Having System Connector Or Coupling Patents (Class 96/106)
  • Patent number: 11754477
    Abstract: A high pressure freezing cartridge (300, 400, 500) for use in vitrification of a biological sample (10) is provided, the cartridge (300, 400, 500) being adapted to fixedly hold a sample chamber (216, 218, 220) at a sample chamber position (320, 420, 520) in the cartridge (300, 400, 500), a refrigerant channel arrangement comprising at least one refrigerant channel (208, 308, 408, 462, 464, 466, 468, 508, 562, 564, 566, 569) being provided in the cartridge (300, 400, 500) and extending from a surface of the cartridge (300, 400, 500) to the sample chamber position, and the cartridge (300, 400, 500) comprising a baffle structure (350, 450, 550, 571) at a baffle position being adapted to interact with a refrigerant stream in the refrigerant channel arrangement before the refrigerant of the refrigerant stream reaches the sample chamber position in the cartridge (300, 400, 500). A corresponding method in which the high pressure freezing cartridge (300, 400, 500) is used is also part of the present disclosure.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: September 12, 2023
    Assignee: Leica Mikrosysteme GmbH
    Inventors: Paul Wurzinger, Rainer Wogritsch, Ricardo Vizcaya Benavides, Julia König
  • Patent number: 9778222
    Abstract: A capillary unit includes a reservoir capable of retaining a liquid. A capillary having a linear shape has one end secured on a bottom-end portion of the reservoir. The capillary extends from the bottom-end portion in a direction away from an opening of the reservoir. A nozzle connector is provided between a bottom of the reservoir and the one end of the capillary, and provides liquid-tight removable connection with a nozzle for injecting the liquid into the capillary from a portion adjacent to the reservoir.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: October 3, 2017
    Assignee: SHIMADZU CORPORATION
    Inventors: Hiroyuki Matsumoto, Shin Nakamura, Toru Kaji, Tomonori Nozawa
  • Publication number: 20150090595
    Abstract: A fitting (200) for providing a fluid connection between a capillary (202) and a fluidic conduit (204) of a fluidic component (30), the fitting (200) comprising a male piece (240) and a female piece (250) for connection with the male piece (240), wherein the male piece (240) comprises a housing (252) with a capillary reception (212) configured for receiving the capillary (202), wherein a part of the capillary (202) being received in the capillary reception (212) is circumferentially covered by a sleeve (214), an elastic biasing mechanism (206) being arranged at least partially within the housing (252), being configured for biasing the capillary (202) against the female piece (250) and being supported by the sleeve (214), and a locking mechanism (208) being arranged at least partially within the housing (252) and being configured for locking the capillary (202) to the fitting (200).
    Type: Application
    Filed: November 15, 2012
    Publication date: April 2, 2015
    Applicant: aGILENT TECHNOLOGIES , INC.
    Inventors: Claus Lueth, Darijo Zeko
  • Patent number: 8845794
    Abstract: A non-seizing taper used for purged capillary tubing connections in gas chromatography that stops capillary tubing at a predictable position within the taper during installation and maintains space for gas to flow past the capillary tubing. The disclosed taper is an improved component of commonly used purged devices such as inlet liners and purged unions. The arresting aspect of the taper simplifies the process of capillary tubing installation while ensuring that the tubing will reproducibly be positioned in the taper. One or more features of the taper prevent tubing from seizing within the taper so that the devices can be reused and ensure that there is open space for a portion of gas to flow around and past the tubing. The angle of the taper, the dimensions of the taper, and the nature of the features within the taper can be adjusted to meet specific performance, usability and/or manufacturability requirements.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: September 30, 2014
    Inventor: Matthew Spangler Klee
  • Patent number: 8784543
    Abstract: A non-seizing taper used for purged capillary tubing connections in gas chromatography that stops capillary tubing at a predictable position within the taper during installation and maintains space for gas to flow past the capillary tubing. The disclosed taper is an improved component of commonly used purged devices such as inlet liners and purged unions. The arresting aspect of the taper simplifies the process of capillary tubing installation while ensuring that the tubing will reproducibly be positioned in the taper. One or more features of the taper prevent tubing from seizing within the taper so that the devices can be reused and ensure that there is open space for a portion of gas to flow around and past the tubing. The angle of the taper, the dimensions of the taper, and the nature of the features within the taper can be adjusted to meet specific performance, usability and/or manufacturability requirements.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 22, 2014
    Inventor: Matthew Spangler Klee
  • Publication number: 20140157988
    Abstract: Described is a chromatography a chromatography apparatus that includes a microfluidic substrate, a coupler and a sealing fitting. The microfluidic substrate can include one or more chromatography columns, such as analytical columns or trap columns, and an inlet in communication with the one or more chromatography columns. The coupler is diffusion bonded to the surface of the microfluidic substrate so that an opening in the coupler is aligned to the inlet in the microfluidic substrate. The sealing fitting includes a heat-resistant sealant disposed in the opening of the coupler and in contact with the surface of the substrate. The coupler and sealing fitting enable a compact fluid-tight connection to the inlet of the microfluidic substrate that exhibits high tensile and torsional strength, and does not require the use of adhesives.
