flow channel tube, passes a portion of the air flowing inside the tube through the tube wall and discharges same to the outside thereof; supplying air to the flow channel tube so that at least a region of laminar flow is formed inside the flow channel tube; and reducing the pressure outside the flow channel tube to a prescribed pressure.
    Type: Application
    Filed: May 8, 2012
    Publication date: January 16, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Kenichi Inoue, Takashi Hase, Shingo Kasai
  • Publication number: 20130272927
    Abstract: A system and process are provided for extracting a substance from a molecular combination. The process comprises heating the molecular combination to dissociate the molecular combination into cations and anions, moving the cations and anions through a magnetic field to separate cations and anions, and isolating cations from anions with a barrier. The system comprises a non-conductive conduit for guiding an ionized particle stream, a magnetic field source for creating a magnetic field through which the ionized particle stream moves, and a barrier located in the conduit. The ionized particle stream has a velocity relative to the conduit, and the magnetic field source is oriented relative to the velocity of the ionized particle stream so that cations are separated from anions as the ionized particle stream moves through the magnetic field. The barrier is oriented in the conduit so that cations are isolated from anions after separation.
    Type: Application
    Filed: June 10, 2013
    Publication date: October 17, 2013
    Inventor: Timothy O. Nichols
  • Publication number: 20130247759
    Abstract: Collection enhanced materials, flue gas additives, and methods of making the enhanced materials and flue gas additives are provided. In one embodiment, a down stream addition system configured to control material passing through a metering device from a vessel to a gaseous exhaust path extending between a unit and an exhaust flue of the unit is provided. In alternative embodiments, methods are provided for introducing at least one of a flue gas additive and a collection enhanced material to a gaseous exhaust stream exiting a unit; exposing and removing at least a portion of at least one a of flue gas additive and a collection enhanced material from a gaseous exhaust stream exiting a unit prior to entering an exhaust flue; and recycling at least a portion of material removed a from a gaseous exhaust stream exiting a unit back to the gaseous exhaust stream without passing through the unit.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 26, 2013
    Applicant: INTERCAT EQUIPMENT, INC.
    Inventors: MARTIN EVANS, RAYMOND PAUL FLETCHER, MEHDI ALLAHVERDI, GUIDO ARU, PAUL DIDDAMS, XUNHUA MO, WILLIAM REAGAN, SHANTHAKUMAR SITHAMBARAM
  • Publication number: 20130174731
    Abstract: A method for separation of isotopes includes vaporizing a sample having two or more isotopes of the same element. A stream of atoms is generated from the vaporized sample. One or more light waves are applied to the stream. The one or more light waves are tuned to convert one or more specific isotopes in the flowing stream to a set of one or more magnetic states. A magnetic field is applied to the stream, deflecting atoms in the stream based on their magnetic states. Isotopes are collected based on their deflections (or lack of deflection).
    Type: Application
    Filed: November 30, 2012
    Publication date: July 11, 2013
    Applicant: Board of Regents, The University of Texas System
    Inventor: Board of Regents, The University of Texas System
  • Patent number: 8298321
    Abstract: A river water utilizing flue gas desulfurization system 10 according to an embodiment of the present invention includes: a pre-treatment facility 13 that removes humic substances in river water 11 to produce makeup water 12; and a desulfurization apparatus 17 that brings sulfur content in flue gas 15 into contact with limestone gypsum slurry 16 in an apparatus body 14. The pre-treatment facility 13 includes a flocculant mixing basin 22 in which a flocculant 21 is added to the river water 11 to flocculate and remove the humic substances contained in the river water 11; and an activated carbon absorption unit 23 in which the humic substances contained in the river water 11 are absorbed and removed by way of activated carbon.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: October 30, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Nobuyuki Ukai, Takashi Yoshimoto, Tatsuto Nagayasu, Susumu Okino
  • Patent number: 8298318
    Abstract: Embodiments of the present disclosure relate to a system and methods for the recovery of isotopes. In at least one exemplary method of the present disclosure at least one gas comprising a plurality of isotopes is provided. An electric field is generated in a radial direction to at least partially ionize the gas. A magnetic field is generated in an axial direction perpendicular to the radial direction and at least one isotope is recovered from the gas.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: October 30, 2012
    Inventor: Alfred Y. Wong
  • Publication number: 20120240768
    Abstract: Embodiments of the present invention operate as a mist eliminator. Here, at least one magnet is attached to a structure having metallic surfaces that engage an airstream entering an inlet system of a turbomachine. This structure is connected to the inlet system and operates as the mist eliminator. Depending on the velocity of the entering airstream, and the orientation of the magnets, the mist eliminator may repel the mist particles, which will separate from the airstream. Alternatively, the mist particles may be attracted to the mist eliminator. Here, the mist particles may separate from the airstream and then condense.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Inventors: Richard Michael Ashley Mann, Abhijeet Madhukar Kulkarni
  • Publication number: 20120234170
    Abstract: The invention is a process that utilizes a device or processor that includes an elongated housing comprising a core enclosed by a magnetic component in combination with an electrical return path, which affects the electrons within fluids, thereby separating, for example, metals and organic or inorganic materials from fluids, in order to achieve desired fluid composition and properties.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 20, 2012
