Gas Dehydrator (e.g., Glycol Type, Etc.) Patents (Class 96/295)
  • Patent number: 11022330
    Abstract: A three-way heat exchanger for a liquid desiccant air-conditioning system and method of manufacture. The heat exchanger includes a plurality of panel assemblies. Each panel assembly has a frame bordering a given space. The frame includes desiccant inlet and outlet ports and heat transfer fluid inlet and outlet ports. Two plates joined to the frame define a heat transfer fluid channel in the given space. The heat transfer fluid inlet and outlet ports are in fluid communication with the heat transfer fluid channel. Microporous sheets cover the outer surfaces of the plates and define a desiccant channel. The desiccant inlet and outlet ports are in fluid communication with the desiccant channel. The plurality of panel assemblies have a stacked arrangement such that a microporous sheet on one panel assembly faces a microporous sheet on an adjacent panel assembly and defines an airflow channel therebetween.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: June 1, 2021
    Assignee: EMERSON CLIMATE TECHNOLOGIES, INC.
    Inventors: Mark A. Allen, Scott N. Rowe, Shawn Montgomery, Mark D. Rosenblum, Peter Luttik, David Fox, An Le
  • Patent number: 8950081
    Abstract: Methods of removing moisture from a compressor using a sorbent technology are provided. A dehydration device incorporating the sorbent technology is disposed in a system that contains a hygroscopic fluid. By passing the hygroscopic fluid over the sorbent technology, moisture is removed from the hygroscopic fluid. The systems include sealed devices and integral components for heating, ventilation, and air conditioning (HVAC) systems and refrigeration devices.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: February 10, 2015
    Assignee: Emerson Climate Technologies, Inc.
    Inventor: Matthew J. Heidecker
  • Publication number: 20140150662
    Abstract: Disclosed are various turbulent, corrosion-resistant heat exchangers used in desiccant air conditioning systems.
    Type: Application
    Filed: June 11, 2013
    Publication date: June 5, 2014
    Inventors: Peter F. Vandermeulen, Mark Allen, Arthur Laflamme
  • Patent number: 8613895
    Abstract: A method and system remove contaminants from a vapor. In one embodiment, the system includes a contaminant removal system having a vacuum box. A contaminated vapor from process equipment is introduced to the vacuum box. The contaminated vapor includes steam and hydrocarbons. The vacuum box includes a water removal device. The water removal device removes water from the contaminated vapor to provide water and a reduced water vapor. The water and the reduced water vapor are removed from the vacuum box.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 24, 2013
    Assignee: Global Vapor Control, Inc.
    Inventors: Alan Finley, Doug Scott, Lisha Salathiel
  • Patent number: 8470071
    Abstract: Particular embodiments disclosed herein relate to methods, compositions, and systems relating generally to heating, ventilation, and air conditioning (HVAC) systems, and more specifically, to HVAC systems that transfer sensible and/or latent energy between air streams, humidify and/or dehumidify air streams. In certain embodiments, a polymeric membrane is utilized for fluid exchange, with or without an additional support. Certain embodiments allow for individual regulation of air temperature and humidity.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: June 25, 2013
    Assignee: Dais Analytic Corporation
    Inventors: Scott G. Ehrenberg, Hung Huynh, Brian Johnson
  • Patent number: 8349056
    Abstract: A system includes a direct contact absorber configured to circulate a flow of a liquid desiccant solution for absorbing moisture from a gas stream flowing through the direct contact absorber.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: January 8, 2013
    Assignee: General Electric Company
    Inventor: Robert Warren Taylor
  • Patent number: 8347629
    Abstract: A method, system, and apparatus including a compressed air energy storage system that includes an ambient air intake configured to intake a quantity of ambient air for storage in a compressed air storage volume, a compression system having a compression path that is configured to convey air compressed by the compression system through the compression system, a first path configured to convey ambient air to the compression system, a second path proceeding from the compression system to the compressed air storage volume and configured to convey compressed air to the compressed air storage volume, and a dehumidifying system. The dehumidifying system is coupleable to at least one of the first path that proceeds from the ambient air intake to the compression system, the compression path, and the second path. The dehumidifying system includes a dehumidifying component configured to remove moisture from the ambient air and/or the compressed air.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 8, 2013