    Type: Application
    Filed: August 23, 2012
    Publication date: June 12, 2014
    Applicant: WATERS TECHNOLOGIES CORPORATION
    Inventor: Joseph D. Michienzi
  • Publication number: 20140150660
    Abstract: A non-seizing taper used for purged capillary tubing connections in gas chromatography that stops capillary tubing at a predictable position within the taper during installation and maintains space for gas to flow past the capillary tubing. The disclosed taper is an improved component of commonly used purged devices such as inlet liners and purged unions. The arresting aspect of the taper simplifies the process of capillary tubing installation while ensuring that the tubing will reproducibly be positioned in the taper. One or more features of the taper prevent tubing from seizing within the taper so that the devices can be reused and ensure that there is open space for a portion of gas to flow around and past the tubing. The angle of the taper, the dimensions of the taper, and the nature of the features within the taper can be adjusted to meet specific performance, usability and/or manufacturability requirements.
    Type: Application
    Filed: February 3, 2014
    Publication date: June 5, 2014
    Inventor: Matthew Spangler Klee
  • Patent number: 8721768
    Abstract: Certain embodiments described herein are directed to chromatography systems that include a microfluidic device. The microfluidic device can be fluidically coupled to a switching valve to provide for selective control of fluid flow in the chromatography system. In some examples, the microfluidic device may include a charging chamber, a bypass restrictor or other features that can provide for added control of the fluid flow in the system. Methods of using the devices and methods of calculating lengths and diameters to provide a desired flow rate are also described.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: May 13, 2014
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventor: Andrew Tipler
  • Patent number: 8591630
    Abstract: In a fast gas chromatograph (GC) method and device for obtaining fast gas chromatography analysis, a capillary gas chromatography column is inserted into a resistively heated metal tube located mostly outside a standard gas chromatograph oven, which may serve as a heated transfer line to a flexible column that enters the resistively heated metal tube from its injector and exits into its detector. The fast GC device enables less than one minute full range temperature programming and cooling back analysis cycle time. The fast GC according to one embodiment is combined with mass spectrometry with supersonic molecular beams for the provision of fast analysis cycle time together with highly informative mass spectral information for improved sample analysis and identification.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 26, 2013
    Inventors: Aviv Amirav, Alexander B. Fialkov
  • Patent number: 8569070
    Abstract: A fitting assembly having a nut, a ferrule, and a ferrule tip that may be assembled by an operator. The fitting assembly includes a nut with first and second ends, with the second end adapted to receive the first end of a ferrule, and a ferrule tip with a first end having an externally tapered portion adapted to abut the second end of the ferrule and a second end adapted to be received in a component or fitting of a liquid chromatography system. The nut, ferrule and ferrule tip of the fitting assembly have passageways therethrough for receiving and removably holding tubing.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: October 29, 2013
    Assignee: IDEX Health & Science LLC
    Inventors: Scott J. Ellis, Eric Beemer, Nathaniel Nienhuis, Craig W. Graham, Troy N. Sanders
  • Patent number: 8506688
    Abstract: A gas chromatographic device comprises an inlet system and a chromatography column. The inlet system includes a liner having pressure reducing means contained therein for reducing pressure between an inlet of the pressure reducing means and an outlet of the pressure reducing means. When the devise is in use, the chromatography column is positioned in the liner of the inlet system downstream from the pressure reducing means, and the chromatography column is under vacuum at its outlet.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: August 13, 2013
    Assignee: Restek Corporation
    Inventors: Jaap De Zeeuw, Jack Cochran, Scott L. Grossman
  • Patent number: 8500863
    Abstract: A room temperature trap for the purification and concentration of gaseous methane. The trap utilizes the adsorption and desorption properties of microporous spherical carbon molecular sieves to purify and concentrate radiolabelled methane for application in an automated synthesis module without the need for cryogenic cooling.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: August 6, 2013
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Nicie C. Murphy, Todd L. Graves
