Particulate Media, Shaped Packing Elements (e.g., Raschig Rings, Berl Saddles, Etc.), Or Porous Media For Gas And Liquid Contact Patents (Class 96/290)
  • Patent number: 8992845
    Abstract: A method for separating CO2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO2 from gas mixtures.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: March 31, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Roger D. Aines
  • Patent number: 8936234
    Abstract: A method of mass transfer includes the steps of: supplying a first fluid and a second fluid into a mass transfer apparatus, wherein the mass transfer apparatus includes a vessel which has a head region, a base region and a mass transfer region, wherein the first fluid is brought into contact with the second fluid at least in the mass transfer region, wherein the mass transfer region is arranged between the head region and the base region and the mass transfer region includes a structured packing which includes a plurality of neighboring layers of fabric which includes fiber strands of a non-metallic material. The mass transfer apparatus is operated at a fluid load of at most 3 m3/m2/h. The fabric of the structured packing includes fiber strands of a non-metallic material which are formed as weft threads, wherein the weft threads have a yarn count of at least 100 g/1000 m and the weft threads include at least 20 yarns/25.4 mm.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: January 20, 2015
    Assignee: Sulzer Chemtech AG
    Inventors: Werner Wicki, Marcus Duss, Llja Ausner
  • Patent number: 8888900
    Abstract: Apparatus for treating gas comprises a casing (100) containing a gas scrubber section (118) and an electrostatic precipitator section (120) located above the scrubber section. A partition (136) may be located within the casing (100) to separate the precipitator section (120) from the scrubber section (118). The casing has a gas inlet (102) for supplying gas to the scrubber section, a gas outlet (104) for exhausting gas from the precipitator section, a scrubbing liquid inlet (106) for supplying scrubbing liquid to the precipitator section, and a scrubbing liquid outlet (126) for draining scrubbing liquid from the scrubber section. In one embodiment the partition comprises a set of apertures (138) through which scrubbing liquid drains from the precipitator section into the scrubber section, and a set of gas passages (140) for conveying gas from the scrubber section to the precipitator section.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 18, 2014
    Assignee: Edwards Limited
    Inventors: Andrew James Seeley, Andrew James Wakefield
  • Publication number: 20140335589
    Abstract: Method and apparatus for separating a target substance from a fluid or mixture. Capsules having a coating and stripping solvents encapsulated in the capsules are provided. The coating is permeable to the target substance. The capsules having a coating and stripping solvents encapsulated in the capsules are exposed to the fluid or mixture. The target substance migrates through the coating and is taken up by the stripping solvents. The target substance is separated from the fluid or mixture by driving off the target substance from the capsules.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventors: Roger D. Aines, Christopher M. Spadaccini, Joshuah K. Stolaroff, William L. Bourcier, Jennifer A. Lewis, Eric B. Duoss, John J. Vericella
  • Patent number: 8871012
    Abstract: A packed column includes a regular packing (8) and a liquid distribution plate (5). The regular packing (8) is constructed by combining two or more hollow columns, and the hollow columns each have a cross section of circular shape, hexagonal shape or other shapes. The liquid distribution plate (5) has small holes under which liquid guide tubes (4) are connected. The liquid guide tubes (4) lead to all hollow columns of the packing (8). The liquid distribution plate (5) is horizontally installed above the regular packing (8) in a column body (2). Each gas guide plate (11) is made by rotating and twisting a rectangular plate and has several protrusions (12) on its side. The gas guide plates (11) are installed in the hollow columns of the regular packing (8) with the height slightly smaller than that of the hollow columns. A gas outlet (3) is located between the regular packing (8) and the liquid distribution plate (5).
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: October 28, 2014
    Assignee: Nanjing College of Chemical Technology
    Inventors: Jinlin Ji, Lixin Tang
  • Patent number: 8834617
    Abstract: A system is configured to remove volatile organic compounds from a container. The system includes an enclosed contactor vessel having a first inlet to receive vapor containing volatile organic compounds from the container and a second inlet. The second inlet receives a vapor capture medium from a source. A contactor facilitates entrainment of the volatile organic compounds with the vapor capture medium while a first outlet recirculates treated vapor back to the container to effect a closed loop.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: September 16, 2014
    Assignee: Nanovapor Fuels Group, Inc.