    Inventor: William Steven Lopes
  • Patent number: 8211315
    Abstract: A microsystem for separating fluids not miscible with each other and contained in a mixture. The microsystem comprises at least one detection means intended to inspect at least one area of the mixture and to detect the presence of at least one of the fluids in this area. The microsystem further comprises at least one controlled means for opening or closing a passage. The microsystem further comprises at least one control means for the opening or the closing of a passage as a function of the nature of the fluid detected in the area inspected by the detection means, in such a way that the fluid whose presence has been detected flows or not through the passage. The detection means comprise a plurality of sensors arranged substantially around the controlled means.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: July 3, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Paul Prulhiere, Virginie Saavedra
  • Publication number: 20120128578
    Abstract: A system and process are provided for extracting a substance from a molecular combination. The process comprises heating the molecular combination to dissociate the molecular combination into cations and anions, moving the cations and anions through a magnetic field to separate cations and anions, and isolating cations from anions with a barrier. The system comprises a non-conductive conduit for guiding an ionized particle stream, a magnetic field source for creating a magnetic field through which the ionized particle stream moves, and a barrier located in the conduit. The ionized particle stream has a velocity relative to the conduit, and the magnetic field source is oriented relative to the velocity of the ionized particle stream so that cations are separated from anions as the ionized particle stream moves through the magnetic field. The barrier is oriented in the conduit so that cations are isolated from anions after separation.
    Type: Application
    Filed: February 1, 2012
    Publication date: May 24, 2012
    Inventor: Timothy O. Nichols
  • Patent number: 8123838
    Abstract: A method and apparatus for separating particles preferentially accelerates particles to a rotating collector, which then reliably conveys collected particles to a discharge with minimal re-entrainment of the particles in the fluid stream. The collector minimizes energy transfer to the fluid and maximizes separation under conditions of high particle loading, fine particle content, or both. The separator may be operated in any vertical, horizontal or oblique orientation, or within devices whose orientation varies over time.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: February 28, 2012
    Assignee: Wells Products Group, Inc.
    Inventors: John E. Kane, Robert L. Hance
  • Patent number: 8030600
    Abstract: The hydrogen permeable substrate includes a copper plate, a stainless steel plate, an insulating member, and hydrogen permeable metal. The hydrogen permeable substrate is formed by locating the insulating member between the stainless steel plate and a combined member formed by embedding the hydrogen permeable metal in through-holes made in the copper plate; subjecting the joining face of each component for joining to other components to irradiation with argon ions, to remove the oxide film thereon and activate the surface; and stacking and rolling the components. By so doing, they may be joined at low temperature and low pressure. Once joined, by cutting the hydrogen permeable metal into individual pieces along cut lines, a plurality of hydrogen permeable substrates may be manufactured all at once.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: October 4, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenji Kimura
  • Publication number: 20110132192
    Abstract: Separation systems can utilize a combination of forces to separate constituent components of a working fluid from each other. Some separation systems utilize one or more of centrifugal and gravitational forces in the purification of hydrogen gas. Some separation systems can utilize one or more of electromotive and magnetic forces in the purification of hydrogen gas.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 9, 2011
    Applicant: PARADIGM WATERWORKS, LLC
    Inventor: Lyle Bates
  • Patent number: 7918920
    Abstract: The present invention provides an assembly for reducing combustion emissions of a combustion apparatus having a combustion chamber producing combustion. The combustion apparatus also has a fluid passageway for carrying treated fluid to the combustion chamber. The assembly includes at least one magnet positioned such that a north pole of each magnet is adjacent the fluid passageway, and a south pole of each magnet is on an opposite side of the north pole and positioned away from the fluid passageway. Each magnet is capable of operating at a sustained efficiency at operating temperatures of approximately 302° F. Each magnet provides a residual flux density of at least approximately 10,000 gauss. The combustion emissions have at least approximately a 1.5% reduction in carbon dioxide emissions compared to the combustion of untreated fluid, as well as reductions in hydrocarbon and carbon monoxide emissions.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: April 5, 2011
    Inventor: David De John
  • Patent number: 7771509
    Abstract: A process for separating O2 from air, that includes the steps effecting an increase in pressure of an air stream, magnetically concentrating O2 in one portion of the pressurized air stream, the one portion then being an oxygen rich stream, and there being another portion of the air stream being an oxygen lean stream, compressing the oxygen rich stream and removing water and carbon dioxide therefrom, to provide a resultant stream, and cryogenically separating said resultant stream into a concentrated oxygen stream and a waste stream.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: August 10, 2010
    Assignee: Cryogenic Group, Inc.