  • Patent number: 8414832
    Abstract: The invention is a chromatography apparatus which comprises at least one capillary column, which has a coil assembly of column material and a small diameter wire coated with an electrically insulating high temperature material encased within a high temperature sheath. The small diameter wire is at least one electrically conductive element co-linear with the column material. Also provided is means for directly resistively heating the at least one capillary column, and means for controlling the temperature of the capillary column. Additionally, the apparatus includes an oxygen gas containing inlet, a hydrogen inlet, an analyte port and a flame region, oxygen delivery means for delivering oxygen through the oxygen inlet to the flame region, a hydrogen and analyte delivery system for delivering hydrogen and analyte to the flame region, and a detector arranged to detect flame emission.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: April 9, 2013
    Inventors: Ned Roques, John Crandall
  • Patent number: 8357234
    Abstract: An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: January 22, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Charles S. Sluder, John M. Storey, Samuel A. Lewis, Sr.
  • Patent number: 8303694
    Abstract: Certain embodiments described herein are directed to chromatography systems that include a microfluidic device. The microfluidic device can be fluidically coupled to a switching valve to provide for selective control of fluid flow in the chromatography system. In some examples, the microfluidic device may include a charging chamber, a bypass restrictor or other features that can provide for added control of the fluid flow in the system. Methods of using the devices and methods of calculating lengths and diameters to provide a desired flow rate are also described.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: November 6, 2012
    Assignee: Perkinelmer Health Sciences, Inc.
    Inventor: Andrew Tipler
  • Patent number: 8302459
    Abstract: The measurement sensitivity is improved by suppressing the surrounding temperature influence as much as possible, while realizing scale reduction, and by enlarging the detection signal, while reducing the production errors in enclosing a reference gas. Provided is a thermal conductivity sensor that detects thermal conductivity of a sample gas by using a Wheatstone Bridge circuit constructed in such a manner that measurement resistors that are brought into contact with the sample gas are disposed on a first side, and reference resistors that are brought into contact with a reference gas are disposed on a second side, and comparing the potential difference between connection points of the reference resistors and the measurement resistors. The measurement resistors disposed on the first side are assembled in one measurement space, and the reference resistors disposed on the second side are assembled in one reference space.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: November 6, 2012
    Assignee: HORIBA, Ltd.
    Inventors: Makoto Matsuhama, Tomoko Seko, Shuji Takada, Hiroshi Mizutani, Takuji Oida, Masahiko Endo, Takuya Ido
  • Patent number: 8277544
    Abstract: A thermal modulation device for a gas chromatography (GC) system a cold zone, a first hot zone and a second hot zone, which are located outside of a GC oven of the GC system, and a flexible capillary column. The cold zone includes a thermoelectric cooler assembly. The first hot zone is adjacent a first side of the cold zone, and has a corresponding first heat source. The second hot zone is adjacent a second side of the cold zone, and has a corresponding second heat source. The flexible capillary column includes a first segment, configured to move between the first hot zone and the cold zone in accordance with a modulation frequency, and a second segment, configured to move between the cold zone and the second hot zone in accordance with the modulation frequency.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: October 2, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Xiaosheng Guan, Qiang Xu
  • Patent number: 8237116
    Abstract: GC-MS analysis apparatus has an interface section between GC and MS sections, which is located with respect to the direction of an analyte flow downstream of the GC section and upstream of the MS section. The interface section comprises at least one membrane with at least one orifice capable of establishing a molecular flow condition in the analyte passing between the GC and MS sections through the membrane. The membrane is subjected to a pressure differential such that the pressure pa in a region located upstream of the membrane is higher than the pressure pb in a region located downstream of the membrane.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: August 7, 2012
    Assignee: Agilent Technologies, Inc.