    Inventor: Elliott Moorhead
  • Patent number: 8794602
    Abstract: A method of mass transfer includes the steps of: supplying a first fluid and a second fluid into a mass transfer apparatus, wherein the mass transfer apparatus includes a vessel which has a head region, a base region and a mass transfer region, wherein the first fluid is brought into contact with the second fluid at least in the mass transfer region, wherein the mass transfer region is arranged between the head region and the base region and the mass transfer region includes a structured packing which includes a plurality of neighboring layers of fabric which includes fiber strands of a non-metallic material. The mass transfer apparatus is operated at a fluid load of at most 3 m3/m2/h.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 5, 2014
    Assignee: Sulzer Chemtech AG
    Inventors: Werner Wicki, Markus Duss, Ilja Ausner
  • Patent number: 8790454
    Abstract: A heat exchanger having an extended surface plate includes a plurality of heat exchanging bodies having therein flow paths along which a heat transfer medium flows, and extended surface plates each disposed between the heat exchanging bodies and having inclined surfaces in horizontal and vertical directions. Also disclosed is a dehumidifier having the heat exchanger. Moisture in the air may be effectively absorbed by a dehumidifying liquid, and the heat exchanger may have enhanced structural strength.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: July 29, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Dae-Young Lee, Seo Young Kim
  • Patent number: 8778065
    Abstract: In a bubble-column vapor mixture condenser, a fluid source supplies a carrier-gas stream including a condensable fluid in vapor phase. The condensable fluid in liquid form is contained as a bath in a chamber in each stage of the condenser, and the carrier gas is bubbled through the bath to condense the condensable fluid into the bath. Energy from condensation is recovered to a coolant in a conduit that passes through the liquid in the stages of the condenser. The bubble-column vapor mixture condenser can be used, e.g., in a humidification-dehumidification system for purifying a liquid, such as water.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 15, 2014
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum & Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa Hamed Elsharqawy
  • Patent number: 8758493
    Abstract: A method and system for reducing an amount of ammonia in a flue gas stream. The system 100 includes: a wash vessel 180 for receiving an ammonia-containing flue gas stream 170, the wash vessel 180 including a first absorption stage 181a and a second absorption stage 181b, each of the first absorption stage 181a and the second absorption stage 181b having a mass transfer device 184; and a liquid 187 introduced to the wash vessel 180, the liquid 187 for absorbing ammonia from the ammonia-containing flue gas stream 170 thereby forming an ammonia-rich liquid 192 and a reduced ammonia containing flue gas stream 190 exiting the wash vessel 180.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: June 24, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Eli Gal, Indira Jayaweera
  • Patent number: 8747532
    Abstract: A filter device for filtering dust from air includes a housing, a dust collecting module, a spraying module, and an exhaust. The housing defines an air inlet near a bottom of the housing and an air outlet near a top of the housing. The dust collecting module is installed in the housing between the air inlet and the air outlet. The spraying module is placed in the housing between the dust collecting module and the air outlet. The exhaust is connected to the housing for generating air pressure difference between near the air outlet and near the air inlet, thereby drawing and introducing air containing dust from the bottom of the housing toward the top of the housing via the air inlet.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: June 10, 2014
    Assignee: Foxconn Technology Co., Ltd.