    Assignee: General Electric Company
    Inventors: Matthias Finkenrath, Cristina Botero, Sebastian Walter Freund, Clarissa Sara Katharina Belloni, Miguel Angel Gonzalez Salazar, Stephanie Marie-Noelle Hoffmann, Roland Marquardt, Kurt Peter Moser, Stefan Martin Zunft
  • Patent number: 8052847
    Abstract: A system and method for removing water from a liquid desiccant such as a glycol used to dry cooled air in order to restore the desiccant to a purity up to around 97% in a closed continuous flow process. Liquid desiccant can be sprayed into cooled air in a conditioner where it gains moisture. The wet or gained desiccant can be optionally preheated in an economizing heat exchanger and then routed into a concentrator. Desiccant pure to around 97% can be removed from the concentrator, passed through an economizing heat exchanger to provide the preheating and returned to the conditioner holding area. The concentrator can be heated by steam or other means such as natural gas to boil the wet desiccant causing mixed vapor to enter a vertical distillation column where most of the glycol condenses out on the column packing or plates and returns to the concentrator.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: November 8, 2011
    Assignee: Niagara Blower Company
    Inventors: Matthew Koban, Phillip Rowland, Michael Harvey, Peter Demakos
  • Publication number: 20110126707
    Abstract: The off-gas from the still and flash tank of an existing glycol-based dehydration unit (containing water vapor, methane, BTEX (benzene, toluene, ethylbenzene, xylene), VOCs (volatile organic compounds)) is sent directly to a gas separation membrane system for dehydration. The gas separation membrane has a high selectivity for water over organic compounds (for example, the membrane described in WO2005/007277A1). The driving force for water permeation is established by applying a vacuum on the permeate side of the membrane unit or by flowing a sweep gas, for example warm, dry air through the permeate side of the unit.
    Type: Application
    Filed: March 6, 2009
    Publication date: June 2, 2011
    Inventors: Gaetan Noel, Pierre Lucien Cote
  • Publication number: 20080250934
    Abstract: An antiallergen filter of the present invention is characterized in that a water-insoluble high-molecular weight anti-allergenic agent having a phenolic hydroxyl group and a moisture-absorbing material are carried on a filter. Because of using the water-insoluble high-molecular weight substance as an anti-allergenic agent, the antiallergen filter of the present invention is free from a problem that the anti-allergenic agent flows and drops or is detached from the filter due to moisture in the atmosphere, etc. even in a highly humid environment or the like. Further, since the moisture-absorbing material is carried on the filter, moisture that the anti-allergenic agent requires for adsorbing and capturing an allergen and inactivating its allergic activity can be effectively retained on the filter. Thus, the antiallergen filter of the present invention can effectively exert its anti-allergenic effect over a prolonged period of time.
    Type: Application
    Filed: June 6, 2008
    Publication date: October 16, 2008
    Applicant: Matsushita Electric Industrial Co., LTD.
    Inventors: Jun Inagaki, Ryousuke Suga, Takahiro Nakajima, Mitsuhito Teramoto, Taro Suzuki
  • Patent number: 7431757
    Abstract: A combustion turbine power plant (10) incorporating a desiccating scrubber (140) for simultaneously removing water and sulfur from a flue gas (20) of the power plant (10). The desiccating scrubber (140) may include an inlet nozzle (145) for spraying an aqueous solution (142) containing a desiccant and a base into flue gas (20) so the aqueous solution (142) makes direct contact with flue gas (20). A filter (162) may be provided to collect sulfur compounds downstream of the desiccating scrubber (140) and a regenerator (164) may be provided for recovering water. A controller (148) may control a base supply (170) and a desiccant supply (172) to regulate the respective amounts of each introduced into the aqueous solution (142). Controller (148) may be responsive to sensors (142) measuring the water and sulfur content of flue gas (20) exhausted to atmosphere (144). The desiccating scrubber (140) may include a demister (160) to entrain carryover droplets from a sprayed aqueous solution (142).
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: October 7, 2008
    Assignee: Siemens Power Generation, Inc.