    Inventor: Raffaele Correale
  • Publication number: 20120160690
    Abstract: Described is a capillary column cartridge. The cartridge can be used to perform separations according to various techniques such as capillary gas chromatography, capillary electrophoresis and capillary liquid chromatography. The cartridge includes a capillary column secured in a cartridge body. The capillary column includes an inlet port and an outlet port that, in some embodiments, are disposed on a planar surface of the body. When the body is engaged to a separation system module, the inlet port is aligned to receive a sample to be separated and the outlet port is aligned to provide the separated sample to the separation system module. The path of the capillary through the body has a non-planar path shape such as a coil shape. Consequently, longer column lengths can be accommodated, leading to an improvement in separation resolution. The body can include a material having a high thermal conductivity to achieve improved thermal performance.
    Type: Application
    Filed: June 20, 2011
    Publication date: June 28, 2012
    Applicant: WATERS TECHNOLOGIES CORPORATION
    Inventors: Joseph A. Jarrell, Keith Edward Fadgen
  • Patent number: 8182768
    Abstract: A system for interfacing a sampling device and a chromatograph and for pre-concentrating analytes in a sample prior to introducing the sample into the chromatographic column is generally disclosed comprising an interface housing with a first channel and an adsorbent housing with a second channel, which contains at least one adsorbent. Valveless conduits permit fluid to be communicated between the sampling device and the first channel, between the first channel and the second channel, and the first channel and the column. In some embodiments, fluid flows in one direction when the analytes are adsorbed and in the opposite direction when analytes are desorbed. In certain embodiments, two different adsorbents are disposed in the second channel to adsorb different types of analytes.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: May 22, 2012
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, John H. Vanderhoef, James E. Botelho
  • Patent number: 8167987
    Abstract: Systems and methods for cooling a chromatographic column is disclosed generally, comprising heating a chromatographic column, supplying fluid into the column via the inlet end of the column at an inlet pressure, decreasing the temperature of the column, thereby causing the fluid in the column to contract, and controlling the fluid in the column such that the rate at which the fluid in the column contracts does not exceed the flow rate of the fluid supplied to the column. In certain embodiments, the rate of change of the volume of the fluid in the column as the column temperature decreases is modeled, and the rate of contraction of the gas in the column is estimated therefrom. In some embodiments, the column temperature and/or inlet pressure are controlled by a programmable chromatographic oven.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: May 1, 2012
    Assignee: PerkinElmer LAS, Inc.
    Inventor: Andrew Tipler
  • Patent number: 8152909
    Abstract: An apparatus, system, and method are disclosed for a gas chromatography (GC) system with a check valve. The check valve is situated downstream from the electronic flow control module and upstream of the injector. When a sample is volatized in the injector, the check valve closes into a checked position and prevents solvent and sample from backing into the gas delivery line. In certain embodiments, the check valve has a conical plug that fits into a seat that has an aperture. When the conical plug is depressed, the conical plug engages the sides of the aperture and seals the check valve, preventing solvent and sample from backing through the check valve. In certain embodiments, the change in pressure caused by over-pressurization in the injector, combined with the force applied by a spring on the conical plug, depresses the plug such that it seals the aperture.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: April 10, 2012
    Assignee: Bruker Chemical Analysis B.V.
    Inventor: Christopher Cameron Kellogg
  • Patent number: 8114200
    Abstract: A portable multi-dimensional gas chromatograph, the gas chromatograph including a carrier gas container, a regulator fluidly connected to the carrier gas container, a dopant chamber containing a reference chemical, at least one pre-concentrator which is fluidly connected to the regulator and the dopant chamber, a first separation column fluidly connected to the at least one pre-concentrator, a second separation column fluidly connected to the at least one pre-concentrator, a first detector fluidly connected to the first separation column, and a second detector fluidly connected to the second separation column.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: February 14, 2012
    Assignee: VPI Enigineering, Inc.