    Inventors: Chun-Jung Chang, Wen-Hsiung Chang, Ping-Neng Chang, Run-Cheng Lin
  • Patent number: 8715398
    Abstract: An apparatus for the purification of fluids includes a material exchange apparatus which contains a more volatile fluid and a less volatile fluid. The material exchange apparatus contains a structured packing, with the structured packing containing a first packing layer (10) and a second packing layer (100). The first packing layer (10) and the second packing layer (100) have corrugations, with open channels (12, 14, 16, 112, 114, 116) being formed by the corrugations.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: May 6, 2014
    Assignee: Sulzer Chemtech AG
    Inventors: Ilja Ausner, Markus Duss
  • Patent number: 8702852
    Abstract: The present invention relates to a condensation and washing device with which in particular the process vapors which occur during the production of polylactide can be processed and cleaned. Furthermore, the present invention relates to a polymerization device for the production of polylactide and also to a method for processing process vapors which occur during the production of polylactide; possibilities for use of both the condensation and washing devices and of the method are likewise mentioned.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: April 22, 2014
    Assignee: Uhde Inventa-Fischer GmbH
    Inventors: Rainer Hagen, Udo Muhlbauer
  • Patent number: 8696805
    Abstract: Disclosed are a heat exchanger for a dehumidifier using a liquid desiccant and a dehumidifier using a liquid desiccant having the same. The heat exchanger for a dehumidifier using a liquid desiccant, comprises: a plurality of plate-type heat exchanger bodies to which a heat transfer medium flows through flow paths formed therein; and a plurality of plates extending between the respective heat exchanger bodies, and inclined with respect to the surfaces of the heat exchanger bodies.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: April 15, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Young Soo Chang, Dae-Young Lee
  • Patent number: 8679232
    Abstract: A rotating packed bed RPB that includes a first and second packed bed both arranged on the same rotatable shaft. A gas is directed via a gas inlet through the first packed bed in co-current flow with a liquid in a radially outward direction towards the outer radius of the packed bed. The liquid enters the first packed bed via a first liquid inlet. The gas exiting the first packed bed is directed to the second packed bed and forced through it in a radially inward direction in counter-current flow with a liquid, which enters through a second liquid inlet. The arrangement allows an operation of the rotating packed bed with less energy compared to RPBs of the prior art operating in counter-current flow only. The apparatus allows low-cost design and high design flexibility.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: March 25, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Hartwig Wolf, Petar Aleksic, Frank Klaus Ennenbach, Mark Harvey Tothill
  • Patent number: 8608833
    Abstract: Methods are disclosed for the selective absorption of gas components based on differences in their gas phase and liquid phase resistances to mass transfer. The methods advantageously utilize a gas-liquid contacting apparatus having contacting stages with co-current flow channels that can provide contacting with increased liquid phase resistance to mass transfer, for example in the spray regime such that the liquid is effectively dispersed as small droplets into the gas phase.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 17, 2013
    Assignee: UOP LLC
    Inventor: Zhanping Xu
  • Patent number: 8540811
    Abstract: A scrubber for the cleaning of gases containing several scrubber stages (1-4), where the scrubber stages are arranged in a scrubber tower with the different stages at different levels above each other in the scrubber tower. At least one of the scrubber stages (2-4) above the lowest scrubber stage (1) comprises, according to the invention, a ring-shaped tank (10, 15, 20) arranged inside the scrubber tower, which ring shaped tank (10, 15, 20) is arranged surrounding a central channel (9, 14, 19) through which the gas that is to be cleaned can pass upwards.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: September 24, 2013
    Assignee: Gotaverken Miljo AB
    Inventors: Ulf Hagg, Lennart Gustafsson
  • Patent number: 8523987
    Abstract: A dust arrester includes a housing with air inlet and air outlet, wherein the ambient air containing dust particles can be introduced into the housing via the air inlet and discharged from the housing via the air outlet. The dust arrester further includes a water trough placed in the bottom of the housing and a chaos effect generator including a nozzle and a material. The nozzle can spray water supplied from the water trough. The water sprayed interacts with the material to generate a chaos condition, so that the dust particles can be removed from the introduced air under the chaos condition.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: September 3, 2013
    Assignee: Yau Lee Innovative Technology Limited
    Inventor: Wong Tin Cheung
  • Patent number: 8523985
    Abstract: In a bubble-column vapor mixture condenser, a fluid source supplies a carrier-gas stream including a condensable fluid in vapor phase. The condensable fluid in liquid form is contained as a bath in a chamber in each stage of the condenser, and the carrier gas is bubbled through the bath to condense the fluid into the bath. Energy from condensation is recovered to a liquid composition in a conduit that passes through the liquid in the stages of the condenser. The bubble-column vapor mixture condenser can be used, e.g., in a humidification-dehumidification system for purifying a liquid, such as water.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: September 3, 2013
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Prakash Narayan Govindan, Gregory P. Thiel, Ronan K. McGovern, John H. Lienhard, Mostafa H. Elsharqawy
  • Patent number: 8518157
    Abstract: Disclosed is a device for purifying a process gas in a reflow soldering system. Said device comprises a receptacle that contains at least one packing bed. The process gas is fed to the receptacle via a gas inlet while being discharged from the receptacle after penetrating the packing bed. The inventive device further comprises an apparatus for delivering a liquid fluid to the receptacle. Secondary materials of the soldering process in the reflow soldering system can be absorbed by the liquid fluid and thus be eliminated from the process gas. Secondary materials and/or droplets and vapors of the fluid can additionally be absorbed and adsorbed on the surface of the packing.