    Inventor: James C. Bellows
  • Patent number: 7431900
    Abstract: A hydrogen peroxide vapor generation unit (10) receives hydrogen peroxide and water solution at an interface (20) and interconnects with an air dryer (14) by way of nipples (72, 92). In one embodiment, the dryer includes a clamping assembly (42) which is latched (74, 94) with the nipples and which receives a disposable desiccant cartridge (40). In an alternate embodiment, a reusable desiccant cartridge (40?) is connected directly to the nipples (72, 92). When the desiccant cartridge (40?) is saturated, it is removed and placed in a regenerator unit (120). A regenerated cartridge is installed in its place.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: October 7, 2008
    Assignee: Steris Inc
    Inventors: Aaron L. Hill, Arthur T. Nagare, Frank E. Dougherty, Stanley M. Voyten
  • Patent number: 7309062
    Abstract: A dehumidification and energy recovery device includes a casing defining an interior that is divided into two vertically stacked sections, a channel extending vertically between the sections and forming upper and lower openings, absorption devices arranged inside the channel corresponding to the sections respectively, and a tank arranged below the lower opening of the channel and containing a liquid that is driven by a pump to a position above the upper opening of the channel to drop onto and flow through the absorption devices. Intake airflow and exhaust airflow respectively pass through the sections, contacting the liquid flowing through the channel in a cross-flow fashion, whereby exchange of humidity and heat is performed between the airflows and the liquid to effect dehumidification and energy recovery with a simple structure and low costs.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: December 18, 2007
    Inventor: Wen-Feng Lin
  • Patent number: 6846348
    Abstract: A system for delivering dry compressed gas is provided, the gas being separated from any entrained liquid lubricant and then passed through a moisture absorber column to interact with a moisture-removing fluid. The fluid is a liquid lubricant or is maintained in a separate closed circuit relative to the liquid lubricant. A moisture stripping device receives some of the gas from the absorber column, which is passed in moisture exchange relation with the fluid before the fluid enters the column. The column has a housing defining a vertical absorption zone, and partition plates each defining gas flow holes. The plates have at least one tube passing therethrough, with an open upper end above one plate, and a lower end adjacent the next lower plate. The fluid passes down the tubes and across a top surface of each plate, with the gas flow passing upwardly through the holes in the plates.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: January 25, 2005
    Assignee: Cash Engineering Research Pty Ltd.
    Inventor: Anthony John Kitchener
  • Patent number: 6843836
    Abstract: A rotary compressor system having a drive rotary compressor unit, a separator vessel (13) receiving compressed gas and entrained liquid from said compressor for collecting the liquid therein and for returning the liquid to a lower pressure zone of the compressor and a moisture absorber receiving compressed gas flow leaving a separation zone of the separator vessel and passing the compressed gas flow relative to a flow of said liquid such that moisture in the compressed gas flow is transferred to said liquid.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: January 18, 2005
    Assignee: Cash Engineering Research Pty Ltd.
    Inventor: Anthony John Kitchener
  • Publication number: 20030106431
    Abstract: The present invention discloses a gas compressor system capable of delivering dry clean compressed gas, the system including a driven compressor unit (8) typically including a rotary compressor (10) driven by a motor 11 with the compressed gas being separated from any entrained liquid lubricant in a separator vessel (13), the compressed gas being thereafter passed through a moisture absorber column (22) in moisture absorbing relationship with a fluid capable of removing moisture from said compressed gas, said fluid either also acting as said liquid lubricant or being maintained in a separate closed circuit relative to said liquid lubricant, and a moisture stripping device (32) preferably provided to receive a portion of the dry compressed gas discharged from the absorber column (22) and being passed in moisture exchange relationship with the fluid prior to the fluid being introduced into said absorber column (22), the moisture absorber column (22) having an outer housing (36) defining a vertically disposed ab
    Type: Application
    Filed: October 11, 2002
    Publication date: June 12, 2003
    Inventor: Anthony John Kitchener
  • Patent number: 6183541
    Abstract: A natural gas dehydrator and process for dehydrating natural gas employ a longitudinal horizontal pressure vessel containing a threshold level of liquid desiccant. A plurality of spaced-apart baffles divides the vessel into a series of pneumatically discrete compartments. The baffles have a plurality of apertures which define a sinusoidal gas flow path through the vessel into and out of the liquid desiccant from the inlet to the outlet. Each of the baffles also has an opening in its lowermost portion which define a linear primary liquid desiccant flow path through the vessel from the inlet to the outlet. The baffled vessel is fixed within another longitudinally horizontal pressure vessel so as to define a chamber therebetween. Dried gas and wet desiccant are discharged from the inner or baffled vessel into the chamber where they are gravity separated, the dried gas flowing to an outlet on top of the outer vessel and the wet desiccant flowing to a sump at the bottom of the outer vessel.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: February 6, 2001
    Inventor: Bill E. Compton
  • Patent number: 6183540
    Abstract: A method is provided for the extraction of aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene, collectively known as “BTEX,” in a continuous process utilizing a glycol contactor to cause absorption of the BTEX upstream of an amine-based gas sweetening process. The preferred glycol for BTEX absorption is triethylene glycol. The glycol used in the glycol contactor for BTEX extraction may either be fully regenerated (dry), or wet glycol from a downstream gas dehydration system. The method may be achieved with the use of a number of separate absorber/contactor vessels, or the method may be achieved within one combination vessel.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: February 6, 2001
    Assignee: Kinder Morgan, Inc.