    Inventors: Sheena Alm, James Bentley, John Blankevoort, Mark Kaspersen, Collin Lewis, Derek Maxwell, Ken Wunner
  • Patent number: 8021468
    Abstract: A room temperature trap for the purification and concentration of gaseous methane. The trap utilizes the adsorption and desorption properties of microporous spherical carbon molecular sieves to purify and concentrate radiolabelled methane for application in an automated synthesis module without the need for cryogenic cooling.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: September 20, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Nicie C. Murphy, Todd L. Graves
  • Patent number: 8011224
    Abstract: A feeding device for enriching and feeding a fluid sample into a chemical detector, the feeding device comprises (a) a sorbent element having a sorbent material for sorbing at least one target chemical present in the fluid sample; (b) a desorbing mechanism for generating conditions for the sorbent material to desorb the at least one target chemical out of the sorbent material, thereby to provide an enriched fluid sample; and (c) a loose connector, for providing a loose connection between the feeding device and the chemical detector, such that when the sorbent material desorbs the at least one target chemical, the chemical detector is fed by the enriched fluid sample, and when the sorbent material sorbs the at least one target chemical, the chemical detector is fed by environmental fluids.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: September 6, 2011
    Assignee: Israel Institute for Biological Research
    Inventors: Shai Kendler, Adi Zifman, Netzah Gratziany, Amnon Sharon, Gad Frishman
  • Publication number: 20110023581
    Abstract: Embodiments of a front-end pre-concentrator module, a back-end pre-concentrator module and a gas analysis subsystem are disclosed, as well as gas analysis systems using combinations of the front-end pre-concentrator module, the back-end pre-concentrator module and the gas analysis subsystem. Embodiments of disposable and re-usable moisture removal filters are disclosed for use alone or in combination with a gas analysis system.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 3, 2011
    Applicant: TRICORNTECH CORPORATION
    Inventors: Tsung-Kuan A. Chou, Li-Peng Wang, Chia-Jung Lu, Shih-Chi Chu
  • Patent number: 7873093
    Abstract: A method and apparatus for carrying out a laser operation, wherein a laser source is provided, wherein lasing gas is supplied from at least one lasing gas source to the laser source for the formation of a laser beam, wherein, with the aid of the laser beam, an operation is carried out, such as for instance a welding, a drilling, a cutting or a lighting operation, wherein the lasing gas which comes from the at least one lasing gas source is fed through at least one lasing gas filter before the gas is supplied to the laser source. The invention further relates to the use of a quick-change filter for cleaning gases consumed in laser processing apparatuses.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: January 18, 2011
    Assignee: Scientific Glass Technology Singapore Pte Ltd.
    Inventor: Marinus Frans van der Maas
  • Patent number: 7867325
    Abstract: A gas chromatographic device comprises an inlet system and a chromatography column. The inlet system includes a liner having pressure reducing means contained therein for reducing pressure between an inlet of the pressure reducing means and an outlet of the pressure reducing means. When the devise is in use, the chromatography column is positioned in the liner of the inlet system downstream from the pressure reducing means, and the chromatography column is under vacuum at its outlet.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: January 11, 2011
    Assignee: Restek Corporation
    Inventors: Brian A. Jones, Jaap De Zeeuw, Jack Cochran, Scott L. Grossman
  • Patent number: 7832253
    Abstract: A portable weather resistant gas chromatograph system with a gas chromatograph enclosure having a body and a movable door and a seal, a gas chromatograph with a frame assembly removably secured in the enclosure, a plurality of exhaust gas lines connected to the gas chromatograph, an explosion proof terminal box with circuit breakers and terminals mounted to the enclosure, a communication conduit and armored power cable between the explosion proof terminal box and the gas chromatograph, a purge gas conduit port for the gas chromatograph, a pedestal for the enclosure, and at least two lifting eyes connected to the enclosure.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: November 16, 2010
    Assignee: Solarcraft, Inc.
    Inventors: Darrell N. Haun, Donald N. Haun
  • Patent number: 7824471
    Abstract: The present invention provides a chromatographic method for eliminating interference from interfering agents, coming from the gas sample itself or from the system material used to perform the impurities measurements, on impurities to be quantified in a gas sample. The method advantageously relies on the use of an additional valve and an additional sample loop particularly arranged in a G. C. system, and also on an additional supporting gas inlet operatively connected to the system through the additional sample loop for providing the system with a supporting gas comprising at least a predetermined portion of a predetermined active gas that will react with the unwanted interfering impurities, if any, or with the column material to cancel out unwanted active sites. Thus, the method of the present invention can advantageously be used in gas chromatographic systems to improve sensitivity thereof by acting on column separation material.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: November 2, 2010
    Assignee: Panalytique Inc.