    Type: Grant
    Filed: February 20, 2006
    Date of Patent: August 27, 2013
    Assignee: Rehm Thermal Systems GmbH
    Inventors: Hans Bell, Jürgen Felgner, Ralf Heidenreich
  • Patent number: 8500893
    Abstract: This invention involves a marine ship flue gas scrubbing equipment and scrubbing method. The equipment includes a shell with an upper scrubbing section and a water tank in the lower section. A smoke pipe leads in exhaust gas to an area between the scrubbing section and water tank. Scrubbing seawater is injected through an inlet above the scrubbing section, and a cooler is located along the pathway of the exhaust gas. The method of scrubbing includes leading-in exhaust gas, cooling the exhaust gas, injecting scrubbing seawater, performing scrubbing operation, and discharging clean gas. Embodiments of the invention provide a highly efficient scrubbing equipment and method suitable for high-temperature exhaust gas within a limited usable space. The methods and equipment are highly effective for emission reduction, has low energy consumption, small size, and long life performance.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 6, 2013
    Inventor: Sigan Peng
  • Patent number: 8500894
    Abstract: A method of mixing an oxygen gas with a hydrocarbon-containing gas includes the steps of wet scrubbing the oxygen gas in a wet scrubber, supplying oxygen gas from the wet scrubber to a gas mixer and mixing the oxygen gas with the hydrocarbon-containing gas in the gas mixer. Wet scrubbers for use in the method may take various forms, including packed-tower, bubble cap, and sparger-type wet scrubbers. The removal of the particulate matter reduces the risk of ignition of the hydrocarbon-containing gas in the gas mixer. The use of a wet scrubber in the oxygen supply line overcomes many problems currently faced with screen and filters, as per current practice.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 6, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Patent number: 8500862
    Abstract: A system is configured to remove volatile organic compounds from a container. The system includes an enclosed contactor vessel having a first inlet to receive vapor containing volatile organic compounds from the container and a second inlet. The second inlet receives a vapor capture medium from a source. A contactor facilitates entrainment of the volatile organic compounds with the vapor capture medium while a first outlet recirculates treated vapor back to the container to effect a closed loop.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 6, 2013
    Assignee: Nanovapor Fuels Group, Inc.
    Inventors: Elliott Moorhead, Bryant Hickman
  • Publication number: 20130192471
    Abstract: The present invention relates to an apparatus for removing air contaminants, which adsorbs dust and harmful substances contained in the air contaminants using an absorbing unit connected to an inlet pipe inserted in a tank.