    Inventor: Jonathan E. Thonsgaard
  • Patent number: 6177597
    Abstract: A glycol solvent selected from a glycol and a tetramethylammonium carboxylate having improved dehydrating capacity and a reduced aborbency for aliphatic and aromatic hydrocarbons.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: January 23, 2001
    Assignee: Gavlin Associates, Inc.
    Inventors: Gilbert Gavlin, Boris Goltsin
  • Patent number: 6156102
    Abstract: A process of separating water from ambient air involves a liquid desiccant to first withdraw water from air and treatment of the liquid desiccant to produce water and regenerated desiccant. Water lean air is released to the atmosphere. Heat generated in the process is recycled. The drying capacity, or volume of water produced, of the system for a given energy input is favored over the production of dried air.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: December 5, 2000
    Assignee: Fantom Technologies Inc.
    Inventors: Wayne Ernest Conrad, Helmut Gerhard Conrad
  • Patent number: 6063163
    Abstract: According to the present invention, an inexpensive co-current and counter-current gas dehydration system, contactor apparatus, and operating method is provided which does not result in a need to clean equipment on a frequent basis. More specifically, there is provided a dehydration system, contactor apparatus, and method for removing water from a stream of wet natural gas which minimizes formation or iron sulfide scale within the contactor apparatus to maintain sufficient water removal capacity and to reduce operator cleanup and construction expenses. The instant invention improves the utilization of the water absorbing capabilities of glycol by using partially water laden glycol extracted from the central portion of the contactor apparatus in a co-current flow with wet natural gas to maximize the operating efficiency of the contactor apparatus.
    Type: Grant
    Filed: June 4, 1998
    Date of Patent: May 16, 2000
    Assignee: Amerada Hess Corporation
    Inventor: Paul Carmody
  • Patent number: 5993522
    Abstract: A compressed air strainer and drying treatment is provided in which a filter core of the strainer can be used successively without replacement. The strainer includes a strainer main trunk, an admitting pipe stretching into the inside of the main trunk, a water intake apparatus on one side of the top end of the main trunk, and an escape pipe set on the other side of the top end connecting a heat exchanger. An automatic drainer and a manual drainer are coupled to one side of the main trunk. On another side of the main trunk, a check valve is provided and a U-shaped pipeline connects the strainer to the evaporator. The drying treatment is accomplished by splitting the inlet compressed air into many fine streams by filter baffle plates to generate innumerable small bubbles and thereby increase the contacting area between the air and the water. Oil, dirt and contaminants are carried into the air bubble and then are filtered therefrom.
    Type: Grant
    Filed: May 13, 1998
    Date of Patent: November 30, 1999
    Inventor: Chin-Fu Huang
  • Patent number: 5907924
    Abstract: A method of treating gas containing water in order to remove at least part of the water from the gas, including feeding the natural gas to be treated by a first line, with a liquid fraction containing at least an aqueous phase is fed via a second line in the presence of a solvent into a contact zone, so as to bring the gas into direct contact with the liquid fraction over at least a portion of the contact zone. The solvent is a non-hydrocarbon compound other than water, and simultaneously, the gas is cooled in the presence of the solvent in order to condense at least one liquid phase consisting essentially of water in a mixture with the solvent.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: June 1, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Claude Collin, Joseph Larue, Alexandre Rojey
  • Patent number: 5853458
    Abstract: A solvent composition comprising a glycol, a potassium carboxylate and a neopentyl alcohol having improved dehydrating capacity and reduced absorbency for aliphatic and aromatic hydrocarbons.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: December 29, 1998
    Assignee: Gavlin Associates, Inc
    Inventors: Gilbert Gavlin, Boris Goltsin