    Inventors: Yves Gamache, Andre Fortier
  • Patent number: 7779670
    Abstract: The present invention is an improvement to two-dimensional comprehensive gas chromatography. The improvement is a two-valve switching modulator connecting two gas chromatography separation columns. The modulator is located between the first and second columns and includes two valves with transfer lines between the valves for switching a carrier gas between the transfer lines.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Reseach and Engineering Company
    Inventor: Frank C Wang
  • Patent number: 7735352
    Abstract: A portable multi-dimensional gas chromatograph, the gas chromatograph including a carrier gas container, a regulator fluidly connected to the carrier gas container, a dopant chamber containing a reference chemical, at least one pre-concentrator which is fluidly connected to the regulator and the dopant chamber, a first separation column fluidly connected to the at least one pre-concentrator, a second separation column fluidly connected to the at least one pre-concentrator, a first detector fluidly connected to the first separation column, and a second detector fluidly connected to the second separation column.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: June 15, 2010
    Assignee: Alliant Techsystems Inc.
    Inventors: Sheena Alm, James Bentley, John Blankevoort, Mark Kaspersen, Collin Lewis, Derek Maxwell, Ken Wunner
  • Publication number: 20100101411
    Abstract: Certain embodiments described herein are directed to chromatography systems that include a microfluidic device. The microfluidic device can be fluidically coupled to a switching valve to provide for selective control of fluid flow in the chromatography system. In some examples, the microfluidic device may include a charging chamber, a bypass restrictor or other features that can provide for added control of the fluid flow in the system. Methods of using the devices and methods of calculating lengths and diameters to provide a desired flow rate are also described.
    Type: Application
    Filed: May 27, 2009
    Publication date: April 29, 2010
    Inventor: Andrew Tipler
  • Patent number: 7695617
    Abstract: The invention relates to an interface injector device for the direct coupling of liquid chromatography and gas chromatography, comprising an outer body (1) with an inner cavity with two inner chambers (2a, 2b) separated by a dividing element (9, 11a); a first passage (3) of the first chamber (2a) to a waste duct (8); an inner tube (5) arranged in the inner cavity and traversing the dividing element (9, 11a), and having a first section (5a) in the first inner chamber (2a), a second section (5b) in the second inner chamber (2b), and an inner channel (5f) which can house an adsorbent material (6), and at least one inorganic wool material (7) retained in the first section (5a) of the inner tube by retaining means (7), a first opening (10) communicated with the waste duct (8) exclusively through the first inner chamber (2a).
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: April 13, 2010
    Assignee: Universidad de Gastill-la Mancha
    Inventors: Jesus Villen Altamirano, Ana Maria Vazquez Molini, Raquel Sanchez Santiago, Rouger Gilbert Fortuny
  • Patent number: 7691181
    Abstract: A system for controlling the flow rate into a chromatographic column is disclosed generally comprising communicating a fluid to the column through a transfer line, measuring the inlet pressure, determining the outlet pressure, and adjusting the applied pressure until the inlet and outlet pressures produce a desired flow rate for the transfer line outlet. In certain embodiments, the applied pressure is adjusted by controlling a proportional valve. In some embodiments, the outlet pressure is determined by measuring the pressure drop across the transfer line and calculating the outlet pressure from the measured inlet pressure and the pressure drop.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: April 6, 2010
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Richard G Edwards
  • Publication number: 20090314158
    Abstract: A room temperature trap for the purification and concentration of gaseous methane. The trap utilizes the adsorption and desorption properties of microporous spherical carbon molecular sieves to purify and concentrate radiolabelled methane for application in an automated synthesis module without the need for cryogenic cooling.
    Type: Application
    Filed: June 23, 2008
    Publication date: December 24, 2009
    Applicant: Siemens Medical Solutions USA, Inc.