    Type: Application
    Filed: September 21, 2011
    Publication date: August 1, 2013
    Inventor: Jong In Kim
  • Patent number: 8470071
    Abstract: Particular embodiments disclosed herein relate to methods, compositions, and systems relating generally to heating, ventilation, and air conditioning (HVAC) systems, and more specifically, to HVAC systems that transfer sensible and/or latent energy between air streams, humidify and/or dehumidify air streams. In certain embodiments, a polymeric membrane is utilized for fluid exchange, with or without an additional support. Certain embodiments allow for individual regulation of air temperature and humidity.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: June 25, 2013
    Assignee: Dais Analytic Corporation
    Inventors: Scott G. Ehrenberg, Hung Huynh, Brian Johnson
  • Patent number: 8465006
    Abstract: The productivity of a combined heat and mass transfer device is improved by directing a flow of a carrier-gas mixture through a fluid flow path in a combined heat and mass transfer device operating at a pressure below atmospheric pressure. Heat and mass are transferred from or to the carrier-gas mixture by a direct or indirect interaction with a liquid composition that includes a vaporizable component (e.g., water) in a liquid state to substantially change the content of the vaporizable component in the carrier-gas mixture via evaporation of the vaporizable component from the liquid composition or via condensation of the vaporizable component from the carrier-gas mixture, producing a flow of carrier-gas mixture having a concentration of the vaporizable component that differs from the concentration of the vaporizable component in the carrier-gas mixture before the heat and mass transfer process.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: June 18, 2013
    Assignees: Massachusetts Institute of Technology, King Fahd Univeristy of Petroleum and Minerals
    Inventors: Mostafa H. Elsharqawy, John H. Lienhard, Syed M. Zubair, Prakash N. Govindan
  • Patent number: 8454729
    Abstract: A system and related method for purifying indoor air comprising: a filter bed comprising a growing medium suitable for growing plants rooted therein and configured to be capable of sustaining an airflow therethrough between a top surface thereof and a bottom surface thereof; a micro-irrigation system comprising a plurality of irrigation source outlets for delivering water to the filter bed in a substantially-uniform fashion; an active region of the filter bed comprising that region of the filter bed configured so as to substantially have the airflow flowing therethrough; and micro-irrigation system configured such that water therefrom is capable of being projected so as to reach at least 50% of a top surface area of the active region.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: June 4, 2013
    Inventors: Martin Mittelmark, Billy C. Wolverton
  • Publication number: 20130095561
    Abstract: The present invention provides a biological H2S removal system for the treatment of process gas, comprising: a housing that receives a process gas stream through a gas inlet, the housing comprising a plurality of layers through which the process gas stream flows while it is treated for H2S removal, and a gas outlet through which a treated gas stream exits; wherein air is added to the process gas stream prior to the process gas stream entering the housing.
    Type: Application
    Filed: October 18, 2011
    Publication date: April 18, 2013
    Inventor: Jeffrey J. Grill
  • Patent number: 8419844
    Abstract: A moisture removal system for removing water moisture from an air stream and an associated method are provided. The moisture removal system includes one or more packed beds that include a water-entry surface at which liquid water is received and an air-entry surface that is located substantially opposite the water-entry surface and at which the air stream is received. The air stream passes through the one or more packed beds in a direction substantially counter-current to the passage of the liquid water and the liquid water and the air stream contact one another in the one or more packed beds resulting in the removal of at least a portion of the water moisture from the air stream. The moisture removal system can be located upstream of and be operably connected to the inlet of a gas turbine system to which the air stream is delivered from the moisture removal system.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: April 16, 2013
    Inventors: Abhijeet Madhukar Kulkarni, Richard Michael Ashley Mass, John Carl Davies
  • Publication number: 20130087742
    Abstract: Apparatus and processes for saturating and purifying syngas are provided. In one or more embodiments, the apparatus can include two packed beds through which water and syngas flow countercurrently. In the first bed, the syngas can be at least partially saturated with water, and in the second bed hydrocarbons, byproducts, or both can be removed from the syngas. Processes for saturating and purifying syngas using the apparatus discussed and described herein are also provided.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 11, 2013
    Applicant: Kellogg Brown & Root LLC
    Inventor: Kenneth L. Blanchard
  • Patent number: 8404033
    Abstract: A gas scrubber is presented. The gas scrubber comprises a nozzle that atomizes a liquid to form droplets. The droplets are preferably expelled from the nozzle in substantially a hollow cone spray pattern with a velocity of at least 4000 feet per minute. A stream of gas containing particulates that requires scrubbing interacts with the droplets. After the interaction, the gas-droplet combination impinges on a target. Preferred targets include droplets from a second nozzle, a ducting surface, or a throated passage.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: March 26, 2013
    Inventors: Richard S. Crews, John S. Crews
  • Patent number: 8398743
    Abstract: A method for processing flue-gas, in an exemplary embodiment, includes providing an absorber unit having a membrane contactor, channeling a combustion flue gas along a first surface of the membrane contactor, and channeling an ammonia-based liquid reagent along a second opposing surface of the membrane contactor. The method also includes partially separating the ammonia-based liquid from the flue gas such that the ammonia-based liquid and the flue gas contact at gas-liquid interface areas, defined by a plurality of pores of the membrane contactor, to separate CO2 from the flue gas by a chemical absorption of CO2 within the ammonia-based liquid to produce a CO2-rich ammonia-based liquid.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventors: Jennifer Lynn Molaison, Alan Smithies
  • Patent number: 8372349
    Abstract: An air freshener including a housing having a reservoir chamber, a dispenser, a pump intermediate the reservoir and the dispenser, a pad, at least one fan proximate the pad, and wherein the dispenser transfers a scented liquid onto the pad and the at least one fan directs air flow proximate the pad.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: February 12, 2013
    Inventors: Marcus J. Shotey, John Klein
  • Publication number: 20130032032
    Abstract: A filter device for filtering dust from air includes a housing, a dust collecting module, a spraying module, and an exhaust. The housing defines an air inlet near a bottom of the housing and an air outlet near a top of the housing. The dust collecting module is installed in the housing between the air inlet and the air outlet. The spraying module is placed in the housing between the dust collecting module and the air outlet. The exhaust is connected to the housing for generating air pressure difference between near the air outlet and near the air inlet, thereby drawing and introducing air containing dust from the bottom of the housing toward the top of the housing via the air inlet.