    Inventor: Ross M. Brown
  • Publication number: 20100095847
    Abstract: The invention is a system and method for conditioning fluids utilizing a magnetic fluid processor or device that includes an elongated housing comprising a core enclosed by a magnetic component in combination with an electrical return path. The process utilizes said device to affect and electron configuration within fluids by generating a magnetic field, thereby separating, for example, metals and organic or inorganic materials from fluids, in order to achieve desired fluid composition and properties.
    Type: Application
    Filed: October 16, 2008
    Publication date: April 22, 2010
    Inventor: WILLIAM STEVEN LOPES
  • Publication number: 20090266235
    Abstract: A method and apparatus for separating particles preferentially accelerates particles to a rotating collector, which then reliably conveys collected particles to a discharge with minimal re-entrainment of the particles in the fluid stream. The collector minimizes energy transfer to the fluid and maximizes separation under conditions of high particle loading, fine particle content, or both. The separator may be operated in any vertical, horizontal or oblique orientation, or within devices whose orientation varies over time.
    Type: Application
    Filed: July 2, 2009
    Publication date: October 29, 2009
    Inventors: John E. Kane, Robert L. Hance
  • Patent number: 7569094
    Abstract: A method and apparatus for separating particles preferentially accelerates particles to a rotating collector, which then reliably conveys collected particles to a discharge with minimal re-entrainment of the particles in the fluid stream. The collector minimizes energy transfer to the fluid and maximizes separation under conditions of high particle loading, fine particle content, or both. The separator may be operated in any vertical, horizontal or oblique orientation, or within devices whose orientation varies over time.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: August 4, 2009
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: John E. Kane, Robert L. Hance
  • Publication number: 20090178556
    Abstract: A method is provided for separating gas including diamagnetic materials and paramagnetic materials containing nitrogen oxides and oxygen into diamagnetic materials, nitrogen oxides, and oxygen. The method includes steps of providing a magnetic device along a gas passage, and providing a plurality of flow passages. Each flow passage has one end that is separately connected to the gas passage. The flow passages extend in a direction that a force due to a magnetic field of the magnetic device is applied to the paramagnetic materials in the gas. The method further includes a step of allowing the gas to flow into the flow passages so that the diamagnetic materials or the paramagnetic materials in the gas enter into a corresponding flow passage among the plurality of the flow passages.
    Type: Application
    Filed: December 22, 2008
    Publication date: July 16, 2009
    Inventors: Sakutaro HOSHI, Koji Yoshida, Atsushi Kidokoro, Shintaro Kawasaki
  • Publication number: 20090126565
    Abstract: In the field of immersion lithography, it is known to provide a liquid between an optical exposure system and a wafer carrying layers of photosensitive material to be irradiated with a pattern by the optical exposure system. However, bubbles are known to form or exist in the liquid, sometimes close to a surface of the wafer resulting in scattering of light emitted from the optical exposure system. The scattering causes the pattern recorded in the layers of photosensitive material to be corrupted, resulting in defective wafers. Therefore, the present invention provides a bubble displacement apparatus comprising a drive signal generator for driving a force generator arranged to generate a force in response to a drive signal generated by the drive signal generator. The force generated urges the bubble away from the surface.
    Type: Application
    Filed: May 17, 2007
    Publication date: May 21, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Kevin Cooper, Scott Warrick
  • Patent number: 7506765
    Abstract: In a high-gradient magnetic separator for the selective separation of magnetic particles from a suspension which is conducted through a matrix of plate-like separation structures of a magnetic material which are disposed in a magnetic field and through which the suspension is conducted, alternate plates of the separation structures are movable relative to the other plates which are stationary and are all mounted on a carrier by which they can be moved relative to the stationary plates at least during cleaning of the plates for the removal of magnetic particles collected on the plates.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: March 24, 2009
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Matthias Franzreb, Christian Reichert
  • Publication number: 20080314248
    Abstract: The invention relates to a filter module for removing air-polluting materials from machine exhaust, comprising a filter housing with an intake opening and an outlet opening for channeling machine exhaust through, at least one mounting element for mounting the filter module on a machine, and a filter assembly, arranged in the filter housing and comprised of at least two filter groups, arranged in tandem in the direction of flow and comprised of rod-shaped filter elements with a filter medium, said elements being arranged parallel to one another at a constant center-to-center distance and with their longitudinal axis largely crosswise to the direction of flow, wherein the filter elements of two adjacent filter groups are parallel to one another, and are arranged offset in relation to one another, crosswise to their longitudinal axes and to the direction of flow.