    Inventors: Nicie C. Murphy, Todd L. Graves
  • Patent number: 7608136
    Abstract: An in-line filter provided with a substantially elongated filter housing (1; 51) in which filtering material (A) is included, the filter housing being provided on a first end with an inflow opening (2) and, on a second, opposite end with an outflow opening (3), while at the inflow opening (2) and the outflow opening (3) fastening means (4-7) are provided for fastening a supply or discharge tube, respectively (8 or 9, respectively), while the fastening means (4-7) are quick-change couplings (4-7), a respective quick-change coupling (4, 5; 6, 7) having a coupled condition and an uncoupled condition, while in the quick-change coupling (4, 5; 6, 7) a shut-off valve (10) is provided which, in the coupled condition, assumes an open position thus allowing gas to pass and which, in an uncoupled condition, assumes a closed position thus not allowing gas to pass.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: October 27, 2009
    Assignee: Scientific Glass Technology Singapore Pte Ltd.
    Inventor: Marinus Frans van der Maas
  • Publication number: 20090249959
    Abstract: A gas chromatographic device comprises an inlet system and a chromatography column. The inlet system includes a liner having pressure reducing means contained therein for reducing pressure between an inlet of the pressure reducing means and an outlet of the pressure reducing means. When the devise is in use, the chromatography column is positioned in the liner of the inlet system downstream from the pressure reducing means, and the chromatography column is under vacuum at its outlet.
    Type: Application
    Filed: December 10, 2008
    Publication date: October 8, 2009
    Inventors: Brian A. Jones, Jaap De Zeeuw, Jack Cochran, Scott L. Grossman
  • Patent number: 7575676
    Abstract: An HPLC column holding apparatus used to mount an HPLC column in one of a plurality of positions is disclosed herein. The apparatus comprises a clip-device interface that secures the apparatus to a platform and a clip-column interface that secures the HPLC column to the apparatus.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 18, 2009
    Assignee: Waters Technologies Corporation
    Inventors: David P. Prentice, Roger Gilman, Brett G. Cook
  • Publication number: 20090183634
    Abstract: A gas chromatographic device comprises an inlet system and a chromatography column. The inlet system includes a liner having pressure reducing means contained therein for reducing pressure between an inlet of the pressure reducing means and an outlet of the pressure reducing means. When the devise is in use, the chromatography column is positioned in the liner of the inlet system downstream from the pressure reducing means, and the chromatography column is under vacuum at its outlet.
    Type: Application
    Filed: January 18, 2008
    Publication date: July 23, 2009
    Inventors: Jaap De Zeeuw, Jack Cochran, Scott L. Grossman
  • Patent number: 7552618
    Abstract: Disclosed are systems and methods that include a thermal desorption unit, a chromatographic column, and an interface device between the unit and the column. The interface device controls the fluid flowing into the column, such as by providing additional carrier gas to maintain a substantially constant gas flow or velocity, by proving a controlled temperature increase, or by venting a portion of the gas received from the thermal desorption unit, thereby removing the dependence on the thermal desorption unit for such control. In some embodiments, the interface is a chromatographic injector. In certain embodiments, a transfer line from the desorption unit is coupled to the same port of the interface device as the chromatographic column. In some of these embodiments, this is accomplished by employing a special adaptor.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: June 30, 2009
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Heidi Grecsek, Frank DeLorenzo, Giuseppe Coppola
  • Patent number: 7544233
    Abstract: The aim of the invention is to optimize the analysis of substances separated by gas chromatography with a gas chromatograph, comprising a separating device and a mass spectrometer situated down there from. To this end, a detector that detects the separated substances in a nondestructive manner is placed in-line between the output of the separating device and a controllable inlet valve of the mass spectrometer. An evaluating device situated down from the detector evaluates the detector signals and, based on the evaluation, controls the inlet valve for introducing predeterminable substances into the mass spectrometer.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: June 9, 2009
    Assignee: Siemens Aktiengesellsachaft
    Inventors: Frank Diedrich, Friedhelm Müller
  • Patent number: 7527676
    Abstract: A unit for separating an exhaust gas containing PFC gases including CF4 and C2F6 generated in a production process, wherein the exhaust gas is concentrated in a concentration device, and then separated chromatographically in a chromatographic separation device using nitrogen as a carrier gas. The chromatographic separation device is packed with molecular sieve 13X or F-9 or the like. The unit is capable of effectively separating CF4 and C2F6.