    Type: Application
    Filed: December 5, 2011
    Publication date: February 7, 2013
    Applicant: FOXCONN TECHNOLOGY CO., LTD.
    Inventors: CHUN-CHUNG CHANG, WEN-HSIUNG CHANG, PING-NENG CHANG, RUN-CHENG LIN
  • Patent number: 8353980
    Abstract: An apparatus and process for removing acidic gases from flue gases produced by, for example, utility and industrial facilities. The acidic gases are removed as the flue gas flows upward through a contact zone within a passage, where the flue gas is contacted with an ammonium sulfate-containing scrubbing solution to absorb the acidic gases from the flue gas. The scrubbing solution and absorbed acidic gases therein are then accumulated, and ammonia and an oxygen-containing gas are injected into the accumulated scrubbing solution to react the absorbed acidic gases and produce ammonium sulfate. An acid solution is flowed across the passage above the contact zone of the passage, and the scrubbed flue gas is flowed upward through the acid solution to remove unreacted ammonia from the scrubbed flue gas. The acid solution is then removed from the passage after the acid solution has been contacted by the scrubbed flue gas.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: January 15, 2013
    Assignee: Marsulex Environmental Technologies Corporation
    Inventor: David William Murphy
  • Patent number: 8349055
    Abstract: A method of scrubbing flue gases of two or more diesel engines and a scrubber for scrubbing flue gases of two or more diesel engines. The scrubber (1) comprises scrubbing means (3) for scrubbing the flue gases, and conduits (4) for conveying the flue gases to said scrubbing means (3) to be scrubbed in the same scrubbing process. The different flue gas flows are arranged to be conveyed in separate conduits (4) all the way to the scrubbing means (3).
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: January 8, 2013
    Assignee: Metso Power Oy
    Inventors: Pekka Kaisko, Heikki Airikkala, Tarja Korhonen, Seppo Tuominiemi
  • Patent number: 8337604
    Abstract: A system for removing unwanted contaminates from gases using a scrubber, which comprises a housing, a reaction chamber having a liquid level, an inlet connected to a source containing gases to be scrubbed with a contamination concentration greater than zero ppb to saturation. A gas exit port connected to the housing is used for evacuating scrubbed gas and a sintered permeable membrane is disposed across the reaction chamber, which provides a reaction zone in the plurality of pores when gases to be scrubbed are introduced to the membrane on a first side while the membrane is immersed in the lean liquid; and a cleaned gas on a second side wherein the clean gas initially has a drop in contamination concentration of at least 99 percent and gradually decreasing to 70 percent as additional gases to be scrubbed are introduced to the plurality of pores without replacing the lean liquid.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: December 25, 2012
    Assignee: Vapor Point, LLC
    Inventors: Jefferey St. Amant, Kenneth R. Matheson, Keith Nathan
  • Patent number: 8328911
    Abstract: A method for removing and capturing carbon dioxide from a fluid stream includes the steps of exposing the fluid stream to an aqueous scrubbing solution that removes and holds carbon dioxide from the fluid stream, passing the aqueous scrubbing solution through a membrane in order to separate excess water from the scrubbing solution and increase the concentration of carbon dioxide in the scrubbing solution, heating the scrubbing solution having an increased concentration of carbon dioxide so as to release carbon dioxide gas and recycling the scrubbing solution. A carbon dioxide capture apparatus includes a carbon dioxide scrubber, a membrane downstream from the scrubber for separating water and concentrating carbon dioxide in a scrubbing solution and a stripper vessel.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: December 11, 2012
    Assignee: The University of Kentucky Research Foundation
    Inventors: Kunlei Liu, James K. Neathery, Joseph E. Remias, Xiansen Li
  • Patent number: 8317906
    Abstract: A membrane contactor system for use in separating carbon dioxide from a gaseous stream in a continuous flow process comprising a housing defining a gas flow path and comprising a first outlet for the carbon dioxide and a second outlet for the purified gas; an expanded polytetrafluoroethylene microporous membrane positioned in the housing to allow the gaseous stream to flow across a side of the expanded polytetrafluoroethylene microporous membrane, the membrane having a plurality of interconnecting pores configured to allow the carbon dioxide to diffuse therethrough; an oleophobic enhancement coating disposed on the surfaces to form a coated membrane; and an amine based sorbent liquid disposed on a side of the expanded polytetrafluoroethylene microporous membrane opposite the gas, wherein the amine based sorbent liquid is configured to absorb the carbon dioxide from the gaseous stream.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventor: Vishal Bansal