    Type: Application
    Filed: September 9, 2005
    Publication date: December 25, 2008
    Inventor: Erich Peteln
  • Publication number: 20080307960
    Abstract: Absorbent magnetic particles are used to remove air pollutants. The adsorbent magnetic particles can adsorb various air pollutants, including nitrogen oxides, sulfur oxides, and mercury, and may be regenerated for reuse.
    Type: Application
    Filed: March 13, 2006
    Publication date: December 18, 2008
    Inventors: David W. Hendrickson, Iwao Iwasaki, David J. Englund, Thomas R. Larson, Blair R. Benner, Donald R. Fosnacht, John Engesser
  • Publication number: 20080233041
    Abstract: This invention relates to a carbon nanotube producing system. A carbon nanotube producing system includes a reaction tube in which a metal catalyst and a carbon-containing gas are supplied and carbon nanotube grows on the metal catalyst by pyrolysis; an exhaust line along which a gas including the carbon nanotube grown on the metal catalyst is exhausted from the reaction tube; and a carbon nanotube trapping apparatus installed on the exhaust line and configured to trap the carbon nanotube grown on the metal catalyst by using a magnetic force.
    Type: Application
    Filed: August 10, 2007
    Publication date: September 25, 2008
    Inventors: Suk-Won Jang, Young-Chul Joung
  • Publication number: 20080196589
    Abstract: The invention relates to a gel for separating and/or purifying a gas mixture comprising a metal cation, a porous support, a gelling agent and a solvent. Associated devices are also disclosed.
    Type: Application
    Filed: April 20, 2006
    Publication date: August 21, 2008
    Applicants: FINERCOR SA, BREVETS ASSOCIES
    Inventor: Jean-Luc Quere
  • Publication number: 20080099382
    Abstract: A fluid filter device includes a container having a passage for a fluid to flow through the container, and having an inner peripheral chamber for receiving a filter medium which includes a bore communicating with the passage of the container, one or more guide members are disposed in the bore of the filter medium for stirring the fluid and for converting the fluid into an eddy flow. A filter screen is disposed and engaged with the filter medium for anchoring the filter medium. The filter medium includes a number of grooves for receiving particles or contaminants. One or more magnetic devices may be disposed in or on the container for attracting and collecting the metal particles or contaminants.
    Type: Application
    Filed: November 1, 2006
    Publication date: May 1, 2008
    Inventor: Hui Chen Shih
  • Patent number: 7319222
    Abstract: A linear trap which allows for charge separation and ion mobility separation in a speedy manner, and enables measurement with high duty cycle. A mass spectrometer comprises an ion source, an ion trap for trapping ions ionized by the ion source, an ion trap controller for controlling a voltage on an electrode included in the ion trap, and a detector for detecting the ions ejected from the ion trap. The ion trap controller includes a table for each mass-to-charge ratio, the table containing a frequency of the voltage used for charge separation, and a gain of the voltage for ejecting a first ion with a first charge outside the ion trap, and retaining in the ion trap a second group of ions with a second charge that is lower than that of the first charge. The ion trap controller controls the voltage based on the mass-to-charge ratio set. The mass spectrometer has significantly improved sensitivity, as compared to the prior art.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: January 15, 2008
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuichiro Hashimoto, Hideki Hasegawa, Izumi Waki
  • Patent number: 7288139
    Abstract: An apparatus separates liquid, gas and solid components of a mixture in a fluid system. An inlet for receiving the mixture opens into a separation chamber tangentially with a cylindrical side wall and a gas outlet has an opening in a first end wall adjacent the inlet to allow gas to exit the separator. A fluid outlet is located in an opposing second end wall. A debris passage extends through the cylindrical side wall and oriented so that the radial velocity of the particles within the separation chamber directs the particles through the debris passage. The debris passage leads to a particle collection chamber in which the particles accumulate. Unlike prior separators that relied on the tangential velocity of the particles, the present apparatus utilizes the greater radial velocity to drive the particles from the separation chamber into the particle collection chamber.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: October 30, 2007
    Assignee: Eaton Corporation
    Inventor: Stephen Showalter
  • Patent number: 7288138