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: May 5, 2009
    Assignee: Organo Corporation
    Inventors: Yoshinori Tajima, Takashi Futatsuki, Tetsuya Abe, Sadamitsu Tanzawa, Seiji Hiroki
  • Patent number: 7520920
    Abstract: The present invention discloses a gas chromatograph assembly. In one implementation, the assembly includes a sample injector and a guard column assembly. The guard column assembly includes a guard column connected to and downstream of the sample injector; a jacket with low thermal mass surrounding the guard column; a temperature controlled heater connected to the jacket to control the temperature of the jacket and thereby the temperature of the guard column; and an insulating housing surrounding the jacket. An analytical column is connected to and downstream of the guard column.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: April 21, 2009
    Assignee: Griffin Analytical Technologies
    Inventors: Mark A. Gregory, Garth E. Patterson, Anthony J. Cochran, Jason L. Springston
  • Patent number: 7517395
    Abstract: An inlet assembly for introducing a sample into a carrier gas stream for gas chromatography is disclosed including a housing having a bore that receives a liner. A sealing member having a core with a surface layer is positioned within the bore in sealing engagement with the bore and the liner. The surface layer of the sealing member has a lower adhesion to the housing than the core. The surface layer facilitates removal of the sealing member and the liner from the bore. A method of replacing an existing liner in an inlet assembly for chromatography is also disclosed. The method includes providing a liner with a sealing member having a core with a surface layer having a lower adhesion to the housing than the core, removing the existing liner from the bore and inserting a new liner with a new sealing member into the bore.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: April 14, 2009
    Assignee: Agilent Technologies, Inc.
    Inventor: Thomas M. Logan
  • Patent number: 7507336
    Abstract: A connector element for use with analytical devices is provided. The connector element includes a cavity for receiving a sealing member, and an access element for providing access to the sealing member when disposed in the cavity, e.g., for dislodging the sealing member from the connector element. Also provided are analytical devices that include the connector element, as well as methods of using the same.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: March 24, 2009
    Assignee: Agilent Technologies, Inc.
    Inventors: Bruce D. Quimby, Wesley M. Norman
  • Publication number: 20090071888
    Abstract: A chromatography column to bind molecules or proteins, is filled with a replaceable matrix and is provided with fill elements with which a single feed tube can be connected to an across the column distributed fill element. The fill element keeps an inner land area free from fill openings which can be closed. With the fill element it is possible to dispense the matrix into the column in an equally spread manner. Elements are present to internally flush the feed tube, while there are features to make the flushing impossible during filling with matrix.
    Type: Application
    Filed: May 19, 2007
    Publication date: March 19, 2009
    Inventor: Marcellus Johannes, Hubertus Raedts
  • Publication number: 20090014373
    Abstract: A separation unit comprising a magazine unit with a magazine is described. The magazine comprises a plurality of pockets, each pocket being adapted for accommodating a separation column for separating compounds of a fluid sample. The magazine unit is adapted for moving any of the pockets to a structural component, wherein a pocket and the structural component are adapted for complementing one another to form a column compartment.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 15, 2009
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventor: Konstantin CHOIKHET
  • Patent number: 7468095
    Abstract: A system for controlling the flow rate into a chromatographic column is disclosed generally comprising communicating a fluid to the column through a transfer line, measuring the transfer line inlet pressure, determining the transfer line outlet pressure, and adjusting the applied pressure until the inlet and outlet pressures produce a desired flow rate for the transfer line outlet. In certain embodiments, the applied pressure is adjusted by controlling a proportional valve. In some embodiments, the outlet pressure is determined by measuring the pressure difference across the transfer line and calculating the transfer line outlet pressure from the measured inlet pressure and the pressure difference.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: December 23, 2008
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Richard G Edwards
  • Patent number: 7431900
    Abstract: A hydrogen peroxide vapor generation unit (10) receives hydrogen peroxide and water solution at an interface (20) and interconnects with an air dryer (14) by way of nipples (72, 92). In one embodiment, the dryer includes a clamping assembly (42) which is latched (74, 94) with the nipples and which receives a disposable desiccant cartridge (40). In an alternate embodiment, a reusable desiccant cartridge (40?) is connected directly to the nipples (72, 92). When the desiccant cartridge (40?) is saturated, it is removed and placed in a regenerator unit (120). A regenerated cartridge is installed in its place.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: October 7, 2008
    Assignee: Steris Inc
    Inventors: Aaron L. Hill, Arthur T. Nagare, Frank E. Dougherty, Stanley M. Voyten