  • Patent number: 8292272
    Abstract: Water is separated from a liquid mixture (e.g., sea water) using a humidification chamber and a dehumidification chamber that are each operated at a pressure less than ambient atmospheric pressure (e.g., at least 10% less than ambient atmospheric pressure). A carrier gas is flowed through the humidification chamber; and inside the humidification chamber, the carrier gas directly contacts the liquid mixture to humidify the carrier gas with water evaporated from the liquid mixture to produce a humidified gas flow. The humidified gas flow is directed through the dehumidification chamber, where water is condensed from the humidified gas flow and collected.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: October 23, 2012
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: Mostafa H. Elsharqawy, John H. Lienhard, Syed M. Zubair, Prakash N. Govindan
  • Patent number: 8262787
    Abstract: Vapor-liquid contacting apparatuses comprising a primary contacting zone and a secondary contacting zone are disclosed. A representative secondary contacting zone is a secondary absorption zone, such as a finishing zone for subsequent contacting of the vapor effluent from the primary contacting zone to further remove impurities and achieve a desired purity of purified gas exiting the secondary absorption zone. The secondary contacting zone is disposed below the primary contacting zone, such that the secondary contacting zone, which must operate efficiently in removing generally trace amounts of remaining impurities, is more protected from movement than the more elevated, primary or initial contacting stages for bulk impurity removal. The apparatuses are therefore especially beneficial in offshore applications where they are subjected to rocking.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: September 11, 2012
    Assignee: UOP LLC
    Inventor: Zhanping Xu
  • Patent number: 8220784
    Abstract: An evaporative cooler for cooling air includes a cooling housing having an air inlet and an air outlet and an evaporation media, located within the cooling housing intermediate the air inlet and the air outlet for air flow there through and for receiving water to permit evaporation of at least some water. The evaporative cooler includes a drain pan located within the cooling housing and below the evaporation media to catch water which has not evaporated and falling from the evaporation media and a sump located within the cooling housing and below the drain pan for collecting water for use in supplying water to the evaporation media. The evaporative cooler includes a pipe connecting the drain pan to the sump for water movement from the drain pan to the sump and an air vent located within the cooling housing and connected to the pipe, the air vent being open to air within the cooling housing and above the drain pan to permit release of air from within the pipe.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 17, 2012
    Assignee: General Electric Company
    Inventors: Przemyslaw Krzysztof Nikolin, William Keith Albert Eyers, Peter John Duncan Smith
  • Patent number: 8168564
    Abstract: A catalyst support in the shape of a non-planar ring having a bore; wherein there is no rotational symmetry around the axis extending through the center of the bore defined by the ring, and wherein the ratio of the thickness of the ring to the outer diameter of the ring is less than 0.5. The catalyst support shape is especially advantageous to pack within a fixed bed multitubular reactor such as that used for Fischer-Tropsch reactions. The packing of such shapes can reduce the pressure drop across the tubes with little or no difference in the porosity.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: May 1, 2012
    Inventors: Coen Willem Johannes Pieterse, Guy Lode Magda Maria Verbist
  • Patent number: 8123843
    Abstract: The present invention relates to an apparatus comprising a co-current absorbing unit, a countercurrent absorbing unit, at least one absorbing liquid reservoir, and at least one liquid transferring means. The invention also relates to a method of absorbing a reactive gas and a method of preparing a solution by contacting a reactive gas to a solvent and allowing the reactive gas to react with the solvent.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: February 28, 2012
    Inventors: Patrick H. Au-Yeung, Dennis W. Jewell, John G. Pendergast, Jr.