    Abstract: An apparatus separates liquid, gas and solid components of a mixture in an engine lubricating system. An inlet for receiving the mixture opens tangentially into a separation chamber and a gas outlet has an opening in a first end wall adjacent the inlet to allow gas to exit the separator. A fluid outlet is in an opposing second end wall and opens into a lubricant reservoir of the engine lubricating system. Both liquid and gas flow through the fluid outlet between the separator and the reservoir. A particle collector is provided adjacent the second end wall to receive solids that become separated from the mixture. A baffle may be provided to direct the separated liquid from the separator into the reservoir while allowing gas in the reservoir to flow into the separator.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: October 30, 2007
    Assignee: Eaton Corporation
    Inventors: Stephen Showalter, Edward G. Kosteski
  • Patent number: 7223335
    Abstract: A device for separating ions from a fluid stream is disclosed. The device includes multiple chambers in fluid communication with one another. A first chamber has an inlet, and a last chamber has an outlet. The inlets and outlets of intermediate chambers are connected to one another so that fluid flows in a circular pattern through each chamber. A magnetic field extends through the chambers perpendicular to the flow. The magnetic field induces a force on the ions, moving ions of one polarity to ward the center of the chambers and ions of the opposite polarity toward the periphery of the chambers. Each chamber has an outlet for drawing fluid from the chamber center. The circulation direction reverses in each chamber allowing both positive and negative ions to exit via the outlets. Fluid of reduced ion concentration exits the outlet channel.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: May 29, 2007
    Inventor: Henry R. Dunlap
  • Patent number: 6939469
    Abstract: A band gap mass filter for separating particles of mass (M1) from particles of mass (M2) in a multi-species plasma includes a chamber defining an axis. Coils around the chamber generate an axially aligned magnetic field defined (B=B0+B1 sin ?t), with an antenna generating the sinusoidal component (B1 sin ?t) to induce an azimuthal electric field (E?) in the chamber. The resultant crossed electric and magnetic fields place particles M2 on unconfined orbits for collection inside the chamber, and pass the particles M1 through said chamber for separation from the particles M2. Unconfined orbits for particles M2 are determined according to an ?-? plot ( ? = ? 0 2 + ? 1 2 / 2 4 ? ? 2 , and ? ? ? ? = ? 0 ? ? 1 8 ? ? 2 ) , where ?0 is the cyclotron frequency for particles with mass/charge ratio M, and wherein ?0=B0/M and ?1=B1/M.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: September 6, 2005
    Assignee: Archimedes Operating, LLC
    Inventors: Tihiro Ohkawa, Robert L. Miller
  • Patent number: 6926824
    Abstract: A purifier with molecular-rearranging device mainly includes a hollow tubular holder, a tubular molecular-rearranging device positioned in the tubular holder, a tubular isolating layer positioned in a bore of the tubular molecular-rearranging device, and two caps respectively having a through hole closed to two ends of the tubular holder. The purifier may be put around an exhaust pipe or a pipe for transferring liquid, so that a radiated magnetic field is produced by magnetic lines of the molecular-rearranging device and earth poles to magnetize and rearrange molecules of exhaust or liquid flown through the pipe, making the exhaust or liquid filtered and purified to reduce air and water pollution.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: August 9, 2005
    Inventor: Jen-Chieh Wang
  • Patent number: 6849188
    Abstract: Magnetic conditioning of fluids and gases flowing through a conduit or other containment vessel to achieve essentially uniform characteristics of said fluids and gases for the purposes of improved operation efficiency and performance quality of mechanisms and systems dependent on these liquids and gases. Specifically, the invention pertains to a combined application of advanced techniques including 1) use of magnets, preferably high flux density stabilized anisotropic magnets, 2) non-uniform flux density pairing, 3) magnetic field focused on an air gap using advanced insulative shielding and parallel alignment control, 4) incremental conditioning and 5) modular design.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: February 1, 2005
    Inventor: Steven Sacs
  • Publication number: 20040140253
    Abstract: A magnetic-energy-releasing molecular rearranging structure includes an amount of magnetic powder, which is molded into a magnetic member in the form of a ball, a mass, or a flat piece, and having magnetic-energy-releasing molecules, so that the member has magnetic lines that together with earth poles produce a radiated magnetic field. Superficial molecules of a solid body and a liquid, or air molecules in a limited space may be magnetized and rearranged using the magnetic-energy-releasing member, and molecules of a substance that is to be magnetized may be magnetized and rearranged through magnetic energy transmission from the magnetized molecules of the solid body, the liquid, or the air in the limited space to the substance.
    Type: Application
    Filed: January 16, 2003
    Publication date: July 22, 2004
    Inventor: Jen Chien Wang