  • Patent number: 8083835
    Abstract: A system and related method for purifying indoor air comprising: a filter bed comprising a growing medium suitable for growing plants rooted therein and configured to be capable of sustaining an airflow therethrough between a top surface thereof and a bottom surface thereof; a micro-irrigation system comprising a plurality of irrigation source outlets for delivering water to the filter bed in a substantially-uniform fashion; an active region of the filter bed comprising that region of the filter bed configured so as to substantially have the airflow flowing therethrough; and micro-irrigation system configured such that water therefrom is capable of being projected so as to reach at least 50% of a top surface area of the active region.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: December 27, 2011
    Inventors: Martin Mittelmark, Billy C. Wolverton
  • Patent number: 8080226
    Abstract: Methods and systems for the destruction of one or more PFCs in a gas stream are provided. The gas stream can come from semiconductor processing, for example. The PFCs in the gas stream are reacted with steam in the presence of a catalyst to fragment the PFCs into other compounds that are readily removed from the gas stream. The catalyst comprises gallium, and can additionally comprise zirconium oxide. The gas stream can also be pre-treated prior to reacting the PFCs with steam to remove substances that could be deleterious to the catalyst.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: December 20, 2011
    Assignee: TecHarmonic, Inc.
    Inventors: Christopher Hertzler, Vivian W. Hui
  • Patent number: 8066947
    Abstract: An air scrubber for eliminating an associated airborne contaminants and sterilizing air provided to protect against nocosomial infections, environmental allergens, weapons of biological and chemical attacks and operations requiring clean environment. The air scrubber includes a housing containing an alkali solution at pH 14 through which air passes and suspended liquid particles removed; provides are made for use in central air-conditioning systems, stand-alone applications and portable use along with respirators.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: November 29, 2011
    Inventor: Sarfaraz K. Niazi
  • Publication number: 20110277767
    Abstract: This disclosure relates to porous frameworks for gas separation and sensing.
    Type: Application
    Filed: December 18, 2009
    Publication date: November 17, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Omar M. Yaghi, David Kyle Britt, David J. Tranchemontagne
  • Patent number: 8057579
    Abstract: A method and apparatus are provided for absorbing acid gases from a synthesis gas prior to combustion. In one embodiment, a vessel is provided for receiving a synthesis gas and a physical solvent. The vessel includes one or more membrane contactors that provide an interface for physical absorption of one or more acid gases from the synthesis gas into the physical solvent.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 15, 2011
    Assignee: General Electric Company
    Inventor: Jennifer Lynn Molaison
  • Patent number: 8052878
    Abstract: A method for filtering out foreign particles from a cooling lubricant used in a process of machining a workpiece includes providing an inherently stable, flow-porous filter element. The filter element comprises a porous main body made of joined plastics particles and having an afflux surface and a porous coating on the afflux surface for surface filtration. The porous coating first component particles and/or fibres, second component anti-adhesion particles to mitigate the adhesion of filtered out material to the porous coating and to facilitate cleaning of the filter element, with the first component particles and/or fibres and the second component particles being mixed in the porous coating, a solidified inorganic binder, and a set adhesive. The solidified inorganic binder and the set adhesive bind the first component particles and/or fibres and the second component particles to each other and to the porous main body.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 8, 2011
    Assignee: Herding GmbH Filtertechnik
    Inventors: Stefan Hajek, Urs Herding, Kurt Palz, Wolfgang Raabe, Reiner Thuerauf, Bernd Meindl